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ABSTRACT 

Different processors work with disparate speeds. For any 

given processor, elementary operations differ in terms of their 

speeds and computational complexities. The paper presents an 

algorithm to compute cubes of 1st “N” Natural Numbers 

using one multiplication by constant, two additions on 

variables and one addition by constant, per iteration. 

Theoretically, computational complexity of multiplication is 

O(n2) while that of addition is Θ(n), where n is the number of 

bits used to represent that number. So, keeping the number of 

iterations same in both, in the traditional approach, the overall 

computational complexity per iteration is expressed in the 

order of O(n2) while in the current approach the overall 

computational complexity per iteration is of the order of O(n). 

For small values of “N”, the difference in complexities may 

not be huge. But, given any large value of “N”, difference will 

be noticeable. 
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1. INTRODUCTION 
Computational complexity of an algorithm is a measure of 

how many steps the algorithm will require in the worst case 

for an instance or input of a given size. It is commonly 

estimated by counting the number of elementary operations 

performed by the algorithm, where an elementary operation 

takes a fixed amount of time to perform. Addition requires 

lesser time than multiplication [3] as in case of serial 

processing. 

If the value of “N” is small, then there will not be much time 

difference. However, for a large value of “N”, the difference 

cannot be ignored. Table 1 shows some of the elementary 

operations and their time complexities. 

2. METHODOLOGY 
As the number of iterations involved in both the cases is same, 

the comparison is based on the operation computational 

complexity per iteration. The complexity mentioned in Table 

1 is expressed in terms of the number of digits in the numbers.  

In the traditional approach, the cubes of the 1st “N” Natural 

Numbers is computed by the following equation: 

cube ← i * i * i 

where, i varies from 1 to N, and the computational complexity 

is computed by considering he complexity of 2 

multiplications, which is 2*O(n2). So it can be approximated 

to the order of O(n2) [1, 2, 4, 5]. 

2.1 Traditional Algorithm 
The following algorithm presents the traditional approach to 

compute the cubes of first N natural numbers. The cube in this 

way is computed by multiplying the number by itself, and 

multiplying the result obtained, by the number again. This 

method is applied for all the N numbers. 

Algorithm: Cubes of first N natural numbers – traditional way 

Input: A positive integer “N” 

Output: Cubes of 1st “N” natural numbers 

for i ← 1 to N do 

   cube ← i * i * i // Two multiplication operations 

   print cube 

end for 

2.2 Proposed Algorithm 
The following algorithm presents the approach proposed in 

this paper. In order to compute the cube of first N natural 

numbers, we have identified a series {(6*a) + 1}, where a is 

computed by adding natural numbers to the previous value of 

‘a’, and initial value of ‘a’ being 0. The cube is computed by 

adding cube of previous number, (6 * a), and 1.  

Algorithm: Cubes of first N natural numbers – proposed way 

Input: A positive integer “N” 

Output: Cubes of 1st “N” natural numbers  

a ← 0 

cube ← 0 

for i ← 1 to N do 

   cube ← cube + (6*a) +1 // One multiplication by constant 

   a ← a + i 

   print cube 

end for 

3. EXPLANATION 
The logic behind the proposed algorithm is that all perfect 

cubes of natural numbers differ by the series {(6*a) + 1}, 

where, a is given by the series {0, 1, 3, 6, 10, 15, 21…} which 

can be computed by adding natural numbers from the series 

{1, 2, 3, 4, 5, 6, 7…} to the previous value of ‘a’.  

For example, if we start from 1 and add 7 to it, we will obtain 

the cube of 2. Similarly, if we add 19 to the previous value of 

the variable “cube” then we get 27, which is the cube of 3. 

Similarly, if we add 37 to the previous value of the variable 

“cube” then we get 64, which is the cube of 4. Likewise, we’ll 

obtain cube of N as: cube of (N-1) + (6 * a) + 1. 

4. COMPUTATIONAL COMPLEXITY 
Different elementary operations have different computational 

complexities based on the number of digits present in the two 

numbers. Table 1 depicts the rudimentary arithmetic 

operations along with their algorithmic computational 

complexities.  
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Schoolbook addition with carry algorithm has its complexity 

of the order Θ(n). While the complexity of schoolbook long 

multiplication is of the order O(n2). The asymptotic analysis 

or growth of function [5] of “n”, i.e. Θ(n), is linear, while that 

of a function of “n2”, i.e. O(n2), is quadratic. The graph 

presented in figure 1 provides a comparison of time 

complexities of linear and quadratic functions. Thus, we can 

clearly see that a linear computational complexity is preferred 

over quadratic as less time is spent on computation involving 

“n” than computations involving “square of n”. This is very 

significant especially when the values of n are very large, in 

which case, linear calculations save a lot of computational 

time over quadratic calculations. 

 

The traditional algorithm, discussed in section 2.1, involves 2 

multiplications. Multiplication operation is always expensive 

compared to addition operation if computational complexity is 

a concern as that in case of serial processing. So it is better to 

use addition operation in such cases.  

The proposed algorithm, discussed in section 2.2, involves 1 

multiplication by a constant which is the number “6” and 3 

additions per iteration. The complexity of the multiplication 

“(6*a)” is of the order of O(3n) because 3 bits are used to 

represent the number “6”. If the number of iterations involved 

is less, then the complexities don’t reveal a significant 

difference.   

The computational complexity which is of the order of O(3n) 

can approximated to the order of O(n). The complexities of 

additions also end up being in the order of Θ(n) after 

approximations. So the overall computational complexity per 

iteration is of the order of O(n) in the current approach.

Table 1. Elementary operations with their time complexities 

Operation Input Output Algorithm Complexity 

Addition Two n-digit numbers One n+1 – digit number  Schoolbook addition with carry Θ(n) 

Subtraction Two n-digit numbers One n+1 – digit number Schoolbook subtraction with borrow Θ(n) 

Multiplication Two n-digit numbers One 2n-digit number Schoolbook long multiplication O(n
2
) 

Division Two n-digit numbers One n-digit number Schoolbook long division O(n
2
) 

 

Table 2. Values for N=10 

i cube      ←        cube        +       (6*a)        +     1 a   ←     a    +   i 

1 1            ←             0          +       (6*0)        +     1 1   ←     0    +   1 

2 8            ←             1          +       (6*1)        +     1 3   ←     1    +   2 

3 27          ←             8          +       (6*3)        +     1 6   ←     3    +   3 

4 64          ←             27        +       (6*6)        +     1 10 ←     6    +   4 

5 125        ←             64        +       (6*10)      +     1 15 ←    10   +   5 

6 216        ←             125      +       (6*15)      +     1 21 ←    15   +   6 

7 343        ←             216      +       (6*21)      +     1 28 ←    21   +   7 

8 512        ←             343      +       (6*28)      +     1 36 ←    28   +   8 

9 729        ←             512      +       (6*36)      +     1 45 ←    36   +   9 

10 1000      ←             729      +       (6*45)      +     1 55 ←    45   +   10 
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Fig 1: Computational complexities of linear (n) and quadratic/square (n2) functions 

 

5. OUTPUT TRACING 
Initially the values of the variables are shown in Table 3. 

 

Table 3 

a cube 

0 0 

 

Before the iteration begins, both the variables: “cube” and 

“a”, are set to 0. 

Let us consider the first iteration. The value of the variable 

“cube” is added with the value of (6*0 + 1), to get the cube of 

the first number. The value of the variable “cube” becomes 1. 

Then the value of the variable “a” is incremented by the value 

of i in order to compute the cube of the next number in the 

next iteration. The value of the variable “a” becomes 1. The 

value of variable “i” is incremented by 1. The values of the 

variables after the first iteration are shown in Table 4. 

Table 4 

a cube 

1 1 

 

Let us consider the second iteration. After the first iteration, 

the value of the variable “cube” is 1 and “a” is also 1. The 

value of the variable “cube” is added to the value of (6*1 + 1), 

to get the cube of the second number. The new value of the 

variable “cube” becomes 8. Then the value of the variable “a” 

is incremented by the iteration number in order to compute the 

cube of the next number in the next iteration. The new value 

of the variable “a” becomes 3. The values of the variables 

after the second iteration are shown in Table 5. 

Table 5 

a cube 

3 8 

 

Let us consider the third iteration. The value of the variable 

“cube” is added to the value of (6*3 + 1), to get the cube of 

the third number. Then the value of the variable “a” is 

incremented by the iteration number in order to compute the 

cube of the next number in the next iteration. The values of 

the variables after the third iteration are shown in Table 6. 

Table 6 

a cube 

6 27 

 

Similarly, the loop runs till the value of the variable “i” 

reaches “n”. 

6. MATHEMATICAL PROOF 
Given, for i = 0, cube(i) = 0, and α(i) =0 

To prove,  

cube(i) = cube(i-1) + 6*α(i-1) + 1 ----- (i) 

Equation (i) is true for i> 1 

where, αi= α(i-1) + i ------- (ii) 

 

Proof by induction: 

STEP 1:  

For i = 1,  
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 LHS, 

cube(1) = 1*1*1 = 1 

 RHS, 

cube(1-1) + 6*α(1-1) + 1 

= cube(0) + 6*α(0) + 1  

= 0 + 0 + 1 = 1 

STEP 2:  

Suppose Equation (i) is true for some i = k ≥ 1, that is 

cube(k) =cube(k-1) + 6*α(k-1) + 1 ---------- (iii) 

 

STEP 3:  

Prove that Equation (i) is true for i = k + 1, that is 

 LHS, 

cube(k+1)= (k+1) * (k+1) * (k+1) 

= (k2+ k + k + 1) * (k+1) 

= (k2+ 2k + 1) * (k + 1) 

= k3+ 2k2 + k + k2 + 2k + 1 

= k3+ 3k2 + 3k + 1 

 

 RHS, 

cube(k) + 6*α(k) + 1 

= (k*k*k) + 6 [α(k-1) + k] + 1 

= (k*k*k) + 6 [α(k-2) + (k-1) + k] + 1 

= (k*k*k) + 6 [α(k-3) + (k-2) + (k-1) + k] + 1 

… 

… 

= (k*k*k) + 6 [α(0) + 1 + 2 + 3 +… (k-2) + (k-1) + k] + 1 

= (k*k*k) + 6 [0 + 1 + 2 + 3 +… (k-2) + (k-1) + k] + 1 

 

Using result on summation of natural numbers [6]:  

where, 1 + 2 + 3 +…. + n = n(n+1)/2,  

Therefore, the above RHS can be reduced to the following: 

= (k*k*k) + 6[k(k+1)/2] +1 

= (k*k*k) + 3(k*k) + 3(k) + 1 

= k3 + 3k2 + 3k + 1 

Therefore, LHS = RHS.  

Hence proved that the equation (i) holds true. 

7. ADDITIONAL RESULT 
The algorithm discussed in the paper can be extended to 

compute the cubes of a given range.  

If the given range is Range(a,b),where a < b, and the cube of 

the number (a-1) is provided or computed using the traditional 

approach, then the series will follow the trend listed below: 

cube(a) = cube(a-1) + 6*α(a-1) + 1 

where, α(a-1) = [α (a-2) + (a-1)]   

    = [α (a-3) + (a-2) + (a-1)] 

    … 

    = [α (0) + 1 + 2 + 3 + … + (a-2) + (a-1)] 

    = [0 + 1 + 2 + 3 + … + (a-2) + (a-1)] 

Using result on summation of natural numbers [6]:  

where, 1 + 2 + 3 +…. + n = n(n+1)/2,  

we get:    

α(a-1) = a(a-1)/2 

Similarly, 

cube(b) = cube(b-1) + 6*α(b-1) + 1; 

where, α(b)= α(b-1) + b  (from (ii)) 

8. CONCLUSIONS 
In this paper, we presented a more optimized solution of 

computing the cubes of first “N” natural numbers in terms of 

computational complexity, than the traditional algorithm. 

Usually, addition and subtraction are preferred to 

multiplication and division, because the latter operations 

cause higher overhead in terms of computational complexity, 

as in case of serial processing.  

We have mathematically and graphically presented the 

computational complexities of traditional addition and 

multiplication methods, and reduced the problem of 

computing the cubes of first “N” natural numbers from 2 

multiplications per iteration, to 1 multiplication by a constant, 

and 3 addition operations.  

We have also shown that the same approach is applicable in 

computing a range of cubes (i.e., finding cubes of all natural 

numbers between say numbers “a” and “b”). 

9. FUTURE SCOPE 
This method can be applied to compute the sum of cubes of 

first N natural numbers, or to compute the sum of cubes of a 

range of natural numbers. 

Also, the approach discussed in this paper and reference [3] is 

for cubes and squares respectively. Similar ideas may be 

applicable for power 4, 5 and so on, and a generalized result 

can be derived. This will also allow easy computation of a 

range of numbers with any power. Additionally, the sum of 

any power of first N natural numbers or a range of natural 

numbers can be computed. 
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