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ABSTRACT 

The dynamics of transcendental function is one of emerging 

and interesting field of research nowadays. We introduce in 

this paper the complex dynamics of hyperbolic cosine 

function of the type {cosh (zn ) + z + c = 0} and applied 

Jungck Ishikawa iteration to generate new Relative Superior 

Mandelbrot set and Relative Superior Julia set. In order to 

solve this function by Jungck –type iterative schemes, we 

write it in the form of Sz = Tz, where the function T, S are 

defined as Tz = cosh( zn ) +c and  Sz = - z. Only mathematical 

explanations are derived by applying Jungck Ishikawa 

Iteration for transcendental function in the literature but in this 

paper we have generated relative Mandelbrot sets and 

Relative Julia sets. 
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1. INTRODUCTION 
The study of dynamical behavior of the transcendental 

functions was initiated by Fatou [12]. For transcendental 

function, points with unbounded orbits are not in Fatou sets 

but they must lie in Julia sets.  

         In complex analysis, the hyperbolic functions arise as 

the imaginary parts of sine and cosine .When considered 

defined by a complex variable, the hyperbolic functions are 

rational functions of exponentials, and are hence 

meromorphic. 

        In this past literature the cosine function was considered 

of the following forms: 

(i)  cos (zn) + c = 0   

(ii) (cos z + c)n = 0 

(iii) acos(zn)+c=0 

(iv) (acos (z) + c)n = 0 

 

But now we have used hyperbolic cosine function of the type          

cosh(zn) + z + c = 0 where n 2 and applied Jungck Ishikawa 

iterates to develop fractal images of this transcendental 

function. Escape criteria of polynomials are used to generate 

Relative Superior Mandelbrot Sets and Relative Superior Julia 

Sets. Our results are different from existing results in 

literature. 

 

2. PRELIMINARIES 
      The process of generating fractal images from                        

z cosh (zn ) + z + c is similar to the one employed for the 

self-squared function [17]. Briefly, this process consists of 

iterating this function up to N times. 

Starting from a value z0 we obtain z1, z2, z3, z4 ... by applying 

the transformation    z cosh(zn ) + z + c  

2.1 Ishikawa Iteration [8]  
      Let X is a subset of real or complex numbers and T:  X→ 

X for x0 ∈ X, we have the sequences {xn} and {yn} in X in the 

following manner: 

 

x n+1 =   αn T y n + (1- α n ) x n 

 

y n      =  βn  T x n + (1- β n ) x n 

 

where 0 ≤ βn ≥ 1 and 0 ≤ αn ≥ 1 and αn & βn  both convergent 

to non zero number.            

2.2 Definition [14]  
        The sequences {xn} and {yn} constructed above is called 

Ishikawa sequences of iteration or relative superior sequences 

of iterates. We denote it by (x0, α n , β n ,t) .Notice that RSO 

(x0, α n , β n ,t) with β n = 1 is RSO(x0, α n ,t) i.e. Mann’s orbit 

and if we place α n = β n =1  then  RSO (x0, α n , β n ,t) reduces 

to O (x0, t ) .We remark that Ishikawa orbit RSO(x0, α n , β n ,t) 

with  β n = 1/2      is Relative superior orbit. Now we define 

Julia set for function with respect to Ishikawa iterates.   We 

call them as Relative Superior Julia sets. 

2.3   Definition [14]  
    The set of points SK whose orbits are bounded under 

Relative superior iteration of function Q (z) is called Relative 

Superior Julia sets. Relative Superior Julia set of Q is a 

boundary of Julia set RSK. 

2.4 Jungck Ishikawa Iteration [16] 
Let

 
(X, ║.║) be a Banach space and Y an arbitrary set. Let S, 

T: Y→X be two non self-mappings such that T(Y)  S(Y), 

S(Y) is a complete subspace of X and S is injective. Then for 

xo ∈Y, define the sequence {S x n }
 
iteratively by   

 

S x n+1   =   α n T y n + (1- α n )  S x n 

 

S y n       =   β n T x n + (1- β n ) S x n 

   

where 0 ≤ βn ≥ 1 and 0 ≤ αn ≥ 1 and αn & βn  both convergent 

to non zero number.            
3. GENERATING THE FRACTALS  
Fractals have been generated from , using escape-time 

techniques- 

3.1 Escape Criterion for Quadratics [14] 



International Journal of Computer Applications (0975 – 8887) 

Volume 101– No.4, September 2014 

15 

Suppose that |z | >max {|c |, 2 /s , 2 /s ' }, then                        

|zn| >(1+λ) n|z |  and |zn|→∞ as n →∞  . So, |z | ≥ c |, and 

 |z |>2/s as well as |z |>2/ s ' shows the escape criteria for 

quadratics.  

3.2 Escape Criterion for Cubics[14] 
Suppose that |z | >max {|b | , (a+ 2 /s) ½ , (a+ 2 /s ') ½  }, then                         

|zn|→∞ as n →∞  .This gives the escape criteria for cubic 

polynomials.  

3.3 General Escape Criterion [14] 
Suppose that |z | >max {|b | , (a+ 2 /s) ½ , (a+ 2 /s ') ½  }, then                         

|zn|→∞ as n →∞  is the general escape criteria.  

 

4. FIXED POINTS 

 4.1 Fixed points of quadratic function 
Table 1: Orbit of F (z) for (zo= -0.8125-0.1125i) at  =0.5, 

 =0.5, c=0.1 

No. of 

iterations 

|Tz| No. of 

iterations 

|Tz| 

1 1.30289 11 1.32199 

2 1.31711 12 1.32223 

3 1.32285 13 1.32217 

4 1.32199 14 1.32219 

5 1.32223 15 1.32219 

6 1.32217 16 1.32219 

7 1.32199 17 1.32219 

8 1.32223 18 1.32199 

9 1.32217 19 1.32223 

10 1.32219 20 1.32217 

 

Here we observe that the value converges to a fixed point 

1.32219 after 6 iterations. 

 
Figure 1: Orbit of F (z) for (zo= -0.8125-0.1125i) at  =0.5, 

 =0.5, c=0.1 

Table 2: Orbit of F (z) for (zo= -2.6875-0.0625i) at  =0.8,
 

  =0.1, c=0.1 

No of 

Iterations   |Tx| 

No of 

Iterations   |Tx| 

71 74.025 86 1.1217 

72 1.1217 87 74.0253 

73 74.0256 88 1.1217 

74 1.1217 89 74.0253 

75 74.0251 90 1.1217 

76 1.1217 91 74.0253 

77 74.0255 92 1.1217 

78 1.1217 93 74.0253 

79 74.0252 94 1.1217 

80 1.1217 95 74.0253 

81 74.0254 96 1.1217 

82 1.1217 97 74.0253 

83 74.0253 98 1.1217 

84 1.1217 99 74.0253 

85 74.0254 100 1.1217 

 

Here we 70 iterations and observed that the value converges 

to two fixed points 74.0253 and 1.1217 after 87 iterations. 

 

 

 

 

Figure 2. Orbit of F (z) for (zo= -2.6875-0.0625i) 

at  =0.8,  =0.1, c=0.1 

Table 3: Orbit of F (z) for (zo=-0.35625-1.65i) at  =0.3, 

 =0.7, c=0.1 

No. of 

iterations |Tz| 

No. of 

iterations |Tz| 

1 6.71552 11 1.26349 

2 1.99943 12 1.26342 

3 1.21717 13 1.26339 

4 0.88466 14 1.26338 

5 1.13628 15 1.26338 

6 1.26549 16 1.26338 

7 1.26856 17 1.26338 

8 1.26571 18 1.26338 

9 1.26426 19 1.26338 

10 1.26370 20 1.26338 

 

Here we observed that the value converges to a fixed point 

1.26338 after 13 iterations. 
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Figure 3: Orbit of F (z) for (zo=-0.35625-1.65i) at  =0.3, 

 =0.7, c=0.1 

4.2 Fixed points of cubic function 

Table 1: Orbit of F (z) for (zo=-0.9+1.04375) at  =0.5, 
=0.7, c=0.1 

 

No. of 

iterations |Tz| 

No. of 

iterations |Tz| 

51 2.889998 66 1.327397 

52 1.327397 67 2.890001 

53 2.890004 68 1.327397 

54 1.327397 69 2.890001 

55 2.89000 70 1.327397 

56 1.327397 71 2.890001 

57 2.89000 72 1.327397 

58 1.327397 73 2.890001 

59 2.890001 74 1.327397 

60 1.327397 75 2.890001 

61 2.890001 76 1.327397 

62 1.327397 77 2.890001 

63 2.890001 78 1.327397 

64 1.327397 79 2.890001 

65 2.890001 80 1.327397 

 

    Here we skipped 50 iterations and observed that the value 

converges to two fixed points 2.890001 and 1.327397 after 

58 iterations. 

 
Figure 1: Orbit of F (z) for (zo=-0.9+1.04375) at  =0.5, 

 =0.7, c=0.1 

 

Table 2: Orbit of F (z) for (zo=-1.31875+1.1225i) at 
=0.3,  =0.5, c=0.1 

 

No. of 

iterations 

|Tz| No. of 

iterations 

|Tz| 

11 1.3534 26 1.3392 

12 1.3127 27 1.3384 

13 1.3605 28 1.3388 

14 1.3293 29 1.3387 

15 1.3381 30 1.3386 

16 1.3445 31 1.3388 

17 1.3322 32 1.3386 

18 1.3431 33 1.3387 

19 1.3373 34 1.3387 

20 1.3379 35 1.3387 

21 1.3404 36 1.3387 

22 1.3372 37 1.3387 

23 1.3395 38 1.3387 

24 1.3386 39 1.3387 

25 1.3384 40 1.3387 

 

Here we skipped 10 iterations and observed that the value 

converges to a fixed point 1.3387 after 32 iterations. 

 

Figure 2: Orbit of F (z) for (zo=-1.31875+1.1225i) at 
=0.3,  =0.5, c=0.1 

Table 3: Orbit of F (z) for (zo = -1.925-1.7375i) at  =0.3, 

 =0.2, c=0.1 

No of 

Iterations 

|Tx| No of 

Iterations 

|Tx| 

1 14879.0392 16 1.60569 

2 17.11398 17 1.60569 

3 1.50879 18 1.60566 

4 4.78429 19 1.60567 

5 1.53148 20 1.60567 

6 1.47782 21 1.60567 

7 1.66984 22 1.60567 

8 1.60781 23 1.60567 

9 1.59224 24 1.60567 

10 1.61045 25 1.60567 

11 1.60660 26 1.60567 

12 1.60431 27 1.60567 

13 1.60601 28 1.60567 
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14 1.60582 29 1.60567 

15 1.60554 30 1.60567 

 

Here we observe that the value converges to a fixed point 

1.60567 after 18 iterations. 

Figure 3: Orbit of F (z) for (zo = -1.925-1.7375i) at  =0.3, 

 =0.2, c=0.1 

4.3 Fixed points of biquadratic function 
 

Table 1: Orbit of F (z) for (zo= -2.66875+0.00625i) at  

=0.5,  =0.5, c=0.1 

No. of 

iterations 

|Tz| No. of 

iterations 

|Tz| 

21 1.1097 36 2.1494 

22 2.1476 37 1.1097 

23 1.1097 38 2.1494 

24 2.1485 39 1.1097 

25 1.1097 40 2.1494 

26 2.1490 41 1.1097 

27 1.1097 42 2.1494 

28 2.1492 43 1.1097 

29 1.1097 44 2.1494 

30 2.1493 45 1.1097 

31 1.1097 46 2.1494 

32 2.1493 47 1.1097 

33 1.1097 48 2.1494 

34 2.1494 49 1.1097 

35 1.1097 50 2.1494 

 

 

Here we skipped 20 iterations and observed that the value 

converges to two fixed points 1.1097 and 2.1494 after 32 

iterations. 

 

Figure 1: Orbit of F (z) for (zo= -2.66875+0.00625i) at          

  =0.5,  =0.5, c=0.1 

 

Table 2: Orbit of F (z) for (zo= -1.6875+0.84375) at  =1, 

 =1, c=0.1 

 

No. of 

iterations |Tz| 

No. of 

iterations |Tz| 

1 17.4696 11 1.11051 

2 1.10000 12 1.11051 

3 1.11399 13 1.11051 

4 1.10956 14 1.11051 

5 1.11078 15 1.11051 

6 1.11043 16 1.11051 

7 1.11053 17 1.11051 

8 1.11050 18 1.11051 

9 1.11051 19 1.11051 

10 1.11051 20 1.11051 

 

Here we observe that the value converges to a fixed point 

1.11051 after 8 iterations. 

 

Figure 2: Orbit of F (z) for (zo= -1.6875+0.84375) at  =1, 

 =1, c=0.1 
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Table 3: Orbit of F (z) for (zo = -2.24375+1.3375i) at 

  =0.3,  =0.2, c=0.1 

 

No. of 

iterations |Tz| 

No. of 

iterations |Tz| 

1 58829601051.3444 16 1.3454 

2 227.4253 17 1.3503 

3 2.0861 18 1.3476 

4 10.1152 19 1.3491 

5 1.2891 20 1.3483 

6 1.0992 21 1.3487 

7 1.6548 22 1.3485 

8 1.1541 23 1.3486 

9 1.8486 24 1.3485 

10 1.2591 25 1.3486 

11 1.425 26 1.3485 

12 1.3165 27 1.3485 

13 1.3687 28 1.3485 

14 1.3383 29 1.3485 

15 1.3544 30 1.3485 

 

Here we observe that the value converges to a fixed point 

1.3485 after 25 iterations. 

 

Figure 3: Orbit of F (z) for (zo = -2.24375+1.3375i) at 

  =0.3,  =0.2, c=0.1 

5. GEOMETRY OF RELATIVE 

SUPERIOR MANDELBROT SETS AND 

RELATIVE SUPERIOR JULIA SETS 

Relative Superior Mandelbrot Sets 
 In case of quadratic function, the central body is divided into 

three parts or we can say it looks like a flower having 3 

leaves. It is seen that the body is symmetric along the real 

axis only. Each part has one secondary lobe which is 

approximately equal in size. 

 In case of cubic function, the central body is divided into 5 

equal parts or we can say it looks like a flower having 5 

leaves .Each part have one secondary lobe of different sizes. 

It is seen that the body is symmetric along the real axis only. 

For   =0.3,   =0.5, the size of the secondary lobes is 

larger as compared to other values. 

 In case of biquadratic function, the central body is divided 

into seven equal parts or we can say it looks like a flower 

having 7 equal size leaves. Each part having one secondary 

lobe of different sizes. It is seen that the body is symmetric 

along the real axis only.  

Relative Superior Julia Sets 
 Relative Superior Julia Sets for the transcendental function 

cosh(z) appears to follow law of having 2n wings. These sets 

are symmetric along both the axes i.e. along real and 

imaginary axis. 

 For quadratic function the Relative Superior Julia Set is 

divided into four wings having red central body. These sets 

are symmetric along both the axes. 

 For cubic function the Relative Superior Julia Set is divided 

into six wings having reflectional and rotational symmetry, 

along with a larger red central region. 

 For biquadratic function the Relative Superior Julia Set is 

divided into eight wings possessing the reflectional and 

rotational symmetry and it is having a larger escape region 

as compared to quadratic and cubic function. 

 It is also observed from the graphical study of fixed points 

of Relative Superior Julia Sets that the convergence for  

  =0.5,  =0.5 and  =1,  =1   is quite fast for all 

polynomials in comparison to the convergence for other 

values. 

 

6. GENERATION OF RELATIVE 

SUPERIOR MANDELBROT SETS 
We generated the Relative Superior Mandelbrot sets. We 

present here some beautiful filled Relative Superior 

Mandelbrot sets for quadratic, cubic and biquadratic function. 

6.1 Relative Superior Mandelbrot sets for 

Quadratic function 

 
 

Figure 1: Relative Superior Mandelbrot Set for  = 
=0.5 & c = -0.8125-0.1125i 
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Figure 2: Relative Superior Mandelbrot Set for  =0.8,            

 =0.1, c=-2.6875-0.0625i 
 

 
 

Figure 3: Relative Superior Mandelbrot Set for  =0.3, 

 =0.7, c=-0.35625-1.65i 

 

 

 

 

 

6.2 Relative Superior Mandelbrot Sets for 

Cubic function 

 
 

Figure 1: Relative Superior Mandelbrot Set for  =0.5 ,

 =0.7, c=-0.9+1.04375i 

 

 
 

Figure 2: Relative Superior Mandelbrot Set for   =0.3, 

 =0.5, c = -1.31875+1.225i 
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Figure 3: Relative Superior Mandelbrot Set for  =0.3, 

 =0.2, c = -1.925-1.7375i 

6.3 Relative Superior Mandelbrot sets for 

biquadratic function 

 
 

Figure 1: Relative Superior Mandelbrot Set for =0.5, 

 =0.5, c = -2.66875+0.00625i 

 

 

 

 

Figure 2: Relative Superior Mandelbrot Set for =1, 
=1, c = -1.6875+0.84375i       

 

Figure 3: Relative Superior Mandelbrot Set for =0.3, 

 =0.2, c = -2.24375+1.3375i 

7. GENERATION OF RELATIVE 

SUPERIOR JULIA SETS 
We generated the Relative Superior Julia sets. We have 

presented here some beautiful filled Relative Superior Julia 

sets for quadratic, cubic and biquadratic function. 
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7.1 Relative Superior Julia sets for 

Quadratic function                                                                

 

 

Figure 1: Relative Superior Julia Set for  =  =0.5 & c 

= -0.8125-0.1125i 

 

 
 

Figure 2: Relative Superior Julia Set for  =0.8,            

 =0.1, c=-2.6875-0.0625i 
 

 

 

 
 

Figure 3: Relative Superior Julia Set for  =0.3,  =0.7, 

c=-0.35625-1.65i 

7.2 Relative Superior Julia Sets for Cubic 

function 

 
 

Figure 1: Relative Superior Julia Set for  =0.5 , =0.7, 

c=-0.9+1.04375i 
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Figure 2: Relative Superior Julia Set for   =0.3,  =0.5, 

c = -1.31875+1.225i 

 

 
 

Figure 3: Relative Superior Julia Set for  =0.3,  =0.2, 

c = -1.925-1.7375i 

7.3 Relative Superior Julia sets for 

biquadratic function 

 
 

Figure 1: Relative Superior Julia Set for =0.5,  =0.5, c 

= -2.66875+0.00625i 

 

 
 

Figure 2: Relative Superior Julia Set for =1,  =1, c = -

1.6875+0.84375i       
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Figure 3: Relative Superior Julia Set for =0.3,  =0.2,  

c = -2.24375+1.3375i 

8. CONCLUSION 
In this paper we studied the hyperbolic cosine function which 

is one of the members of transcendental family. The fixed 

point 0 for S (z) = cosh (zn ) +z + c = 0 also satisfies S’ (0) = 1. 

Relative Superior Mandelbrot sets for the hyperbolic 

transcendental function cosh(z) appear like beautiful flowers 

having the symmetry of 2n-1 petals/leaves while  Relative 

Superior Julia Sets appears to follow law of having 2n wings. 

The surrounding region of the Mandelbrot set appears to be an 

invariant Cantor set in the form of curve or “hair” that extends 

to . The orbit of any point on hair tends to infinity under 

iteration. Here the geometry of hairs is quite similar to that of 

exponential family and hence showed the property of 

transcendental function. The region filled up with large 

number of escaping points represents Julia set plane. 
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