
International Journal of Computer Applications (0975 – 8887)

Volume 101– No.15, September 2014

6

Algorithm to Compute Cubes of 1st “N” Natural

Numbers using Single Multiplication per Iteration

Rajat Tandon

Samsung R&D Institute*
Bagmane Constellation Park,

Doddanekundi Circle, Bangalore, India

Rajika Tandon
AT&T*

575 Morosgo Dr NE,
Atlanta, Georgia, USA

ABSTRACT

Different processors work with disparate speeds. For any

given processor, elementary operations differ in terms of their

speeds and computational complexities. The paper presents an

algorithm to compute cubes of 1st “N” Natural Numbers

using one multiplication by constant, two additions on

variables and one addition by constant, per iteration.

Theoretically, computational complexity of multiplication is

O(n2) while that of addition is Θ(n), where n is the number of

bits used to represent that number. So, keeping the number of

iterations same in both, in the traditional approach, the overall

computational complexity per iteration is expressed in the

order of O(n2) while in the current approach the overall

computational complexity per iteration is of the order of O(n).

For small values of “N”, the difference in complexities may

not be huge. But, given any large value of “N”, difference will

be noticeable.

General Terms

Algorithms, Sum of Cubes

Keywords

Computational complexity, Cube

1. INTRODUCTION
Computational complexity of an algorithm is a measure of

how many steps the algorithm will require in the worst case

for an instance or input of a given size. It is commonly

estimated by counting the number of elementary operations

performed by the algorithm, where an elementary operation

takes a fixed amount of time to perform. Addition requires

lesser time than multiplication [3] as in case of serial

processing.

If the value of “N” is small, then there will not be much time

difference. However, for a large value of “N”, the difference

cannot be ignored. Table 1 shows some of the elementary

operations and their time complexities.

2. METHODOLOGY
As the number of iterations involved in both the cases is same,

the comparison is based on the operation computational

complexity per iteration. The complexity mentioned in Table

1 is expressed in terms of the number of digits in the numbers.

In the traditional approach, the cubes of the 1st “N” Natural

Numbers is computed by the following equation:

cube ← i * i * i

where, i varies from 1 to N, and the computational complexity

is computed by considering he complexity of 2

multiplications, which is 2*O(n2). So it can be approximated

to the order of O(n2) [1, 2, 4, 5].

2.1 Traditional Algorithm
The following algorithm presents the traditional approach to

compute the cubes of first N natural numbers. The cube in this

way is computed by multiplying the number by itself, and

multiplying the result obtained, by the number again. This

method is applied for all the N numbers.

Algorithm: Cubes of first N natural numbers – traditional way

Input: A positive integer “N”

Output: Cubes of 1st “N” natural numbers

for i ← 1 to N do

 cube ← i * i * i // Two multiplication operations

 print cube

end for

2.2 Proposed Algorithm
The following algorithm presents the approach proposed in

this paper. In order to compute the cube of first N natural

numbers, we have identified a series {(6*a) + 1}, where a is

computed by adding natural numbers to the previous value of

‘a’, and initial value of ‘a’ being 0. The cube is computed by

adding cube of previous number, (6 * a), and 1.

Algorithm: Cubes of first N natural numbers – proposed way

Input: A positive integer “N”

Output: Cubes of 1st “N” natural numbers

a ← 0

cube ← 0

for i ← 1 to N do

 cube ← cube + (6*a) +1 // One multiplication by constant

 a ← a + i

 print cube

end for

3. EXPLANATION
The logic behind the proposed algorithm is that all perfect

cubes of natural numbers differ by the series {(6*a) + 1},

where, a is given by the series {0, 1, 3, 6, 10, 15, 21…} which

can be computed by adding natural numbers from the series

{1, 2, 3, 4, 5, 6, 7…} to the previous value of ‘a’.

For example, if we start from 1 and add 7 to it, we will obtain

the cube of 2. Similarly, if we add 19 to the previous value of

the variable “cube” then we get 27, which is the cube of 3.

Similarly, if we add 37 to the previous value of the variable

“cube” then we get 64, which is the cube of 4. Likewise, we’ll

obtain cube of N as: cube of (N-1) + (6 * a) + 1.

4. COMPUTATIONAL COMPLEXITY
Different elementary operations have different computational

complexities based on the number of digits present in the two

numbers. Table 1 depicts the rudimentary arithmetic

operations along with their algorithmic computational

complexities.

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.15, September 2014

7

Schoolbook addition with carry algorithm has its complexity

of the order Θ(n). While the complexity of schoolbook long

multiplication is of the order O(n2). The asymptotic analysis

or growth of function [5] of “n”, i.e. Θ(n), is linear, while that

of a function of “n2”, i.e. O(n2), is quadratic. The graph

presented in figure 1 provides a comparison of time

complexities of linear and quadratic functions. Thus, we can

clearly see that a linear computational complexity is preferred

over quadratic as less time is spent on computation involving

“n” than computations involving “square of n”. This is very

significant especially when the values of n are very large, in

which case, linear calculations save a lot of computational

time over quadratic calculations.

The traditional algorithm, discussed in section 2.1, involves 2

multiplications. Multiplication operation is always expensive

compared to addition operation if computational complexity is

a concern as that in case of serial processing. So it is better to

use addition operation in such cases.

The proposed algorithm, discussed in section 2.2, involves 1

multiplication by a constant which is the number “6” and 3

additions per iteration. The complexity of the multiplication

“(6*a)” is of the order of O(3n) because 3 bits are used to

represent the number “6”. If the number of iterations involved

is less, then the complexities don’t reveal a significant

difference.

The computational complexity which is of the order of O(3n)

can approximated to the order of O(n). The complexities of

additions also end up being in the order of Θ(n) after

approximations. So the overall computational complexity per

iteration is of the order of O(n) in the current approach.

Table 1. Elementary operations with their time complexities

Operation Input Output Algorithm Complexity

Addition Two n-digit numbers One n+1 – digit number Schoolbook addition with carry Θ(n)

Subtraction Two n-digit numbers One n+1 – digit number Schoolbook subtraction with borrow Θ(n)

Multiplication Two n-digit numbers One 2n-digit number Schoolbook long multiplication O(n
2
)

Division Two n-digit numbers One n-digit number Schoolbook long division O(n
2
)

Table 2. Values for N=10

i cube ← cube + (6*a) + 1 a ← a + i

1 1 ← 0 + (6*0) + 1 1 ← 0 + 1

2 8 ← 1 + (6*1) + 1 3 ← 1 + 2

3 27 ← 8 + (6*3) + 1 6 ← 3 + 3

4 64 ← 27 + (6*6) + 1 10 ← 6 + 4

5 125 ← 64 + (6*10) + 1 15 ← 10 + 5

6 216 ← 125 + (6*15) + 1 21 ← 15 + 6

7 343 ← 216 + (6*21) + 1 28 ← 21 + 7

8 512 ← 343 + (6*28) + 1 36 ← 28 + 8

9 729 ← 512 + (6*36) + 1 45 ← 36 + 9

10 1000 ← 729 + (6*45) + 1 55 ← 45 + 10

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.15, September 2014

8

Fig 1: Computational complexities of linear (n) and quadratic/square (n2) functions

5. OUTPUT TRACING
Initially the values of the variables are shown in Table 3.

Table 3

a cube

0 0

Before the iteration begins, both the variables: “cube” and

“a”, are set to 0.

Let us consider the first iteration. The value of the variable

“cube” is added with the value of (6*0 + 1), to get the cube of

the first number. The value of the variable “cube” becomes 1.

Then the value of the variable “a” is incremented by the value

of i in order to compute the cube of the next number in the

next iteration. The value of the variable “a” becomes 1. The

value of variable “i” is incremented by 1. The values of the

variables after the first iteration are shown in Table 4.

Table 4

a cube

1 1

Let us consider the second iteration. After the first iteration,

the value of the variable “cube” is 1 and “a” is also 1. The

value of the variable “cube” is added to the value of (6*1 + 1),

to get the cube of the second number. The new value of the

variable “cube” becomes 8. Then the value of the variable “a”

is incremented by the iteration number in order to compute the

cube of the next number in the next iteration. The new value

of the variable “a” becomes 3. The values of the variables

after the second iteration are shown in Table 5.

Table 5

a cube

3 8

Let us consider the third iteration. The value of the variable

“cube” is added to the value of (6*3 + 1), to get the cube of

the third number. Then the value of the variable “a” is

incremented by the iteration number in order to compute the

cube of the next number in the next iteration. The values of

the variables after the third iteration are shown in Table 6.

Table 6

a cube

6 27

Similarly, the loop runs till the value of the variable “i”

reaches “n”.

6. MATHEMATICAL PROOF
Given, for i = 0, cube(i) = 0, and α(i) =0

To prove,

cube(i) = cube(i-1) + 6*α(i-1) + 1 ----- (i)

Equation (i) is true for i> 1

where, αi= α(i-1) + i ------- (ii)

Proof by induction:

STEP 1:

For i = 1,

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

C
o

m
p

u
ta

ti
o

n
al

/T
im

e
 C

o
m

p
le

xi
ty

 T
(n

)

Th
o

u
sa

n
d

s

Value of n

Linear

Square

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.15, September 2014

9

 LHS,

cube(1) = 1*1*1 = 1

 RHS,

cube(1-1) + 6*α(1-1) + 1

= cube(0) + 6*α(0) + 1

= 0 + 0 + 1 = 1

STEP 2:

Suppose Equation (i) is true for some i = k ≥ 1, that is

cube(k) =cube(k-1) + 6*α(k-1) + 1 ---------- (iii)

STEP 3:

Prove that Equation (i) is true for i = k + 1, that is

 LHS,

cube(k+1)= (k+1) * (k+1) * (k+1)

= (k2+ k + k + 1) * (k+1)

= (k2+ 2k + 1) * (k + 1)

= k3+ 2k2 + k + k2 + 2k + 1

= k3+ 3k2 + 3k + 1

 RHS,

cube(k) + 6*α(k) + 1

= (k*k*k) + 6 [α(k-1) + k] + 1

= (k*k*k) + 6 [α(k-2) + (k-1) + k] + 1

= (k*k*k) + 6 [α(k-3) + (k-2) + (k-1) + k] + 1

…

…

= (k*k*k) + 6 [α(0) + 1 + 2 + 3 +… (k-2) + (k-1) + k] + 1

= (k*k*k) + 6 [0 + 1 + 2 + 3 +… (k-2) + (k-1) + k] + 1

Using result on summation of natural numbers [6]:

where, 1 + 2 + 3 +…. + n = n(n+1)/2,

Therefore, the above RHS can be reduced to the following:

= (k*k*k) + 6[k(k+1)/2] +1

= (k*k*k) + 3(k*k) + 3(k) + 1

= k3 + 3k2 + 3k + 1

Therefore, LHS = RHS.

Hence proved that the equation (i) holds true.

7. ADDITIONAL RESULT
The algorithm discussed in the paper can be extended to

compute the cubes of a given range.

If the given range is Range(a,b),where a < b, and the cube of

the number (a-1) is provided or computed using the traditional

approach, then the series will follow the trend listed below:

cube(a) = cube(a-1) + 6*α(a-1) + 1

where, α(a-1) = [α (a-2) + (a-1)]

 = [α (a-3) + (a-2) + (a-1)]

 …

 = [α (0) + 1 + 2 + 3 + … + (a-2) + (a-1)]

 = [0 + 1 + 2 + 3 + … + (a-2) + (a-1)]

Using result on summation of natural numbers [6]:

where, 1 + 2 + 3 +…. + n = n(n+1)/2,

we get:

α(a-1) = a(a-1)/2

Similarly,

cube(b) = cube(b-1) + 6*α(b-1) + 1;

where, α(b)= α(b-1) + b (from (ii))

8. CONCLUSIONS
In this paper, we presented a more optimized solution of

computing the cubes of first “N” natural numbers in terms of

computational complexity, than the traditional algorithm.

Usually, addition and subtraction are preferred to

multiplication and division, because the latter operations

cause higher overhead in terms of computational complexity,

as in case of serial processing.

We have mathematically and graphically presented the

computational complexities of traditional addition and

multiplication methods, and reduced the problem of

computing the cubes of first “N” natural numbers from 2

multiplications per iteration, to 1 multiplication by a constant,

and 3 addition operations.

We have also shown that the same approach is applicable in

computing a range of cubes (i.e., finding cubes of all natural

numbers between say numbers “a” and “b”).

9. FUTURE SCOPE
This method can be applied to compute the sum of cubes of

first N natural numbers, or to compute the sum of cubes of a

range of natural numbers.

Also, the approach discussed in this paper and reference [3] is

for cubes and squares respectively. Similar ideas may be

applicable for power 4, 5 and so on, and a generalized result

can be derived. This will also allow easy computation of a

range of numbers with any power. Additionally, the sum of

any power of first N natural numbers or a range of natural

numbers can be computed.

10. DISCLOURE
*The work on this study was performed by the

authors independent of their primary affiliations. The contents

of this paper are solely the responsibility of the authors and do

not represent the official view of Samsung R&D Institute and

AT&T.

11. REFERENCES
[1] Levitin, A. 2002. Introduction to the Design and Analysis

of Algorithms, 2nd ed., Addison Wesley.

[2] Harel, D. and Feldman Y. 2004. Algorithmics: The Spirit

of Computing, 3rd ed., Addison-Wesley Publishers

Limited.

[3] Tandon, R. 2012. “Algorithm to Compute Squares of 1st

“N” Natural Numbers Without Using Multiplication”,

arXiv:1212.5645v1 [cs.DS].

[4] Knuth, D. E. 1997. The Art of Computer Programming,

vol. 1, 3rd ed., Addison-Wesley.

[5] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,

C. 2009. Introduction to Algorithms, 3rd ed., The MIT

Press and McGraw-Hill.

[6] Malhotra, O. P., Gupta S. K., and Gangal A., 2007. I.S.C.

Mathematics Book I for Class XI (page 6-39), S. Chand

& Company Ltd.

IJCATM : www.ijcaonline.org

http://arxiv.org/abs/1212.5645v1

