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ABSTRACT 

The aim of this paper is to derive the equations of motion for 

biped robot during different walking phases using two well-

known formulations: Euler-Lagrange (E-L) and Newton-Euler 

(N-E) equations. The modeling problems of biped robots lie in 

their varying configurations during locomotion; they could be 

fully actuated during the single support phase (SSP) and over-

actuated during the double support phase (DSP). Therefore, 

first, the E-L equations of 6-link biped robot are described in 

some details for dynamic modeling during different walking 

phases with concentration on the DSP. Second, the detailed 

description of modified recursive Newton-Euler (N-E) 

formulation (which is very useful for modeling complex 

robotic system) is illustrated with a novel strategy for solution 

of the over-actuation/discontinuity problem. The derived 

equations of motion of the target biped for both formulations 

are suitable for control laws if the analyzer needs to deal with 

control problems. As expected, the N-E formulation is 

superior to the E-L concerning dealing with high degrees-of-

freedom (DoFs) robotic systems (larger than 6 DoFs). 

General Terms 

Multibody dynamics, Robotics, Biped robots. 

Keywords 

Biped robots, Lagrangian formulation, Recursive Newton-

Euler formulation, dynamics. 

1. INTRODUCTION 
Humans have perfect mobility with amazing control systems; 

they are extremely versatile with smooth locomotion. 

However, comprehensive understanding of the human 

locomotion is still not entirely analyzed. To dynamically 

model the ZMP-based biped mechanisms, the following 

points should be taken into consideration: 

i. The biped robots are kinematically varying 

mechanisms such that they could be fully actuated 

during the SSP and over-actuated during DSP. If we 

assume the biped robot as fixed-base mechanism, the 

dynamic modeling and control strategies of fixed-base 

manipulators can be used efficiently.  

ii. Dealing with unilateral contact of the foot-ground 

interaction as a passive joint (rigid-to-rigid contact) or 

as compliant model (penalty-based approach), see [1]. 

iii. Reducing the number of links/joints of the target biped 

as possible. But, they can still have more than 6 DoFs 

resulting in computational problems of advanced 

control systems. 

iv. Reducing the walking phases as much as possible. In 

general, the designer could select one or more of the 

walking patterns discussed in [2] according to her/his 

aim, e.g., most conventional ZMP-based biped robots 

can walk with two substantial walking phases: the SSP 

and the DSP. Adjustments of the walking patterns are 

possible by modification of foot design as described in 

[3]. 

v. Most ZMP-based biped robots walks with flat swing 

/stance feet all the time; this can facilitate the analysis 

of biped locomotion by reducing walking phases to 

exactly two phases: the SSP and the DSP (see [4]). 

However, heel-off/toe-off sub-phases can offer better 

characteristics but with careful analysis. 

In the light of the above comments, the classical E-L 

equations and recursive N-E can be used for dynamic 

modeling of biped robots. For complex robotic systems, such 

as humanoid robots or any robot having the number of DoFs 

larger than 6 DoFs, difficulties are encountered in the 

implementation of the control algorithms. Therefore, over 30 

years, the robotics researchers have focused on the problem of 

computational efficiency. Many efficient O ( ) algorithms 

have been developed for inverse and forward dynamics of 

robotic systems. For more literature on the efficient dynamic 

algorithms, refer to refs. [5-7]. The adaptive control 

algorithm, however, which deals with controlling the robotic 

systems despite their uncertain parameters may decrease the 

computational efficiency of the dynamics O ( ) algorithms. 

Fu et al. [8] have shown that the combined identification and 

control algorithms can be computed in O (  ) time despite 

using the recursive N-E formulation. One of the efficient tools 

to deal with full-dynamics-based control for complex robotic 

systems is the virtual decomposition control (VDC) suggested 

by Wen-Hong Zhu [9]. It is equivalent to the recursive N-E 

formulation if the dynamic parameters of the target robotic 

system are known.  

This paper deals with the ZMP-based biped robot as a fixed-

base robot with rigid foot-ground interaction. In addition, E-L 

equations are described in some details for dynamic modeling 

of the biped during different walking phases; problems of 

over-actuation/ discontinuity are resolved. Then detailed 

description of the N-E formulation is illustrated with a novel 

strategy for solution of the over-actuation/discontinuity 

problem. The remainder of this paper is organized as follows. 

Selection of the walking patterns suggested throughout the 

current paper is presented in Section 2 Section 3 deals with 

detailed modeling of biped robot using the E-L equations and 

N-E formulations. Section 4 concludes. 

2. WALKING PATTERNS 
The complete gait cycle of human walking consists of two 

main successive phases: DSP and SSP with intermediate sub-

phases. The DSP arises when both feet contact the ground 

resulting in a closed chain mechanism while SSP starts when 

the rear foot swings in the air with the front foot flat on the 

ground. Different walking patterns can be selected for the 

design of biped locomotion as detailed in [2, 10]. However, 

the walking pattern described in Figure 1 will be adopted in 

mailto:corves@igm.rwth-aachen.deWen-Hong
mailto:corves@igm.rwth-aachen.deWen-Hong


International Journal of Computer Applications (0975 – 8887) 

Volume 101– No.3, September 2014 

2 

this paper. It consists of one SSP and two sub-phases of the 

DSP. In the first sub-phase of the DSP (henceforth called 

DSP1), the front foot starts to rotate about the heel tip until it 

will be level to the ground. The rear foot, meanwhile, is in full 

contact with the ground. Then the rear foot will rotate about 

the front edge in the second sub-phase of the DSP (henceforth 

called DSP2). 

 

Fig. 1:The selected walking pattern of the biped robot 

3. DYNAMIC MODELING  
This paper concentrates on formulating the dynamic equations 

that are suitable for adaptive control purposes. Throughout the 

current analysis, the following assumptions have been 

proposed. 

Assumption 1. The stance foot is in full contact with the 

ground during the SSP; therefore, its dynamics could be 

neglected in such case. This assumption is necessary for 

ZMP-based stability. 

Assumption 2. The foot-ground contact is rigid-to-rigid 

contact. Accordingly, the tips of the feet (in case of foot 

rotation) are assumed passive joints. 

Assumption 3. There are only two substantial walking 

phases, the SSP and the DSP, with possibly sub-phases during 

the DSP. The instantaneous impact event is avoided by 

making the swing foot contact the ground with zero velocity. 

In biped systems, three important aspects should be taken into 

consideration [11] 

(i) Preventing the biped legs from slippage. 

(ii) Avoiding discontinuities of the ground reaction forces 

which can result in discontinuities of the actuator 

torques. 

(iii) Concentrating on the adaptive control of the biped 

robot associated with less computational complexity.  

3.1 The Euler-Lagrange formulation 
Although the E-L equations can provide closed-form state 

equations suitable to advanced control strategies, their 

computational complexity, unless it is simplified, could be 

inefficient for analysis/control of complex robotic system 

(more than 6 DoFs) [9]. Below we present modeling of biped 

robot during the two phases: the SSP and the DSP with two 

different kinds of Lagrange equations. 

3.1.1 E-L equations of the second kind (the SSP) 
The E-L equations for open chain mechanism (biped robot 

during the SSP as shown in Figure 2) can be expressed as 

 

  
 

  

    
  

  

   
                                                   (1) 

where   is Lagrangian function which is equal to the kinetic 

energy of the robotic system ( ) minus its potential energy 

( ),    denotes the generalized coordinates of link (i), and     
is the derivative of the generalized coordinates. 

Fig. 2:The biped configuration during the SSP 

The generalized coordinates are a set of coordinates that 

completely describes the location (configuration) of the 

dynamic systems relative to some reference configuration [8]. 

There are many choices to select these generalized 

coordinates; however, the joint/link displacements are proved 

being suitable in case of robotic systems. If the number of 

these generalized coordinates is equal to the degrees of 

freedom of the target system, then (1) is valid; (1) is called 

Lagrange equations of the second kind and it suitable for 

open-chain mechanism. Solution of (1) can result in the 

following second order differential equations. 

                                                          (2) 

or simply, 

                                                       (3) 

where          is the mass matrix,      and        are 

the absolute angular displacement, velocity and acceleration 

of the robot links,          represents the Coriolis and 

centripetal robot matrix,         is the gravity vector, 

         is a mapping matrix derived by the principle of 

the virtual work [12, 13],         is the actuating torque 

vector,    represents the number of actuators, and    

     .represents the dissipative torques resulted from joint 

friction. 

Remark 1. There are several fundamental properties of the 

dynamic coefficient matrices, the mass matrix and the 

Coriolis and centripetal terms, which could be exploited in 

controller design of adaptive control; for more details on other 

properties, refer to [14, 15]. 
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Property 1. The mass matrix     is symmetric and positive 

definite. This can be deduced from the property of the kinetic 

energy. 

Property 2. The matrix                is skew matrix, if 

the         matrix is described in terms of Christoffel 

symbols. 

Property 3. The dynamic equations described in (2) are 

dependent linearly on certain parameters such as link masses, 

moment of inertia, friction coefficients etc.; consequently 

                                                     (4) 

where                  is called the regressor matrix, a 

function of the known generalized coordinates and their first 

two derivatives, and       denotes the vector of unknown 

biped parameters.  
Selection of   is not unique, and it is difficult to find minimal 

set of these parameters [15]. Equation (4) is very important to 

adaptive control. 

3.1.2 The E-L equations of the first kind (the 

DSP) 
As mentioned earlier, the biped mechanism constitutes a 

closed-chain with over-actuation during the DSP. Therefore, 

the Lagrange formulation of the 1st kind, which can deals with 

constraints, is needed for dynamic modeling of the 

constrained biped. In such case, the motion equations are 

represented by redundant coordinates resulting in differential 

algebraic equations DAEs. The algebraic equations result 

from the constraints derived from the kinematics [16]. The 

latter can be easily incorporated into the main equations using 

Lagrange multipliers. The Lagrange equations of the biped 

robot during the DSP (see Figure 3) can be defined as 

 

  
 

  

    
  

  

   
       

   

   

  
                           (5) 

where    denotes the constraint function of each closed loop, 

   is the number of these constraints,    is the Lagrange 

multipliers associated with each constraint. Here    is the 

number of redundant generalized coordinates and equal to the 

number DOFs     of the biped systems plus the number of 

constraints    .  

Equation (5) can be solved using two well-known techniques 

[17, 18]: the redundant coordinates-based techniques which 

are used mainly in commercial software such as MSC 

ADAMS, and the minimum coordinates-based techniques 

which could be, to some extent, suitable for control strategies 

and real-time applications. Many researchers have preferred 

the former technique due to its simplicity and ease of 

derivation at the expense of difficulties of numerical methods 

encountered in the solution [17]. Consequently, this motivates 

the researchers to investigate the second technique which 

includes eliminating the constraint equations (Lagrange 

multipliers) from (5) to result in constraint-free differential 

equations [17]. This can be implemented using one of the 

orthogonalization methods which are [18]: coordinate 

partitioning method, zero-eigenvalue method, singular value 

decomposition (SVD), QR decomposition, Udwadia-Kabala 

formulation, PUTD method, and Schur decomposition. 

Solution of (5) results in 

 

 

 

 

 

 

 

Fig. 3:The biped configuration during the DSP1. In the 

DSP2 the front foot is fixed and the rear foot rotates. 

                                                   (6) 

                                                                                     (7) 

with       is the constraint vector, and          
     

  
 

denotes the Jacobian matrix. 

Remark 2. Below we will describe the dynamic analysis for 

constrained motion of biped robot during the DSP; it is valid 

for the DSP1 and the DSP2. 

Remark 3.The coefficient dynamic matrices (mass matrix, 

Coriolis and centripetal matrix etc.) of (6) could be 

determined by the same mathematical formulae defined in the 

open-chain mechanism. 

To reduce the dimension size of (6) (to eliminate  ), a 

relationship between the redundant generalized coordinates (  

)and the independent coordinates (      ) should be found. 

In this thesis, the coordinate partitioning is used for size 

reduction of the equation of motion [19, 20].  

Twice differentiating (7) can result in 

                                                                                      (8) 

                                                                              (9) 

Due to the redundancy of coordinates in (6), it is possible to 

express the dependent generalized coordinates in terms of the 

independent ones as follows. 

                                                                                 (10) 

Twice differentiating (10) yields 

                                                                                   (11) 

with             
      

  
 

                                                                           (12) 

Blocking together (8) and (11) to get 

 
    
     

     
 

    
                                                                 (13) 

Thus, it is possible to get the following important relations 
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                         (14) 

The matrix         plays an important role in eliminating 

 ; the following orthogonality condition holds 

                                                                                (15) 

Differentiating (14) to obtain 

                                                                         (16) 

Substituting (14 ) and (16 ) into (6 ) to get 

                                                 

                                                                         (17) 

Alternatively, (17) can be re-written as  

                                              (18) 

with 

              ,                                     

                                                                                             (19) 

Using (14) and (18) can yield 

                                             (20) 

Exploiting (15) and pre-multiplying (18) by       to obtain 

                                            
                                                                        (21) 

Remark 4. Although most researchers have written the 

matrices,     ,      , and         , in terms of the 

independent coordinates     ), these matrices still contain the 

dependent coordinates (  . Therefore, we have expressed the 

mentioned matrices in terms of the last coordinates.  

Remark 5. The matrix      is not unique; the 

orthogonalization methods mentioned at the beginning of this 

subsection are used to get the matrix     . Pennesri and 

Valentini [18] simulated simple pendulum to compare the 

computational complexity of these orthogonalization methods. 

QR decomposition ranked best among the other methods. 

However, all these techniques could be computationally 

unsuitable to deal with the advanced adaptive control. 

Remark 6. Equation (18) has the same properties of that of 

(2) as follows [21]. 

Property 4.  

Let                                      , then the 

matrix                           is skew-matrix. 

Proof. Let  

                                                                               (22) 

By substituting (19) into (22) we get 

                                

                                                            (23) 

Since       is skew-matrix according to Property 1, then   

is also skew-matrix. 

Property 5. The orthogonality condition is satisfied by the 

matrix      such that (15) holds. 

Proof. From (8) and substituting (14), we have  

                                                                                    (24) 

Since      is linearly independent, then 

         0                                                                    (25) 

Property 6. If      is known, then the left hand side of (18) 

are linearly dependent on the unknown biped parameters (the 

same as property 3). 

3.1.3 Continuous dynamic response 
One of the inherent problems of legged locomotion (bipeds, 

quadrupeds, etc.) is the discontinuity at the transition 

instances due to: (i) impact events; these can be avoided by 

setting the foot velocity to be zero at the instance of contact, 

and (ii) varying configurations of the biped from the SSP to 

the DSP and vice versa. As said previously, the number of 

actuators is more than the DoFs of the biped during the 

constrained DSP. This means that there are infinity 

combinations of actuator torque to drive the biped systems as 

explained below. 

One of the methods for determining the actuating torques and 

the ground reaction forces is the pseudo-inverse matrix as 

follows. 

Equation (6) can be re-arranged to yield 

                                    
 
 
        (26) 

One of the possible solutions to get the actuating torques and 

Lagrange multipliers are 

 
 
 
                                            (27) 

where the notation      denotes the pseudo-inverse of the 

referred matrix. 

As seen from (27), there is no guarantee that   and   have the 

same values at the start/end of the SSP due to this 

optimization solution. Therefore, the following assumption is 

proposed to resolve this dilemma. 

Assumption 4. Because the biped robot does not have a 

unique solution during the DSP, a linear transition function 

could be proposed for the ground reaction forces [21-23]. 

Thus, for the front foot 

   
    

     
                                                              (28) 

where  ,    and    are time parameter, the time of SSP, and 

the DSP time. Meanwhile, the ground reaction forces,   , of 

the rear foot are 

                                                              (29) 

where      refers to the center of mass (CoM) of the biped, 

Accordingly,       is the acceleration vector of the biped 

CoM, and   is the gravity. Accordingly, at the initial instance 

of DSP,    , and the full ground reaction forces are 

supported by the rear foot, whereas, at the end of the DSP, the 

full support appears to be in the front foot with     . On the 

other hand, because center of gravity (CoG) acceleration of 

the biped is nonlinear, the resulted ground reaction forces 

from (28) can generate nonlinear profile despite of 

multiplication of the latter equation with linear scaling 

function. 

3.2 The modified recursive N-E 

formulation 

Due to computational complexity inherent in the classical 

Lagrangian formulation, unless it is simplified, the researchers 

have resorted to the recursive N-E formulation for real time 

implementation. The philosophy of deriving N-E formulation 

is different from that of Lagrangian formulation. In the 

former, the translation/angular equations of motion of each 

link are derived sequentially using the D’Alembert principle. 

Due to the coupling effect between each neighbored links and 

appearance the translation equations of motion, the coupling 

force wrench appears in the derivation. Then a set of forward 

and backward recursive equations is used to determine the 

velocity and force wrenches respectively [15, 8].  
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However, Fu et al. [8] have shown that the combined 

identification and control algorithms can be computed in 

      despite using recursive N-E formulation. Strictly 

speaking, dealing with advanced adaptive control techniques, 

the recursive N-E formulations could not be powerful; a 

modification is needed to satisfy the desired target. Zhu [9] 

exploited the recursive nature of N-E equations to virtually 

decompose complex robotic systems into subsystems and to 

use the advanced adaptive techniques recursively. The 

derivation is exactly of that of recursive N-E formulation, but 

the difference is that the N-E formulation derive the equation 

of motion of each link in terms of a frame attached at it first 

end rather than its CoM. 

3.2.1 Derivation of the dynamic equations 
Now let us consider a fixed base serial-chain manipulator with 

revolute and prismatic joints. Thus, the links are numbered 

from   to   , where the base link is numbered as zero link. 

Figure 4 shows link     where              is connected to 

other links via mechanical joints at its ends. This link has one 

driving cutting point associated with the frame        and one 

driven cutting point associated with the frame     . Thus, the 

joint     has one driven cutting point associated with the 

frame      and one driving cutting point associated with the 

frame     .  

Fig. 4: Virtual decomposition dynamics of a serial-chain 

manipulator 

Below, we will illustrate some definitions and remarks to 

make the derivation of dynamic equation of each subsystem 

(link, joint) accessible.  

Definition 1 [9]. A cutting point is a directed separation 

interface that conceptually cuts through a rigid body; the two 

parts resulting from the virtual cut maintain equal position and 

orientation. It can be interpreted as a driven cutting point by 

one part and is simultaneously interpreted as a driven cutting 

point by another part. Thus, the augmented force/moment 

vector,      , (henceforth called the force wrench) is 

exerted from one part to which the cutting point is interpreted 

as a driving cutting point to the other part to which the cutting 

point is interpreted as a drive cutting point. 

Remark 7 [9]. The matrix of force wrench transformation, 

        , transforms the force wrench expressed in frame 

    to the same force wrench expressed in frame     as 

follows. 

      
                                                                                  (30) 

With 

  
   

  
     

   
      

   
                                           (31) 

where   
       refers to the rotation matrix from the 

frame     to the frame    ,      is     null matrix, 

   
     is the skew matrix of  the vector   

  , which 

represents a vector from the origin of frame     to the origin 

of frame    , expressed by 

   
      

    
      

    

  
        

    

   
      

     

                  (32) 

whereas the transpose of   
  can transform the velocity 

wrench from frame to another as follows. 

     
 
                                                                           (33) 

Remark 8. The net force wrench of link     can be 

sequentially expressed in terms of frame {     as 

      
          

    
                                                            (34) 

Exploiting Remark 7 to yield 

      
          

       

      
       

        

    
    (35) 

Remark 9. The velocity wrench of link     can sequentially 

be determined by 

         
   

    
  

    
                                                           (36) 

with                 or               for revolute and 

prismatic joints respectively. Alternatively and simply, the 

velocity wrench can be calculated as 

    
     

  

     

  
 

                                                                    (37) 

with    
   and    

    are the absolute translational and 

angular velocity vector of frame    respect to the inertial 

frame {I}. 

Remark 10. Concerning the target biped, the number of the 

generalized coordinates      is always equal to both the 

number of links, e.g. both the number of links and the 

generalized coordinates are equal to 6 during the SSP. 

Consequently, we named the number of links as that of 

generalized coordinates.  

3.2.1.1 Dynamics of link subsystem 
By applying the D’Alembert principle to link    , with respect 

to the inertial frame about the CoM of link    , we can get the 

following relations for the net forces    
  and the net moment 

   
 . 

  
  

        

  
                                                          (38) 

  
  

           

  
                         =           

                                                                                (39) 

where          refers to the translation velocity vector of 

each link. 
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Putting (38) and (39) into block matrix to deal with velocity 

and force wrenches 

 
         

          
  

   
   

   
    

             
   

  
 

  
                (40) 

or 

 
         

          
       

    

              
     

                      (41) 

with    is     identity matrix.  

Exploiting Remark 7, the net force wrench on the right hand 

side of (41) can be expressed (transformed) in terms of the 

frame      as follows. 

     
  

  

     
     

  
  

 
  

      

      
  

  
  

 

  
                   (42) 

In similar manner, the velocity wrench can be represented in 

terms of the frame      as 

     
  

  
   

   

     

       

   
  

  

     
                                (43) 

Differentiating (43) results in 

      
   
   

   
        

     

            

     

       
   

 
   

     

       

     

    
 

  
    
                                               (44) 

Substituting (43) and (44) into (41) results in 

   
        

    
  

     
      

                                  (45) 

3.2.1.2 Dynamics of revolute joint subsystem 
There are two types of drive transmission systems for robotic 

joint systems. The first is the direct drive joints, in which the 

inertia of the motor is included in the corresponding links [9, 

15], such that the dynamics of the joint is neglected. The 

second type of the system deals with a high gear transmission 

assuming that the inertial forces/torques act along the joint 

axis [9]. In the latter case, the dynamic equation of the joint 

    can be described as  

    
 
                       

                   
   

   
          

                  

                                                                                             (46) 

where     represents the equivalent inertia of the joint    ,     

denote the ith joint acceleration,    
  represents the net torque 

applied to the joint    , and    denotes the number of joints. 

The net torque of the joint     can be described as  

  
           

                                                     (47) 

where     is the input control torque of the joint     and the 

second term represents the output torque of the joint     

towards the link    . 

3.2.2 The SSP 
As mentioned earlier, during this walking phase, the biped 

mechanism is an open chain mechanism with stance foot as 

fixed link; it should be in full contact with the ground. 

Therefore, the seven link-biped reduces to 6-link biped during 

its dynamic analysis. Three important points should be 

considered carefully when dealing with (45) which are: 

(i) Determination of velocity wrench.  

Solution of the dynamic (45) needs finding the velocity 

wrench (see Remark 9) which plays an important role in the 

adaptive control problem; it can be found as follows. See 

Figure 5 for clear description of local frames. 

Fig. 5: Biped robot during the SSP with description of 

assumed local frames 

(ii) Resultant force wrench 

To understand the force wrench distribution at the torso/leg 

interaction, see Figure 5. Thus, the following relations can be 

expressed for each link starting from the trunk. 

Link (4) (trunk):  

         
                                                                    (48) 

with notations shown in Figure 5.  

Link (5)( swing thigh):  

            

   
    

                                                       (49) 

with 

   

      
  

    
    

                                                          (50) 

Link (6) ( swing shank): 

            

   
   

                                                         (51) 

Link (7) (swing foot): 

            

   
   

                                                         (52) 

Link (3) (stance thigh): 

            

   
    

                                                       (53) 

Link (2)(stance shank): 

            

   
   

                                                         (54) 

We note that we have 6 equations for six links (48-54), with 7 

unknowns (   
      

      
     

     
     

     
  ). Because the 

swing foot does not have force wrench at the frame     , so 

  
    . Thus,   

   can recursively be calculated from (52) 

and so on.  

 

(iii) Actuating torques 

To simplify the analysis, let us assume temporarily that the 

target biped has direct drive joint systems (the dynamics of 
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the joint could be neglected [9, 15]) the left hand side of (46) 

is equal to zero. Consequently, the actuating torques can be 

calculated from the coupling effect of the neighbored link 

according to (47) as follows. 

Left shank,          
                                                       (55) 

Left knee,         
                                                          (56) 

Left thigh/torso interaction,         
                              (57) 

Right thigh/torso interaction,         
                           (58) 

Right knee,          
                                                       (59) 

Right shank,         
                                                      (60) 

3.2.3 The DSP 
Below we will address the problem of over-actuation of the 

biped during the DSP1. The DSP2 can be dealt with the same 

procedure of the DSP1; therefore, there is no need to repeat 

the procedure for the DSP2. As mentioned earlier, the biped in 

this walking sub-phase, DSP1, has six actuators with 4 DoFs; 

therefore, two redundant actuators compromise the over-

actuation problem. In the following, the details of velocity and 

force wrenches as well as determining the redundant actuating 

torques are investigated. 

 Velocity wrench. It has exactly the same relations 

described in previous subsection, with replacing the 

word (swing) by (front), the word (stance) to (rear), 

and     by          for the last link. 

 Force wrench. It has also the same force wrenches 

showed in (48) to (54). 

 Actuating torques. We have three significant 

problems resulting from the variable configurations 

of the biped which include: (a) redundancy of the 

actuators, (b) the passive joint on the front foot (see 

Figure 6) which enforces the torque to be    
  , 

and (c) the discontinuity of the actuating torques. 

Four solutions are considered below with focus on 

solutions 3 and 4 which can be ranked best among 

the rest. 

Fig. 6: The biped robot during the DSP1 

(i) Procedure 1-releasing and optimizing the internal forces  

This strategy assumes that the biped resembles two 

cooperating manipulators (two legs) holding one object (the 

trunk of the biped robot). Thus, the two interaction force 

wrenches,   
          

    can be expressed as [9] 

  
          

                                                                (61) 

  
              

                                                      (62) 

With      denotes the internal force wrench and  

  is a scalar value bounded by 0 and 1 (      . 
Then, describing the actuating torques in terms of the design 

variables. 

                                                                              (63) 

with the constraint of passive joint 

   
     

                                                              (64) 

By defining the objective function  

  
 

 
                                                                             (65) 

where        is a symmetric weighting matrix; it is 

assumed as an identity matrix in our solution.  

Substituting (63) into (65) to get 

  
 

 
        

               
                (66) 

Differentiating (66) with respect to   and setting it to zero 

      
     

    
        

     
               (67) 

Substituting (67) into (64) to yield 

  
     

    
     

    
    

  
    

     
    

                                              (68) 

Substituting (68) into (67) to get the internal force wrench 

      
     

    
      

            
     

     
     

    
     

    
    

  
    

     
    

              (69) 

Thus, the force wrench at the torso can be determined from 

(61,62), and sequentially finding the rest force wrenches and 

the required torques via the following (48-60). The 

disadvantages of this procedure are that   is a free parameter; 

it has not been considered as design variable, and there is also 

no guarantee to satisfy continuous dynamic response related 

to actuating torques.  

(ii) Procedure 2- direct optimization of the torso/leg force 

wrench 

Instead of releasing internal force wrench, the actuating 

torques can directly be expressed in terms of   
    or   

   . 

Thus, we can get the same equations above but in terms of 

  
    as follows. 

 
        

     
    

      

                 
     

     
     

    
     

    
    

  
    

     
    

          (70) 

and completing the same steps as of the procedure 1. 

However, the discontinuity problem has not been resolved in 

the above two procedures.  

(iii)  Procedure 3- tracking desired ground reaction forces.  

Considering Assumption 4 and assuming the desired reaction 

force, (28) and (29), as a constraint to yield 

    
 
   

 
       

                                                          (71) 

with         and       .  

The left hand side of (71) is known from the desired walking 

trajectories, so the problems of over-actuating and 

discontinuity are solved using the last equation without need 

of optimization. 

Remark 10. If the number of constraints is equal to the design 

variables, no optimization of the system is necessary because 
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the solution of equality constraints are the only candidates for 

the optimum design [24]. 

(iv) Procedure 4- tracking desired ground reaction forces 

with optimization 

In this procedure, we will come back to procedure 1 

representing the trunk/leg interaction force wrench in terms of 

the internal force wrench and   parameter. Thus, constraint 

(71) can be expressed as follows 

    
 
   

 
                                                      (72) 

with           ,       and      . Re-arranging (72) 

and using the pseudoinverse definition 

 
 
  
        

    
                                                    (73) 

where    denotes the candidate optimal solution. Because of 

the bounded limits of  , the following procedure is proposed: 

If       , then       .  

If     , then    . 

If     , then    .                                                          (74) 

After finding the internal force wrench and   parameter, it is 

easy to find the actuating torques in a similar way described 

previously (see procedure 1). 

4. CONLUSIONS 
In this paper, 6-link biped robot has been modeled using L-E 

and N-E formulations. The problem of discontinuity is solved 

using linear transition ground reaction forces without impact-

contact event. Lagrangian formulation, unless simplified, 

could require more computational complexity than that of N-E 

formulation; the latter can deal with each link separately 

easing the task of advanced adaptive control. The future work 

will concentrate on simulation and experiments using two 

modeling techniques: fixed-base and floating-base biped 

robot. 
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