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ABSTRACT 
Determining the bug signatures(context of bug) is difficult,  

as it involves mining the execution traces of the program. 

The discriminative graph mining algorithm is used to 

identify the bug signatures. It requires manual labelling of 

the input set to estimate the discriminative subgraphs. To 

reduce the tedious work of manual labelling, this paper 

presents novel framework to identify bug signatures. The 

proposed algorithm uses hybrid approach of dual active 

feature sample selection and LTS(Learn to Search). In the 

hybrid method, the dual active feature sample selection is 

used to find the query graph and its corresponding 

discriminative subgraphs, and LTS method is applied to 

obtain risk free optimal solution. The performance of the 

combined approach is measured with the parameters 

(i)runtime, (ii)recall and (iii)precision. The experiment 

results shows that this hybrid approach has an improved 

runtime of 60.10%  when only 40% of the input graph set is 

manually labelled. The recall and precision are also 

improved by 33.33% when compared with dual active 

feature sample selection without LTS. 
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1. INTRODUCTION 
A software’s quality and productivity can be enhanced by 

applying mining algorithms to various task of software 

engineering, especially in bug detection and debugging. But 

the mining of software engineering(SE) data possess several 

challenges [1] like complex data and patterns, large scale of 

data, unique requirements. Graphs are considered to be the 

precise representation for large number of entities, for their 

attributes and relationships. Therefore, the SE data can be 

represented as graph for easy mining. Mining graph data[2] 

is an extraction of novel and useful knowledge from graph 

representation of data. The software engineering graph data 

is generally a static or dynamic call graph, or program 

dependence graph.  

In SE, debugging is an expensive and meticulous task. It is 

difficult to locate and fix the exact location of bugs since 

failure is visible from far view point (like system crash or 

incorrect result outputted). There might be a case that two 

statements or methods when scanned individually shows no 

error, but when executed one after the other, results in an 

erroneous output. To identify such bug locations (also called 

bug signatures), the context of the bug needs to be 

identified. The frequent subgraph mining [3,4], graph 

classification[5], discriminative subgraph mining[6] are 

some of the graph mining algorithms for bug detection and 

debugging.  

The frequent subgraph mining (FSM) is the process of 

extracting the frequent subgraphs from the data set, given a 

particular frequency threshold. FSM are classified as general 

purpose and pattern-based frequent subgraph mining[3] on 

the basis of the type of dataset selected for mining. The FSM 

is used to localize bug using edge-weighted call graphs[4]. 

The frequencies of the call graphs are added as weights to 

locate the bugs. In FSM, the frequency is used to identify 

bug, but a bug can occur with lowest frequency. Therefore, 

FSM may not lead to the optimal solution for identification 

of bug signatures. 

The graph classification algorithms are used to detect 

failures by analyzing software behaviours[5]. The iterative 

patterns are mined from software traces and then 

discriminative patterns are identified from this set of 

patterns. Finally, the classifier is trained to detect the 

failures. This approach may not be efficient to identify bug 

signatures, because even here, the discriminative patterns are 

identified from a set of frequent patterns.  

When discriminative subgraphs are identified from the 

complete set of graph[6], there is a very less opportunity to 

miss the optimal solution. The discriminative subgraph is 

found using Leap algorithm[7]. In Leap algorithm, structural 

proximity is followed by frequency descending mining. The 

algorithm is based on the assumption that discriminative 

subgraphs with high score tend to have high frequencies. 

This may not be always true. Moreover, to identify bug 

signatures we need to provide objective function carrying 

the class label of every input graph. The labelling of the 

graph is generally done manually. 

Manually labelling process is a time consuming and an 

expensive task. This cost can be reduced by training the 

model to select the most important query graph for labelling, 

such a procedure is called active query selection. The 

selection of query graph from a graph database requires 

subgraph feature selection. Both the selection procedure are 

correlated and when considered simultaneously is called 

dual active feature and sample selection[8]. The dual active 

feature sample selection uses gSpan[9] algorithm approach 

for searching and pruning the search space of feature 

selection. The gSpan[9] algorithm adapts single lineage 

pattern exploration which may not always lead to the 

optimal solution. The LTS[10] method extracts 

discriminative subgraphs using multi lineage pattern 

exploration with aggressive pruning on it. This method 

possesses less risk than single lineage pattern exploration to 

lose the optimal solution. So as to avoid both manual 

labelling and the risk of losing optimal solution, this paper 

proposes a hybrid approach of using Dual active feature 

sample selection and LTS method to identify bug signatures. 

The remaining part of paper is organized as follows. Section 

II gives the knowledge of preliminaries to understand Dual 
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active feature sample selection and LTS method. Section III 

describes the dual active feature and sample selection in 

detail. Section IV elaborates the LTS method of pruning and 

explains the difference between single and multi lineage 

pattern exploration. Section V introduces our hybrid 

approach and explains the process followed for 

implementation. Section VI describes the experiment 

conducted, the performance matrix used and the results 

obtained. Section VII defines the future scope. Section VIII 

concludes the paper. 

2. PRELIMINARIES 

Definition 1 (Discriminative subgraph): 
Given an input as positive and negative set of graph, finding 

the subgraph which contrast the positive and negative graph, 

is said to be discriminative subgraph. This discriminative 

subgraph is determined by a discriminative score. In our 

approach, the discriminative score used is same as in dual 

active feature sample selection[7] . For a feature gi , the 

discriminative score is calculated as 

i
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 Here the fi indicates binary vector for the feature gi in the 

graph dataset. The y is a matrix for class labels. H is a 

centering matrix, Hij = δij − n−1. (δij = 1 iff i = j, otherwise 

0). The α and β are parameters, both set as 0.001. ∏u , ∏l , 

∏i  are the projection  matrices for unlabelled, labelled and 

selected feature of graph respectively.  

Definition 2 (Lineage): In pattern exploration, the 

lineage of a pattern is a sequence of patterns p1, p2, p3 …..pk 

. The pattern p2 is superset of pattern p1 obtained by adding 

an edge to p1. In general, pi+1 is obtained by adding an edge 

to pi pattern. There a two ways of pattern exploration, single 

lineage pattern exploration and multi lineage pattern 

exploration. In a single lineage pattern exploration, each 

subgraph pattern is enumerated exactly once whereas in 

multi lineage pattern exploration, a subgraph pattern may be 

enumerated many times from different lineages. The 

example below[9] shows the difference between single and 

multi lineage. 

 

 

 

 

Figure 1: Example of multi-lineage pattern exploration 

 

 

 

 

Figure 2: Example of single-lineage pattern exploration 

Let pattern A-B-B be the optimal pattern, if A-B is pruned 

reaching A-B-B is not possible in single lineage exploration. 

Whereas in multi lineage exploration, one can afford to 

prune A-B without missing the optimal solution. Thus 

aggressive pruning can be afforded by the multi lineage 

exploration due to its redundancy in pattern exploration. 

Definition 3 (Score Records): The score record 

of a pattern is a sequence of scores for patterns in the lineage 

of that pattern. If lineage of a pattern is l(p)=p1, p2,…. pk, 

then score record of pattern is s(p)=s(p1), s(p2),….s(pk). 

3. DUAL ACTIVE FEATURE AND 

SAMPLE SELECTION 
The two stage active learning framework has two separate 

steps of feature selection and active sample selection. The 

features are selected from a set of labelled graphs and then a 

query graph is selected to identify the unlabelled graph. In 

this approach, the useful features from unlabelled graphs are 

not considered for query selection, thus leading to the poor 

estimation of query graph. To overcome this issue, the dual 

active feature and sample selection was introduced[8]. The 

figure below shows the dual active feature and sample 

selection, which is a simultaneous process of feature 

selection and active sample selection. 

 

 

 

 

 

 

 

Figure 3: Dual Active Feature & Sample Selection 

In the dual active feature and sample selection, the features 

are selected from labelled as well as unlabelled graphs and 

then the query graph is selected for labelling. The selected 

query graph is considered as most representative and 

informative for the set of unlabelled graphs. The gActive 

algorithm[8] is used to maximize the dependence between 

subgraph features and graph labels. The algorithm calculates 

the discriminative score, to find the discriminative 

subgraphs for the query graph. The gActive algorithm uses 

gSpan[9] approach for searching and pruning the search 

space of feature selection. The dual active feature sample 

selection minimizes the labelling efforts for graph 

classification. 

4. LTS PRUNING SEARCH SPACE 
Learn To Search(LTS)[10] is a discriminative mining 

algorithm to find discriminative subgraphs given a set of 

positive and negative graph. The  LTS proposes a greedy 

approach called fastprobe algorithm[10] to reach the local 

optimal solution and then uses a branch and bound approach 

to prune the search space using estimated upper bound of the 

discriminative scores. The fastprobe algorithm, though it 

uses a multi lineage pattern exploration, it does an 
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aggressive pruning with the optimal score found so far. 

Hence, one might lose the pattern, whose future lineage may 

be the optimal solution. To avoid this risk, LTS method is 

used to check the upper bound of the pattern and its score 

before pruning that pattern. The fastprobe algorithm 

acquires the search history i.e. score records for the lineage 

of pattern. This score records are represented as prefix tree 

called prediction tree. The prediction tree is further utilized 

to estimate the upper bound. This upper bound of scores is 

used for pruning the search space to reach the optimal 

discriminative subgraph. LTS excels Leap[7] algorithm in 

terms of  runtime and optimal scores. Earlier to identify bug 

signatures Leap algorithm was used. 

5. COMBINED APPROACH TO 

IDENTIFY THE BUG SIGNATURES 
This paper proposes a combined approach of dual active 

feature sample selection[8] and LTS method[10] to identify 

bug signatures from programs.  When identifying bug 

signatures, the input is a labelled set of faulty and correct 

execution graphs of a program. This labelling is done 

manually, leading to lot of time consumption. The dual 

active feature sample selection reduces the time for manual 

labelling by selecting a query graph and finding the 

discriminative subgraph. It uses single lineage pattern 

exploration for searching and frequencies with minimum 

support for pruning. This exploration has a risk of losing the 

optimal solution. Hence, the approach in this paper employs 

LTS method for searching and pruning the search space of 

feature selection. LTS uses multi lineage pattern exploration 

with aggressive pruning to achieve faster and better optimal 

solution. 

The input to the methodology is a set of labelled and 

unlabelled graph of execution traces of a source program. 

The flow from source program and test cases to the set of 

input graph is explained below. 
 

 

 

 

 

 

Figure 4: Processing for the input 

The set of input graph is obtained in the following way. 

First, control flow graph(CFG) of the program source code 

is generated. Then, one test case is applied to get the 

execution traces. This execution trace is then used to 

identify the part of control flow graph(CFG) of program 

which was executed. Such a graph is added to the set of 

input graph. Similar, method is used to acquire input graph 

for the remaining test cases of the program source code. For 

the set of labelled input graph, the graph is labelled as faulty 

if the corresponding output of the program is faulty and the 

graph is labelled as correct if the corresponding output of the 

program is correct. 

The process flow of proposed approach is shown in below 

figure 5. 

 

Figure 5: Process flow 

In this approach, the input is a graph dataset arranged as set 

of labelled graphs followed by set of unlabelled graphs. To 

calculate the discriminative score, the matrix is initialized 

for each unlabelled graphs. The near optimal solution is 

obtained for each of the unlabelled graph using fastprobe 

algorithm[10]. The prediction tree is built with these near 

optimal scores. Each node in prediction tree represents a 

pattern (subgraph) and upper bound is estimated at each 

node in the prediction tree. Before searching of the optimal 

solution starts, a candidate list is initialized with single edge 

subgraph patterns. A pattern is removed from candidate list 

and its score is estimated. This discriminative score of the 

pattern is compared with upper bound of that pattern and 

optimal score found so far. If the discriminative score of this 

pattern is greater than both upper bound and current optimal 

score, the optimal solution is updated with the current 

pattern. Or else, the pattern is pruned. This calculation and 

comparison is done for each pattern in the candidate list. At 

the end, a query graph(Gs
*) is selected by the formula given 

below. 

 
Tigi iDaGss MghG ),(max*

        ….(3) 

For each unlabelled graph, a set of k discriminative 

subgraphs(g) having the higher scores are identified. Their 

scores are stored in T. The query graph is that unlabelled 

graph, which is having maximum score of sum of the scores 

of their discriminative subgraphs. The discriminative 

subgraphs of this query graph are the bug signatures of the 

program. 

6. EXPERIMENTS 
This paper is implemented in java on 1.7Ghz i5 core 

processor, 3.86 memory with Windows 7 64bit operating 

system. Eclipse kepler environment is used for 
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experimentation. The inputs are three programs in java, i.e. a 

program to find prime numbers, to display the month of a 

year and insertion sort. The bugs are manually inserted by 

changing the logic of some statements in the program. 

Different test cases are applied  to each program to generate 

their respective control flow graphs. Labelled graph are 

manually labelled on the basis of output received. For 

experimentation only 40% of the graphs in the input set is 

manually labelled. Thus reducing the manual labelling to 

60% from the standard method[6]. The discovered 

discriminative subgraphs identifies those statements in the 

program, where the bug was inserted. 

A. Performance metrics 
The runtime, precision[11] and recall[11] are the three 

performance metrics considered for the evaluation of the 

proposed hybrid approach. The runtime is calculated as the 

time required to run the program with the addition of 

labelling error. Labelling error is estimated as the time 

required to manual label the test cases of the input program. 

This error is calculated by taking the average time required 

by five people to identify the output for each test cases of 

the input program. 

Precision refers to the proportion of the returned result that 

highlight the bug[6]. Therefore, precision is considered to be 

the number of discriminative subgraphs found by the 

approach. Recall refers to the proportion of bugs that can be 

discovered by the returned bug signatures[6]. Recall is 

estimated as the percentage of presence of discovered 

discriminative subgraph in positive set as well as negative 

set of input graphs. 

Recall = [(No. of graphs in positive set who are the superset 

of the discriminative subgraph)- (No. of graphs in negative 

set who are the superset of the discriminative subgraph)]% 

 

B. Dataset description 
The dataset consists of three programs, each having ten test 

cases to be executed. The first java program is to find the 

whether the given input number is prime. A bug is manually 

inserted by changing the logic of program (the remainder 

instead of equating to zero is made equal to one). The 

second program is to display the month given a number. As 

it a switch case program some cases are manipulated to lead 

to bugs. The third program is for insertion sort. The bugs are 

inserted by changing the loop conditions and variable 

assignments. 

All the three are java programs and executed in eclipse 

kepler environment. The program are first converted to 

control flow graph using CFG generator tool(eclipse 

plugin)[12]. Then the test cases are executed to acquire the 

coverage of the program using the Code Cover tool in 

eclipse[13]. The CFG generator tool is used again to 

generate graph from the code cover session. This graph is 

given as an input to the mentioned hybrid approach. 

The similarity in the input set is described as follows. The 

program 3 (insertion sort) has similar graphs in positive 

input set as well as similar graph in negative input set. The 

program2 (month identification) has no similar graphs in 

positive input set as well as in negative input set. In the 

program1(prime numbers) the positive set has 60% similar 

graphs and negative set has 60% similar graphs. 

 

C. Experiment results and Discussion 
The input to the hybrid approach is 40% of labelled graphs 

and 60% of unlabelled graphs. The subgraphs are identified 

starting with single edge subgraph and their scores are 

calculated as in dual active feature sample selection. Then 

fastprobe followed by LTS algorithm is used to identify the 

4 most discriminative subgraphs for each of the unlabelled 

graph based on the score calculated. The higher the score , 

the more discriminative is the subgraph. The sum of these 

higher scored subgraph for each unlabelled graphs is 

estimated. The unlabelled graph with highest sum is 

considered to be the query graph. The number of graphs 

identified by this query graph is the precision. The recall is 

estimated for each of the discriminative subgraph of this 

query graph and the average is taken into consideration. 

 

The importance of the proposed hybrid approach is shown 

by comparing the results with LTS method[9] and with dual 

active feature sample selection[7] individually when used to 

identify the bug signatures. In other words, the hybrid 

approach is compared with methods where 

 all the input graphs are labelled and uses multi 

lineage exploration 

 The input graphs are partially labelled and uses 

single lineage pattern exploration. 

The alpha(α) and beta(β) parameters (for matrix(M) 

calculation) are set as 0.001 and 0.001 respectively for the 

experimentation. 

The table below shows the result of runtime in milliseconds 

for the three input programs, along the three approaches 

LTS, hybrid approach and dual active feature sample 

selection. 

 

Table 1.  Results of runtime 

Runtime (in 

milliseconds) 

Program1

: Prime 

no. 

Program2: 

Month id 

Program 3: 

Insertion sort 

LTS 168047 132047 216078 

Hybrid 

Approach 67047 53062 86062.66667 

Dual Active 

feature 

sample 

selection 67031 53031 86031 

 

The runtime of the hybrid approach is 60.10% faster when 

compared with LTS method[9]. In LTS, all the input graph 

need to be labelled manually as correct or faulty execution 

to identify the bug signatures. But, in the proposed 

methodology and dual active feature sample selection only 

40% of the input graphs are labelled. When compared with 

dual active feature sample selection[7], which uses single 

lineage pattern exploration, the hybrid approach has 

approximately same runtime. The results of runtime are 

summarized in the graph below. 
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Figure 6: Summary of runtime 

The results for precision is shown below in the table. Here, 

the values indicate the number of returned discriminative 

subgraphs in each program in the scale of 4. 

 

Table 2. Results of precision 

 

Precision 

Program1: 

Prime no. 

Program2: 

Month id 

Program 3: 

Insertion sort 

LTS 3 2 4 

Hybrid 

Approach 3 4 4 

Dual Active 

feature sample 

selection 2 4 4 

 

The precision for the hybrid approach is found to be higher 

or same compared to individual approaches. The 

discriminative score in LTS method is based on frequency in 

the input set. The input graph set having lower frequency 

subgraphs shows lower precision. When all the graphs in the 

input set are similar then the precision is found to be highest. 

The precision is seen to be improved by 33.33% when 

compared with dual active feature sample selection without 

LTS. The summarized graph for precision is shown below 

 

 

Figure 7: Summary for Precision 

The recall for the three approaches along the three input 

program is shown in table below. 

 

 

Table 3. Results of recall 

 

Recall 

Program1: 

Prime no. 

Program2: 

Month id 

Program 3: 

Insertion sort 

LTS 40 0 100 

Hybrid 

Approach 50 50 100 

Dual Active 

feature sample 

selection 50 25 25 

 

The recall is same or better when compared with dual active 

feature sample selection and LTS method individually. The 

discriminative subgraph may not always be frequent 

subgraphs. Therefore, the LTS method has lower recall 

when the input graph set has less frequent graphs. The dual 

active feature sample selection uses single lineage pattern 

exploration, which may lose the optimal solution. Therefore, 

it has lower recall compared to the hybrid approach which 

uses multi lineage pattern exploration. The recall is found to 

be improved by 33.33% when compared with dual active 

feature sample selection without LTS. The recall is 

summarized below. 

 

 

Figure 8: Summary for Recall 

7. FUTURE SCOPE 
As the hybrid approach drastically reduces the manual 

labelling of input graph, still it requires some manual 

labelling. In future, a system can be developed which 

requires no manual labelling to identify bug signatures. A 

new methodology can be innovated for discriminative score 

determination, to improve the recall and precision of the 

approach. 

8. CONCLUSION 
This paper presents a hybrid approach of dual active feature 

sample selection and LTS method for identifying the bug 

signatures. The gActive algorithm is an active learning 

method, which learns from the some labelled input to 

identify the discriminative graphs from the unlabelled input. 

The gActive method reduces a lot of manual labelling, but it 

applies single lineage pattern exploration. This exploration 

has a risk of pruning the optimal solution.  In the hybrid 

method, the single lineage pattern exploration is replaced 

with multi lineage pattern exploration of LTS to avoid the 

risk of losing the optimal solution. Thus the approach not 

only reduces the manual labelling of the input graph, but 

provides a risk free method to obtain the optimal solution. 
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The hybrid approach provides a helping hand for a new 

programmer whose is not much aware of the source program 

and is told to identify bug signatures from that program. 

This new programmer needs to label only some of the input 

graph to identify the bug signatures. The identified 

discriminative subgraphs will help the new programmer to 

identify the location of bugs in the program statements.  The 

above experiments show that our approach has improves the 

runtime drastically by reducing 60% of manual labelling 

and, also provides better precision and recall. This approach 

helps the programmers for a faster and efficient method to 

identify the bug signatures. 
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