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ABSTRACT
Computational visual attention modeling is a topic of increasing
importance in machine understanding of images. The model with
the `-0 norm as constraint is an NP hard problem. How to find
the global optimal solution is a difficult point of this area. For
Biogeography-based optimization (BBO) is good at solving NP
hard problem, a dictionary learning method based on it is pro-
posed in this paper. Biogeography-based optimization (BBO) al-
gorithm is a new category of optimization technique based on bio-
geography concept. This population-based algorithm uses the idea
of the migration strategy of animals or other species for solv-
ing optimization problems. The samples are first classified ran-
domly for generate original population and residual of approxi-
mate the sample class with a rank-1 matrix as habitat suitabil-
ity index (HSI) is calculated. Then, select better individuals using
league matches. After that new individuals are generated from mi-
gration operators and mutation and the residual of the representa-
tion is used as data samples for training the dictionary for the next
layer. The experimental results show the algorithm are effective.

General Terms:
Evolutionary Computing, Pattern Recognition, Digital Image Processing

Keywords:
Biogeography-based optimization, Sparse Representation, Dictio-
nary Learning

1. INTRODUCTION
Recently, there has been growing interests in developing systems to
automatically analyze video and image data. Although many algo-
rithms try to solve tracking problems, from statistics view to human
vision system view, it has not been solved thoroughly yet. The main
problem in tracking is that the object may undergo occlusion, dete-
rioration or even variation in its shape, thus, the need for a robust
algorithm is obvious.

Sparse representation [1, 2] has been successfully applied in many
pattern recognition applications as a part-based data representa-
tion method, including face recognition [3], speech recognition [4],
handwritten digit recognition [5], image clustering [5], etc. Some of
these algorithms just work in stationary discriminative background

and some others can adapt themselves to changes of background or
object. In recent years, a new approach has been introduced to solve
the tracking problem as a classification problem [6]. The use of
sparse coding and dictionary learning in computer vision is inspired
by works in the neuroscience community [7] and researchers in ma-
chine vision tried to adapt it such as works presented in [8, 9, 10].
These works vary from image representation to classification by
using dictionary learning. Although there is a controversy that if
sparse coding is really relevant to classification or not, but the out
coming results of this method on classification are promising [11].

So far there have been two general approaches for signal repre-
sentation: the first is orthogonal and bi-orthogonal dictionaries due
to their mathematical simplicity[12], such as curvelet, contourlet,
wedgelet and bandlet. Most of these transforms have their fast
transform algorithms, so they are widely used in image segmenta-
tion, denoising and inpainting. But the applications of these trans-
forms depend too much on geometrical characteristics. For the nat-
ural images which always have complex geometrical characteris-
tics, this type of dictionaries obviously lack flexibility.

The other one is learning dictionaries from samples, such as K-
SVD[13]. Although from mathematical theory there are only one
global optimal dictionary and its represent coefficients[14], how to
find them is still a difficult problem.

For its excellent performance of solving many NP hard problems
in the past years, Biogeography-based optimization (BBO) is used
for learning dictionaries for giving samples. Although we can not
prove the dictionary is the only global optimal one from mathemat-
ical theory, the experimental results show that it performs well.

2. PROBLEM SPECIFICATION
DICTIONARY-LEARNING ALGORITHMS

Sparse representations have become a very active research topic
in recent years. Many new algorithms have been developed that
take advantage of sparse representations to achieve state-of-the-art
results in a wide range of image processing applications including
inpainting, denoising, and compression.

A sparse representation scheme consists of (i) a generally over-
complete basis (called the dictionary) and (ii) an algorithm that
selects basis vectors (called the atoms) and weighting coefficients
to produce a linear approximation of an input signal. The repre-
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sentation is termed sparse because only a small number of atoms
/ coefficients will be selected by the representation algorithm. The
basic idea is to learn the dictionary adaptive to the target image so
as to achieve better sparsity than the fixed ones. Most existing dic-
tionary learning methods consider an over-complete dictionary and
formulate the learning process as a minimization problem.

We now turn to discuss the learning methodology for construct-
ing A. Assume that a training database {yi}Mi=1 is given, and
thought to have been generated by some fixed but unknown model
{MA,k0,ℵ}. Can this training database allow us to identify the gen-
erating model, and specifically the dictionary A?

2.1 The K-SVD Algorithm
A different update rule for the dictionary can be proposed, in which
the atoms (i.e., columns) in A are handled sequentially. This leads
to theK−SV D algorithm, as developed by Aharon et al. Keeping
all the columns fixed apart from the j0-th one, aj0 , this column can
be updated along with the coefficients that multiply it in X. We
isolate the dependency on aj0 by rewriting as 1

Ak = arg min
A

‖Y −AXk‖2F = Y XT
k (XkX

T
k )−1 = Y X+

k (1)

The optimal aj0 and xTj0 minimizing Equation 2 are the rank-1 ap-
proximation of Ej0, and can be obtained via an SVD, but this typ-
ically would yield a dense vector xTj0, implying that we increase
the number of non-zeros in the representations in X. In order to
minimize this term while keeping the cardinalities of all the rep-
resentations fixed, a subset of the columns of Ej0 should be taken
those that correspond to the signals from the example-set that are
using the j0-th atom, namely those columns where the entries in the
row XT

j0 are non-zero. This way, we allow only the existing non-
zero coefficients inXT

j0 to vary, and the cardinalities are preserved.

‖Y −AXk‖2F = ‖Y −
m∑
j=1

ajx
T
j ‖

2

F

= ‖(Y −
∑
j 6=j0

ajx
T
j )− aj0xTj0‖

2

F
(2)

Ej0 = Y −
∑
j 6=j0

ajx
T
j (3)

The optimal aj0 and xj0T minimizing Equation 2 are the rank-
1 approximation of Ej0, and can be obtained via an SVD, but
this typically would yield a dense vector xj0T , implying that we
increase the number of non-zeros in the representations in X.
Therefore, we define a restriction operator, Pj0, that multiplies
Ej0 from the right to remove the non-relevant columns. The ma-
trix Pj0 has M rows (the number of overall examples), and Mj0

columns (the number of examples using the j0-th atom). We define
(xRj0)T = xTj0Pj0 as the restriction on the row xTj0 , choosing the
non-zero entries only.

2.2 Biogeography-Based Optimization algorithm
The BBO algorithm was first proposed by Simon in 2008 . The
basic idea of this algorithm was inspired by biogeography, which
refers to the study of biological organisms in terms of geographical
distribution (over time and space). The case studies might include
different islands, lands, or even continents over decades, centuries,
or millennia. In this field of study, different ecosystems (habitats
or territories) are investigated to find the relationships between dif-
ferent species (habitants) in terms of immigration, emigration,

and mutation. The evolution of ecosystems to reach a stable situa-
tion while considering different kinds of species (such as predator
and prey), and the effects of migration and mutation was the main
inspiration for the BBO algorithm.

In the science of biogeography, a habitat is an ecological area that
is inhabited by a particular plant or animal species and which is ge-
ographically isolated from other habitats. Each habitat is classified
by Habitat Suitability Index (HSI). Areas or habitats which
are well suited as residences for biological species are said to have
a high HSI while habitats that are not good have low HSI . The
value of HSI depends upon many features of habitat like rainfall,
temperature, diversity of vegetation, land area, safety and security.
If each of the features is assigned a value, HSI is a function of
these values. Each of these features that characterize habitability
is known as Suitability Index V ariables (SIV ). SIV s can be
considered the independent variables of the habitats, and HSI can
be considered the dependent variable.

Habitats with high HSI have large population, high emigration
rate µ, simply by virtue of large number of species that migrate to
other habitats. The immigration rate λ is low for these habitats as
these are already saturated with species. On the other hand, habitats
with low HSI have high immigration rate λ, low emigration rate
µ because of sparse population. The value of HSI of low HSI
habitat may increase with the influx of species from other habitats
as suitability of a habitat is function of its biological diversity. But
if HSI does not increase and remains low, species in that habitat
go extinct and this leads to additional immigration. For sake of sim-
plicity, it is safe to assume a linear relationship between a habitat
HSI and its immigration and emigration rate and also that the rates
are same for all the habitats. The immigration and emigration rate
depends upon the number of species in the habitats.

The values of emigration rate µa 4 and immigration rate λa 5 are
given as:

µa =
E × n
N

(4)

λa = 1× 1− n
N

(5)

The other component ofBBO, mutation, improves the exploration
ofBBO and keeps habitats as diverse as possible. This component
is defined as follows:

mk = M × (1− Pk
Pmax

) (6)

where M is an initial value for mutation defined by the user,
pn is the mutation probability of the nth habitat, and pmax =
argmax(pk), k = 1, 2, ...,K. The general steps of the BBO al-
gorithm are illustrated in the flowchart of Fig. 2. This figure shows
that the BBO algorithm starts with a random set of habitats. Af-
ter calculating the HSI of each habitat, the emigration, immigra-
tion, and mutation rates are updated. The non-elite habitants are
migrated and mutated according these rates. A pre-defined num-
ber of the best habitats are saved as elites for the next generation.
Finally, the BBO algorithm is terminated by the satisfaction of a
termination criterion. Note that elitism prevents the best solutions
from being corrupted by immigration. To do this, we retain some of
the best solutions (habitats) at each iteration. So, the best solutions
can be recovered if their HSI is ruined by mutation.
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3. DICTIONARY TRAINING METHODS
3.1 Hierarchical dictionary learning algorithm
Let Z=[z1,z2,z3,...,zn] ∈ Rm×n be data samples, with
z1,z2,z3,...,zn as its column vectors. If the data samples are images,
we should change them into one-dimensional vectors. Assume a is
an image, which is 4 × 4 and á is the transformed vector, for the
continuity of the signals, the following transform is employed.

A4,4 =

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

 (7)

á = [a1,1, a2,1, a3,1, a4,1, a4,2, a3,2, a2,2, a1,2

, a1,3, a2,3, a3,3, a4,3, a4,4, a3,4, a2,4, a1,4]

Then hierarchical dictionary training method is used. First, D1 =

[d1
1, d

1
2, ..., d

1
z1] ∈ Rm×z1 is generated for minD1 ‖Z −D1X1‖2

with X1 = [x1
1, x

1
2, ..., x

1
n] as the representation coefficients. sp(.)

denotes `0-norm.

sp
(
x1

1

)
= sp

(
x1

2

)
= ... = sp

(
x1
n

)
= 1 (8)

So we need to cluster the data samples z1,z2,z3,...,zn for finding
the data sample clusters who share the same atoms. This method
is similar to K-means. But when clustering uses k − SV D and
Biogeography −Based Optimization, the process can be pre-
vented to fall into local minimum points. After training, the atoms
of the first layer and residuals R = Y − Dz1Xz1 are calculated.
Then the residuals can be used as new data samples as ý = R for
training the atoms D2 = [d2

1, d
2
2, ..., d

2
z2] for the next layer satisfy-

ing minD2 ‖Ý −D2X2‖2 With the same method, m layer atoms
can be trained until the satisfied SNR is achieved. The final dictio-
nary D is constructed by D = [D1,D2, ...,Dr].

3.2 Dictionary learning with K-SVD and BBO
In Equation 9 , the underlying dictionary A is assumed known, be-
ing the redundant DCT. We are supposed to minimize this function
with respect to both the sparse representations qk, and the overall
output image z. As done before, we adopt a block-coordinate mini-
mization algorithm that starts with an initialization z = MT y, and
then seeks the optimal q̂k.

{{q̂k}Mk=1, ŷ} = arg min
z,qk

λ‖Mz − y‖22+ (9)

∑
k

µk‖qk‖0 +
∑
k

‖Aqk −Rkz‖22

notice that we have turned the quadratic penalty in Equation 9 into
a constraint, thus removing the need to choose the parameter µk.
Also, the energy of the patch-error Ap− qk is evaluated using only
the existing pixels in this patch, as indicated by the multiplication
by Mk = RkM

TMRTk a local mask that corresponds to the k-th
patch. nk = 1TMk1. Thus, this stage works as a sliding window
sparse coding stage, operated on each block of size

√
n ×
√
n at a

time, high performing.

Given all q̂k,we can now fix those and turn to update z. Returning
to Equation 9, we need to solve

ŷ = arg min
z

λ‖Mz − y‖22 +
∑
k

‖Aq̂k −Rkz‖22 (10)

The K-SVD counterpart is better behaved. We target the update of
the columns of A one at a time. we thus minimize:

Err(A) =
∑
k∈Ωj

‖Mk(Aqk − pk)‖22 (11)

=
∑
k∈Ωj

‖Mk(Aqk − ajqk(j)− pk) +Mkajqk(j)‖22

We denote yjk = pk − Aqk + ajqk(j). This is the residual in the
representation of the k-th patch, where all the atoms apart from the
j-th are used. Thus, our task would be:

min
aj .qk(j)

∑
k∈Ωj

‖Mk(yjk − ajqk(j))‖22 (12)

While the above could be posed as a rank-1 approximation prob-
lem, a simpler approach is a short iterative (2-3 iterations) pro-
cess where we update the one unknowns alternating. The update
of qk(j) is obtained by:

q̂k(j) = [aTj Mkaj ]
−1aTj Mky

j
k (13)

We now, The rank-k approximate matrix Ak of A, K < r =

rank(A). Ak =
∑k
i=1Miqiai , k < r. B is arbitrary matrix,

‖.‖F is Frobenius norm of matrix.

min
rank(B)=k

‖A−B‖2F = ‖A−Ak‖2F = M2
k+1+M2

k+2+...+M2
r

(14)
It can be concluded from Equation 14 that A1 = M1q1a1 is the
best rank-1 approximation of A.

3.2.1 Generating the original populations. Code the data
samples Z = [z1, z2, ..., zn], such as z1 is No.1,...,zn is No.n.
Every data sample can choose its class randomly. For example, the
Habitatj is the jth individual of the original population. It can be
described as following matrix Habitatj

Habitatj =

1 7 8 9
6 2 3 10
4 5 0 0


The matrix Habitatj means that the data samples is classified into
three classes. The first class includes data samples of No.1, 7, 8
and 9, the second class includes No.6, 2, 3 and 10, and the third
class includes No.4 and 5. In order to improve the diversity of the
population, each individual needn’t be the same class number, but
the class number should be in some range. The individual matrix
should insure each number appearing only once. In that way, the
original population is generated as {Habitatj}numj=1 .

3.2.2 Calculate the Habitat Suitability Index (HSI). Choose each
sample class to form a matrix and k-SVD. As the above example
Habitatj , the data sample can be separated into:
Z1 = [z1, z7, z8, z9]
Z2 = [z6, z2, z3, z10] and Z3 = [z4, z5]

and Z1, Z2, Z3 are employed with k-SVD Z1 = Qz1Sz1Az1 ,
Z2 = Qz2Sz2Az2 , Z3 = Qz3Sz3Az3 . QZ1

1 is the first column
of QZ1 , MZ1

1 is SZ1(1, 1), and aZ1
1 is the first column of AZ1 ,

then we get Z̃1 = qZ1
1 MZ1

1 aZ1
1 .
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Z̃1 is the best rank-1 approximation of Z1, Z̃2, can be obtained by
the same method. By defining HSIzi,t as the Habitat Suitability
Index of solution zi, t and hsizi(s), t as the contribution of zi(s),t
to zi,t, where s ∈ [1, 2, ..., v], we obtain:

HSIzi,t = H{hsizi(1),t , , hsizi(2),t , ..., hsizi(v),t
} (15)

where H is the function to calculate HSIzi,t.
Define hsizj(s),t > hsizi(s),t to denote that zj(s),t contributes
more than or equally with zi(s),t to HSIzi,t, where equality holds
when zj(s),t contributes equally with zi(s),t to HSIzi,t.

After that we can get the HSI Error,HSI−errZ1 = ‖Z1 − Z̃1‖
2

F ,
HSI − errZ2 and HSI − errZ3 . HAB.dBj is the HSI of the
approximation, and it can be used as habitat suitability index of the
individual.

HAB.dBj = (16)

10 log10(
‖Z‖2F

(HSI − errZ1 +HSI − errZ2 +HSI − errZ3)
)

With this method, every individual can achieve its Habitat Suitabil-
ity Index (HSI) {HAB.dBj}numj=1 .

3.2.3 Selection , migration and mutation. For the convenience of
computation, we choose a fixed number of individuals after each
iteration. Experiments show that league match is the best selection
method.
We employ per defined shares. For example, in the nth iteration
there are two Habitat individuals, Habitatni and Habitatnk .

Habitatni =

1 7 8 9
6 2 3 10
4 5 0 0


Habitatnk =

(
1 2 6 8 0 0 0 0
9 7 3 4 5 10 0 0

)
After Migration operators (immigration and emigration), they can
be changed into Habitatn+1

i and Habitatn+1
k .

Habitatn+1
i =

1 7 8 9 0 0 0 0
6 2 3 10 0 0 0 0
9 7 3 4 5 10 0 0


Habitatn+1

k =

(
1 2 6 8 0 0 0 0
4 5 0 0 0 0 0 0

)
For each data sample must be included in one class, we should drop
the repeated number and add the missed number. After that , we get

Habitatn+1
i =

1 7 8 9 0 0 0 0
6 2 0 0 0 0 0 0
0 0 3 4 5 10 0 0


Habitatn+1

k =

(
1 2 6 8 0 0 0 0
4 5 0 0 0 0 0 0

)
Then, drop unnecessary zeros.

Habitatn+1
i =

1 7 8 9
6 2 0 0
3 4 5 10



Habitatn+1
k =

(
1 2 6 8 7 9
4 5 3 10 0 0

)
In BBO, mutation is a probabilistic operator which is used for mod-
ifying one or more randomly selected SIV of a solution based on
its priori probability of existence Pi. In BBO, just like GA, this
operator is used for increasing diversity among the population. In
this algorithm, the mutation probability mi is calculated according
to the solution probability, as in Equation17. Therefore, mutation
probability and solution probability are proportioned inversely.

mi = mmax(1− pi
pmax

) (17)

During mutation, We can change the position of the element posi-
tion in the individual matrix. For example:

Habitati =

1 7 8 9
6 2 0 0
3 4 5 10


is mutated into

Habitati =

1 7 8 0
6 2 10 9
3 4 5 0


4. PROPOSED APPROACH
According to [15], the probability for non-immigration on Island i
is

Pr(non− immigration) = (1− λi)
If there is no immigration on Island i, we obtain

Pr(fyi(s),t+ = fyi(s),t−) = 1

Pr(fyi(s),t+ > fyi(s),t−) = 0

Hence, if there is no immigration on Island i,

Prnon−immigration(fyi(s),t+ > fyi(s),t−) = (1− λi)
On the other hand, the probability that immigration occurs on Is-
land i is Pr(immigration) = λi.

Theorem1.. For yi,t by defining Eobtain[Pr(fyi(s),t+ >
fyi(s),t−)] as the expectation of probability of obtaining a new fea-
ture that is not worse than the old one. Eobtain can be as large as
possible if the following conditions are met,
a. is as large as possible;∑n

i=1

∑
j∈Ji(s) µj

n
∑n
j=1 µj

b. λi is as small as possible.
where n is the largest possible species count that the habitat can
support.

Note: According to Theorem 4, enlarging
∑n

i=1

∑
j∈Ji(s)

µj

n
∑n

j=1 µj
and

diminishing λi can help solutions in BBO obtain a new feature
which is not worse than the old one.

According to pattern theory, suppose there is a pattern H in a
matrix[16].

Hab =

a1 a2 . . . am ∗
∗ ∗ . . . ∗ ∗
∗ ∗ . . . ∗ ∗


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Table 1. Experiment Result Migration Operators
Dictionary column number population immigration rate emigration rate HAB(dB)

[10,7] 700 0.3 0.2 405.67
[8,8] 700 0.4 0.2 410.69

For convenience, our analysis is based on the following assump-
tions:

(1) Each individual matrix has the same row number.
(2) During the addition of missed elements, the number of pattern

H can’t be changed.
(3) Because the mutation rate is very low, it can be ignored when

we analysis the change of pattern number.

Suppose each individual in the population has the same row num-
ber which means that data samples are separated into same class
numbers. m = m(H, t) is the number of pattern H in the tth gen-
eration. The individuals which contain H are {w1, w2, . . . , wm}
with average habitat suitability index (HSI) HSI(H, t).

HSI(H, t) =

m∑
j=1

HSI
wj
m

(18)

The whole population of t-th generation is Pt =
{w1, w2, . . . , wn}, so the individuals are selected with the
probability of pi = HSI(wi)∑m

i=1HSI(wi)
. The number of survived pattern

H after selection is mHab(H, t+ 1).

mHab(H, t+1) = n.

∑m
j=1HSI(wj)∑n
i=1HSI(wi)

= m(H, t).n.
HSI(H, t)∑n
i=1HSI(wi)

(19)
When the average habitat suitability index of populations is HSI.

¯HSI =

n∑
i=1

HSI(wi)

n
(20)

After selection the number of survived pattern H is mHab(H, t +
1).

mHab(H, t+ 1) =
m(H, t).HSI(H, t)

¯HSI
(21)

Suppose the immigration rate is Pimmigration and emigration rate
is pemigration so Pimmigration . pemigration . n will participate in
the population after selection. Suppose the survived number after
selection is k. The probability of the two individuals who partic-
ipate in Migration operators (immigration and emigration) which

all contains H is

(
mHab(H,t+1)

k

)2

, and as the premising the pro-

cess of Migration will not damage the pattern H . The probability
of the two individuals who anticipate Migration which one contains

H and the other does not is mHab(H,t+1)
k

(
1− mHab(H,t+1)

k

)
, the

probability of drop same element which damage H is Pd.

Suppose the probability of the position of each element in matrix
being at the lower half is 0.5 and the algorithm drops the repeat
elements with the same probability, so the only condition that H is
not damaged is all of the elements is in the same half part of indi-
vidual matrix and the drop same elements process does not choose
the part which contains H . In that case the probability of H not

being damaged is

(
1
2

)2m−1

.

Pd = 1−
(

1

2

)2m−1

(22)

After selection, the number of elements which contain H is
mMigration(H, t+ 1)

mMigration(H, t+ 1) =

(
2

(
mHab(H, t+ 1)

k

)2

(23)

+
mHab(H, t+ 1)

k

(
1− mHab(H, t+ 1)

k

)
Pd

)
.PMigration.n

After migration and ignore mutation the whole number of elements
which containH ism(H+1, t)(mmigration(H, t+1) is the num-
ber of elements which contain H obtained by migration operators
(immigration and emigration).

5. EXPERIMENTAL RESULTS
In the experiment, ten images are randomly selected from the im-
age dataset as the training set for the BBO optimization. The other
images in the image dataset are used as the test set. For dictionary
learning and BBO, we have chosen a reasonable set of value and
have not made any effort in finding the best parameter settings.

(1) population size: NP = 700;
(2) habitat modification probability = 1;
(3) mutation probability: mmax = 0.005;
(4) maximum Number of HSI Function Evaluations:

(MAXHSI )=150,000.

Moreover, in our experiments, each function is optimized over 50
independent runs. We also use the same set of initial random popu-
lations to evaluate different algorithms. All the algorithms are im-
plemented in MATLAB. To improve the efficient of the experiment,
data samples are generated only with {0, 1}. The length of each
signal is 4. We exhausted the 16 vectors.

Z =

0 0 0 . . . 1
0 0 0 . . . 1
0 0 1 . . . 1
0 1 0 . . . 1


Suppose we can train a dictionary D and the represent coefficient
is X = [x1, x2, . . . , x16].

min
D,X
‖Y −DX‖22

‖xi‖0 < T

i = 1, 2, ..., 16

We use a vector to denote the column numbers for learning, for
example, [5,6,2] means that the first layer of dictionary is 5, the
second layer dictionary is 6 and the third layer dictionary is 2. Ex-
perimental results are shown in table 1.
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6. CONCLUSIONS
In this paper, we proposed a dictionary learning algorithm using
Biogeography-Based Optimization (BBO) for sparse representa-
tion. The fundamental principle of this algorithm is to use K-SVD
and Biogeography-Based Optimization (BBO) to find the global
optimum point. The Biogeography-Based Optimization (BBO) is
applied here to optimize the feature weight. Experiments show that
the improved dictionary can be find with this method. But dictio-
naries for higher dimensional data samples have not been trained
because of the high complexity.
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