
International Journal of Computer Applications (0975 – 8887)

Volume 101– No.3, September 2014

45

Study and Analysis of Regression Test Case Selection

Techniques

Sunidhi Puri

Department of Computer
Science & Engineering

Amity University,Noida,U.P

Abhishek Singhal
Department of Computer
Science & Engineering

Amity University,Noida,U.P

Abhay Bansal
Department of Computer
Science & Engineering

Amity University,Noida,U.P

ABSTRACT

The activity of re-testing of only those parts of the program or

code, in which some modifications are performed to ensure

that errors have not been added and the changes do not affect

the other parts of the code, which have not been modified is

called as regression testing. Regression testing is essential as

it reduces the size of the test suite, thus reducing the time and

effort for testing. In this paper, different techniques for the

regression test case selection for various programming

paradigms are discussed.

General Terms

Software Engineering, Regression Testing, Test case selection

Keywords

Regression testing, re-testing, errors, test cases, test case

selection, test suite

1. INTRODUCTION
The activity of re-testing of only those parts of the program or

code, in which some modifications are performed to ensure

that errors have not been added and the other parts are not

affected, which have not been modified is called as regression

testing [1]. The concept of test case selection was introduced

so that the original test suite size is reduced and thus reducing

the cost of testing process. When any change is introduced

into software, all those parts, which are also changed due to

this are discovered and the cases which validate those changes

are selected and thus minimizes the regression testing time

and effort.

Maintenance plays a vital role in software development life

cycle. It approximately costs 60% of the total life cycle cost

[2]. It is required to ensure the proper functioning of the

software. When some modification is made to the program

code, it is required to re-test those areas. Regression testing is

used for this purpose and it is also called as program

revalidation. It is usually done at the system level.

There are different techniques for the regression test case

selection for various programming languages. In the later

sections, the techniques for procedural and object-oriented

programming languages are discussed.

Build process Regression testing

Application Source

Build

Application

Test Suite

Test selection

Partial Test suite

Test Execution

Figure 1: Regression Testing

There are a few concepts related to the regression testing.

These are as follows:-

Obsolete Test Case: It refers to those test cases which are no

longer justifiable for a modified code [5].

Re-testable Test Case: It refers to a test case which executes

those parts of the code which are either modified or affected

by the change in the original program. During regression

testing, these cases are required to be rerun [5].

Redundant Test Case: It refers to a test case which executes

those code areas which are not changed. These are not

considered in the test suite generated for regression testing

[1].

Execution Trace of Test Case: It refers to set of statements

executed when a program is validated by a test case. It is

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.3, September 2014

46

denoted by ET (P (t)), t refers to any test case and P refers to a

program [1].

Fault-revealing Test Case: It refers to that test case which

produces wrong outputs and causes the program to fail [4].

Modification-revealing Test Case: It refers to that test case

which produces different outputs for the new modified and the

original programs [4].

Modification-traversing Test Case: It refers to that test case

which produces different execution traces for the new

modified and the original programs [4]. It executes only

modified parts of the program.

Inclusive, Precise and Safe Regression Test Case:
Inclusiveness refers to the scope of selection of a

modification-revealing case from the original suite of test

cases [4].

It is measured as-

X=(m/n) * 100 ,n≠0 [4]

Here X represents inclusiveness, n represents the total

modification revealing cases in the original suite of test cases

T, m represents the number of cases which are selected from n

by any technique.

A technique which is 100% inclusive is called as safe. There

can be some test cases which are relevant but are ignored by a

technique. These are called as false negatives. A technique is

safe if it does not have any false negatives.

The extent to which a test case selection algorithm for

regression testing ignores cases which is non-modification

revealing is called as precision [4]. The cases which are not

valid for a modification and are not ignored are false

positives. A test case selection technique for regression testing

is said to be precise if the selected test cases do not contain

any false positives.

In the following sections, various terminologies are discussed

like those related to graphs, which include flow graphs,

control flow, data dependence, control dependence, program

dependence and system dependence graphs; selection

techniques for procedural programming language which

includes techniques based on dataflow, firewall, differencing

and control flow analysis, selection techniques for object-

oriented programming language, which includes techniques

based on firewall, design model and specification are

discussed.

2. GRAPH MODELS

2.1 Flow Graph: It refers to a directed graph in which

nodes represent the statements in the code and the edges

joining those nodes depict the relation between them. There

exist at least two nodes in a flow graph called as start and

stop.

u v

 Figure 2: Flow Graph

2.2 Control Flow Graph: It captures the flow of

control within a program code. Such graphs assist testers in

the analysis of a program to understand its behaviour in terms

of the flow of control. CFG can be constructed manually

without much difficulty for relatively small programs, say

containing less than about 50 statements. However, as the size

of the program grows, so does the difficulty of constructing its

CFG increases and hence arises the need for tools.

2.3 Data Dependence Graph: Let D be a DDG

with nodes n1 and n2. Node n2 is data dependent on n1 when

(a) definition of v variable is at n1 and its usage is at n2 and

(b) there exists a path of nonzero length from n1 to n2 not

containing any node that redefines v.

A DDG for program P contains one unique node for each

statement in P. Declaration statements are omitted when they

do not lead to the initialization of variables. Each node in a

DDG is labeled by the text of the statement as in a CFG or

numbered corresponding to the program statement.

2.4 Control Dependence Graph: Let C be a CDG

with nodes n1 and n2, n1 being a predicate node. Node n2 is

control dependent on n1 if there is at least one path from n1 to

program exit that includes n2 and at least one path from n1 to

program exit that excludes n2.

As with data dependence, control dependence can be visually

represented as a control-dependence graph (CDG). Each

program statement corresponds to a unique node in the CDG.

A directed edge exists from n2 to n1 when n2 is control

dependent on n1.

2.5 Program Dependence Graph: A PDG for

program exhibits different kinds of dependencies among

statements in P. For the purpose of testing, data dependence

and control dependence are considered. These two

dependencies are defined with respect to data and predicates

in a program. Next, data and control dependences are

explained, how they are derived from a program and their

representation in the form of a PDG. Firstly, how to construct

a PDG for programs with no procedures is explained and after

that, how to handle programs with procedures is explained.

2.6 System Dependence Graph: To counter the

limitations of the PDG which could model only single

procedure, the enhanced form of program dependence graph

was introduced which could deal with procedure calls. Firstly,

a program dependence graph is created and then all the

dependencies between various procedures are added to create

a system dependence graph.

3. REGRESSION TEST CASE

SELECTION TECHNIQUES FOR

PROCEDURAL PROGRAMS

3.1 Dataflow Analysis-Based Technique:

The technique considers the definition-use pairs. The

definition-use pairs which get affected due to modification in

the program code are taken into account and those cases that

validate these changed definition-use pairs are selected. The

uses have also been divided into computation and predicate

uses, i.e. c-uses and p-uses. A c-use has a direct effect on the

computations whereas indirect on the control flow. A p-use

has a direct effect on the control flow whereas it may have an

indirect effect on the computations.

A technique was proposed by Harrold and Soffa [16] through

which the changes introduced among various multiple

procedures can be analyzed. First, the dataflow information is

processed in an incremental fashion in which a single change

is processed. Then the test cases which validate this change

are selected. In the next step, the information related to

dataflow and the test coverage is updated. In this approach,

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.3, September 2014

47

CFG is used to represent a program in which each node

represents a block of statements [1].

3.2 Module Level Firewall-Based

Technique:

The technique was proposed by Leung and White [10]. The

data and control dependencies are considered in this

technique. All the modules which are either modified or

affected by the change are taken into a firewall. The flow of

control is represented using a call graph. If a path exists from

module A to module B in the call graph, then A is an ancestor

module of module B and B is the descendant. In a firewall, the

direct ancestors and descendants are also included. Selection

of only those test cases is done which validate modules within

the firewall.

3.3 Differencing-Based Technique:

The techniques which consider the differences between the

code before modifications and the one after modifications are

known as differencing-based techniques. It involves (i)

Modified Code Entity-Based Technique (ii) Technique Based

on Textual Differencing

3.3.1 Modified Code Entity-Based Technique:

Chen et al [13] proposed this technique. There can be a

directly executable or non-executable code entity. A directly

executable code entity includes a function whereas any global

variable is a non-executable code entity. First, the original

code is tested by using all the cases. When a program is

modified, it is checked for the code entities if any change is

introduced. Then all those cases which validate the modified

code entities are selected.

3.3.2 Technique Based on Textual Differencing:

A technique based on textual differencing in the code was

proposed by Vokolos and Frankl [17].It includes trivial

differences between a code and its modified form. This could

include blank lines, comments etc. Therefore, the program is

converted into its canonical form which ensures both the

programs follow similar guidelines. After executing the

canonical version of the original program, test case coverage

is identified. After that the syntax of both the programs is

analysed to check for the changes. Then the cases are selected

which validate these changes introduced in the program code.

3.4 Control Flow Analysis-Based

Technique:

Rothermel and Harrold [18] proposed this technique which

considers control flow graphs. The purpose behind this

technique is to traverse the control flow graphs of the original

code as well as of the changed code, and identifying the

changes. Firstly, for all the test cases, the execution traces are

generated. Then, the graphs for both the programs are

traversed in a depth-first manner in accordance with the

execution traces generated. The execution trace of each test

case generated for both the software versions are compared.

For example, if the statements corresponding to nodes a and

a’, where a represents the node in the original code and a’

represents the node in the modified code, are different, then

the edges linking these nodes are termed as dangerous edges

and all those cases which exercise these edges are selected.

4. REGRESSION TEST CASE

SELECTION TECHNIQUES FOR

OBJECT-ORIENTED PROGRAMS

4.1 Firewall-Based Techniques:

It follows the concept provided by Leung and White [10] for

the procedural programming language. When a program is

modified, all those classes which are affected by the

modification are identified and included in a firewall. So, the

cases which validate at least one class in the defined firewall

are selected for regression testing [1].

4.1.1 Kung’s Class Firewall Technique:

It was proposed by Kung et al. [9] for the software using C++

programming language. ORD, BBD and OSD, i.e. Object

Relation Diagram, Block Branch Diagram and Object State

Diagram respectively, can be used to show the dependencies

between different program elements. The inheritance,

association and aggregation relationships are represented

through an ORD. It also represents the static dependencies

between different classes. The type of relation between two

nodes is depicted through the edge between them. For a

method of a class, the interface and control structure can be

represented through a BBD. The relation with other classes

can also be depicted. Through an OSD, the dynamic

behaviour of a class can be depicted.

The first step in this technique is to gather information about

which test case validates which class. If changes are

introduced in a class, say C, then all those classes which are

directly or indirectly affected by this, along with the class C

are put into a firewall. Then all those test cases which validate

any of the classes present in the firewall are selected.

Below is an example of object relation diagram in which a

class D is modified. A firewall is created which is shown

through the dashed line in which D,A,B and C classes are

included which indicates that whenever changes are made to

D, classes A,B,C are also affected through that change and so,

need to be tested again. The relationship between two classes

is shown through a solid arrow. In the figure, which class is

validated through which test case is represented through a

solid line. Therefore, whenever D is modified, TC1 and TC2

are needed to be exercised only [8].

A

TC3

TC4

TC1

TC2

CB

D

G

F

E

H

Figure 3: Example showing firewall for D class

4.1.2 Method-level Firewall Technique:
It was proposed by Jang et al. [19] for C++ programming

language. In this technique, instead of classes, methods are

considered, i.e. whenever some change is introduced to a

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.3, September 2014

48

method, all the methods which are also affected by this

change are introduced into a firewall. Then, all those cases

which validate at least one of the methods from the firewall

are selected.

4.2 Design Model-Based Technique:
This has gained much popularity. Its importance has been

increased due to the advancement in the paradigm of MDD,

i.e. Model Driven Development. In MDD, a code can be

easily obtained from a design model. Thus, these techniques

can be used for regression test case selection.

For object-oriented programming, the design models can be

represented through UML, i.e. Unified Modeling Language.

The advantages of model-based techniques [6] include the

following:-

i. Traceability can be easily maintained between the design

models and the cases as compared to that between a code and

a test case.

ii. In case some modifications are done in the software, then it

is easier to identify those changes through a design model

rather than identifying changes in the program code.

iii. In case of large program codes, the cost of regression

testing can be very high if a code-based technique is applied.

So, this technique is more efficient.

iv. It provides language independent solutions.

4.2.1 Technique based on Class and Sequence

diagrams:

A technique was proposed by Ali et al. [20] which make use

of class and sequence diagrams. The technique analyses the

sequence diagrams in detail and CCFG, i.e. Concurrent

Control Flow Graph is designed. A CFG is not efficient in this

case since the Concurrent Control Flow Graphs model the

concurrency, if it exists, in the sequence diagram and this is

done by using parallel instructions and asynchronous

messages which are not possible in case of a control flow

graph [1].

Then, the class diagrams are considered so that information

can be extracted and included into CCFG. In this way, a

ECCFG, i.e. Extended Concurrent Control Flow Graph is

created by analyzing the two diagrams. When modifications

are made to software, the ECCFGs of both the versions, the

original one and the modified one are considered and analysis

is done, and then based on this analysis, the test cases which

validate the changes introduced into the software are selected.

4.2.2 Class and State Diagram based technique:
This technique was proposed by Farooq et al. [21] which

make use of class and state diagrams for the test case selection

used for regression testing [1]. If any modification is

introduced in the code, the class and the state diagram also

tend to change. So, with the help of these diagrams, it can be

easily find out which elements are affected due to the change

introduced. Then, the cases which exercise the changed

transitions are selected [2].

4.2.3 UML Architectural and Design model-based

technique:

This technique was proposed by Briand et al. [22]. In this

technique, the traceability between program code, design

model and test cases is obtained.

When any modification is introduced in the software, the

changes can be easily identified through the design model and

hence, test cases exercising those affected areas can be

selected. Sequence, class and use case diagrams are used in

this technique. The technique also distinguishes the test cases

into three types- re-testable, reusable and obsolete.

4.3 Specification-Based Technique:

This technique was introduced since there was a drawback

with the design models. The model or the code-based analysis

cannot be used as the testers may not be provided with the

source code or the design models. So, in such cases,

specification-based technique for regression testing is more

suitable. This technique was developed by the researchers

which are based on specifications, generally available to

testers.

The technique is based on activity diagrams and was proposed

by Chen et al. [23]. It models the requirements which are

affected due to introduction of modifications and also the

system behaviour. The test cases are distinguished into two

types- target cases and the safety cases. The cases which

validate the affected requirements attributes are called as

target cases. The cases that are selected to reach the

predefined coverage target are called as safety targets. These

are incorporated on the basis of risk analysis [3].

There are a number of steps required to select target test cases.

The first step involves creation of a traceability matrix.

Traceability specifies which requirement attribute is exercised

by which test case. If a program code is modified, the

specifications may change. In the next step, the activity

diagram is traversed and all the nodes and edges affected due

to modification in the program are recognised. Then in the

next step, all those test cases which validate those edges are

selected by using the traceability matrix created. These test

cases are known as target test cases.

Then, safety test cases are selected which also involves a few

steps. The first step is calculation of the cost of each case. The

next step involves the calculation of severity probability

which is achieved by multiplying total defects and the average

severity of defects. The next step involves the calculation of

risk exposure which is done by the multiplication of cost and

severity probability. The result of this is considered to be the

risk. The last and the final step involve the selection of those

test cases which have a higher value of risk [2].

Requirement

attributes

Activity Diagram

elements

Test Cases

represented

by Activity

diagram

tracked by

traceability

coverage

matrix

Figure 4: Traceability between requirement attributes and

test cases

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.3, September 2014

49

5. COMPARATIVE STUDY OF THE

TECHNIQUES FOR PROCEDURAL
PROGRAMS

Table 1: Comparison between techniques

Techniques Key

Features

Merits Demerits

Dataflow

analysis-

based

[1][16]

Based on

dataflow in a

program

Analyze inter-

procedural

modifications

also but these

should alter

the definition-

use pairs

If dataflow

information

is

unaffected,

do not

analyze

effect of

modificatio

n

Module

level

firewall-

based

[10]

Based on the

analysis of

dependencie

s between

modules

Comparativel

y more

efficient as

analysis is

limited to

modified

modules only

Test cases

that execute

affected

modules

from

outside the

firewall are

not selected

Modified

code entity-

based

[13]

Based on

analyzing

affected

code entities

Analyze all

affected code

entities

Test case

may execute

function

without

executing

modified

code

Textual

differencing

-based

[17]

Based on

textual

differencing

Easy to

implement

Inefficient

for large

programs

Graph walk-

based

[18]

Control flow

graph

analysis

Most precise High

computation

effort

required

6. COMPARATIVE STUDY OF THE

TECHNIQUES FOR OBJECT-

ORIENTED PROGRAMS
Table 2: Comparison between techniques

Techniques Key

Features

Merits Demerits

Firewall-

based

[1] [8][9] [10]

[19]

Based on the

analysis of

dependencies

between

modules

 Efficient as

analysis is

limited to

modified

modules

only

Test cases

that execute

affected

modules

from

outside the

firewall are

not selected

Design

model-based

[1] [2] [6]

[20] [21] [22]

Analyzes

various UML

design

models

Suitable for

large

programs

Less precise

than

detailed

code

analysis

Specification-

based

[2] [3] [23]

Based on

analysis of

requirements,

traceability

between

More

efficient,

platform

independent

Precision

depends on

accuracy of

requirement

coverage

specifications

and test cases

7. CONCLUSION
Regression testing is essential as it reduces the test suite size,

thus reducing the time and effort for testing. Various

techniques for procedural and object-oriented programming

languages regarding the selection of test cases for regression

testing have been discussed. For procedural programming

language, it is observed that the technique which is the most

precise is graph walk-based technique which is based on the

analysis of control flow graphs. In case of object-oriented

programming language, it is observed that various techniques

were proposed but none of the techniques were precise as they

do not work on fine granularity level. So, the techniques

which analyze the modifications at the program statement

level are more accurate.

8. REFERENCES
[1] Biswas, Swarnendu, Rajib Mall, Manoranjan Satpathy,

and Srihari Sukumaran. "Regression Test Selection

Techniques: A Survey." Informatica 35.3 (2011).

[2] Bharati, Chandana, and Shradha Verma. "Analysis of

Different Regression Testing Approaches." Analysis 2.5

(2013).

[3] Chen, Yanping, Robert L. Probert, and D. Paul Sims.

"Specification-based regression test selection with risk

analysis." Proceedings of the 2002 conference of the

Centre for Advanced Studies on Collaborative research.

IBM Press, 2002.

[4] Panigrahi, Chhabi Rani, and Rajib Mall. "A Hybrid

Regression Test Selection Technique for Object-Oriented

Programs." International Journal of Software

Engineering & Its Applications 6.4 (2012).

[5] Iqbal, Muhammad Zohaib Z., Zafar I. Malik, and Aamer

Nadeem. "An approach for selective state machine based

regression testing." Proceedings of the 3rd international

workshop on Advances in model-based testing. ACM,

2007.

[6] Farooq, Qua, et al. "A model-based regression testing

approach for evolving software systems with flexible

tool support." Engineering of Computer Based Systems

(ECBS), 2010 17th IEEE International Conference and

Workshops on. IEEE, 2010. 22

[7] Vincent, Pierre-Luc, Linda Badri, and Mourad Badri.

"Regression Testing of Object-Oriented Software:

Towards a Hybrid Technique." International Journal of

Software Engineering & Its Applications 7.4 (2013).

[8] Skoglund, Mats, and Per Runeson. "A case study of the

class firewall regression test selection technique on a

large scale distributed software system." Empirical

Software Engineering, 2005. 2005 International

Symposium on. IEEE, 2005.

[9] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C.

Chen. On regression testing of object-oriented programs.

Journal of Systems and Software 32.1 (1996).

[10] H. Leung and L. White. A firewall concept for both

control-flow and data-flow in regression integration

testing. In Proceedings of the Conference on Software

Maintenance,1992.

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.3, September 2014

50

[11] H. Leung and L. White. Insights into regression testing.

In Proceedings of the Conference on Software

Maintenance,1989.

[12] G. Rothermel and M. Harrold. Analyzing regression test

selection techniques. IEEE Transactions on Software

Engineering 22.8 (1996).

[13] Y. Chen, D. Rosenblum, and K. Vo. TestTube: A system

for selective regression testing. In Proceedings of the

16th International Conference on Software

Engineering,1994.

[14] J. Ferrante, K. Ottenstein, and J. Warren.“The program

dependence graph and its use in optimization.” ACM

Transactions on Programming Languages and Systems

9.3 (1987). 23

[15] S. Horwitz, T. Reps, and D. Binkley. Interprocedural

slicing using dependence graphs. ACM Transactions on

Programming Languages and Systems 12.1 (1990).

[16] M. Harrold and M. Soffa. An incremental approach to

unit testing during maintenance. In Proceedings of the

International Conference on Software Maintenance,1988.

[17] P. Frankl, G. Rothermel, K. Sayre, and F. Vokolos. An

empirical comparison of two safe regression test

selection techniques. In ISESE ’03 Proceedings of the

2003 International Symposium on Empirical Software

Engineering. IEEE Computer Society, 2003.

[18] G. Rothermel and M. Harrold. A safe, efficient

regression test selection technique. ACM Transactions

on Software Engineering and Methodology 6.2 (1997).

[19] Y. Jang, M. Munro, and Y. Kwon. An improved method

of selecting regression tests for C++ programs. Journal of

Software Maintenance: Research and Practice 13.5

(2001).

[20] A. Ali, A. Nadeem, Z. Iqbal, and M. Usman. Regression

testing based on UML design models. In Proceedings of

the 13th Pacific Rim International Symposium on

Dependable Computing, 2007.

[21] Q. Farooq, M. Iqbal, Z. Malik, and M. Riebisch. A

model-based regression testing approach for evolving

software systems with flexible tool support. In 17th IEEE

International Conference on Engineering of Computer-

Based Systems (ECBS). IEEE Computer Society, 2010.

[22] L. Briand, Y. Labiche, and S. He. Automating regression

test selection based on UML designs. Information and

Software Technology 51.1 (2009). 24.

[23] Y. Chen, R. Probert, and D. Sims. Specification-based

regression test selection with risk analysis. In CASCON

’02: Proceedings of the 2002 conference of the Centre

for Advanced Studies on Collaborative research, 2002.

IJCATM : www.ijcaonline.org

