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ABSTRACT
A set S ⊆ V (G) is a split geodetic set of G, if S is a geode-
tic set and 〈V − S〉 is disconnected. The split geodetic number
of a graph G, is denoted by gs(G), is the minimum cardinality
of a split geodetic set of G. A set S ⊆ V (G) is a strong split
geodetic set of G, if S is a geodetic set and 〈V − S〉 is totally
disconnected. The strong split geodetic number of a graph G, is
denoted by gss(G), is the minimum cardinality of a strong split
geodetic set of G. In this paper we obtain the geodetic number,
split geodetic number, strong split geodetic number and non split
geodetic number of strong product graphs, composition of graphs
and join of graphs.
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1. INTRODUCTION
In this paper we follow the notations of [4]. As usual n = |V | and
m = |E| denote the number of vertices and edges of a graph G
respectively.
The graphs considered here have at least one component which is
not complete or at least two non trivial components.
The distance d(u, v) between two vertices u and v in a connected
graph G is the length of a shortest u− v path in G. It is well known
that this distance is a metric on the vertex set V (G). For a vertex
v of G, the eccentricity e(v) is the distance between v and a vertex
farthest from v. The minimum eccentricity among the vertices of
G is radius, rad G, and the maximum eccentricity is the diameter,
diam G. A u− v path of length d(u, v) is called a u− v geodesic.
We define I[u, v] to the set (interval) of all vertices lying on some
u− v geodesic of G and for a nonempty subset S of V (G), I[S] =⋃

u,v∈S I[u, v].
A set S of vertices of G is called a geodetic set in G if I[S] = V (G),
and a geodetic set of minimum cardinality is a minimum geodetic
set. The cardinality of a minimum geodetic set in G is called the
geodetic number of G, and we denote it by g(G).

Split geodetic number of a graph was studied by in [5]. A geodetic
set S of a graph G = (V,E) is a split geodetic set if the induced
subgraph 〈V − S〉 is disconnected. The split geodetic number
gs(G) of G is the minimum cardinality of a split geodetic set.
Strong split geodetic number of a graph was studied by in [1]. A
set S

′
of vertices of G = (V,E) is called the strong split geodetic

set if the induced subgraph 〈V − S
′〉 is totally disconnected and

a strong split geodetic set of minimum cardinality is the strong
split geodetic number of G and is denoted by gss(G). Non split
geodetic number of a graph was studied by in [6]. A geodetic set
S of a graph G = (V,E) is a non split geodetic set if the induced
subgraph 〈V − S〉 is connected. The non split geodetic number
gns(G) of G is the minimum cardinality of a non split geodetic
set.
The strong product of graphs G1 and G2, denoted by G1�G2, has
vertex set V (G1) × V (G2), where two distinct vertices (x1, y1)
and (x2, y2) are adjacent with respect to the strong product if

(a) x1 = x2 and y1y2 ∈ E(G2) or
(b) y1 = y2 and x1x2 ∈ E(G1) or
(c) x1x2 ∈ E(G1) and y1y2 ∈ E(G2).
For any undefined term in this paper, see [3] and [4].

2. PRELIMINARY NOTES
We need the following results to prove further results.

THEOREM 2.1. [2] Every geodetic set of a graph contains
its extreme vertices.

THEOREM 2.2. [5] For the wheel Wn = K1 + Cn−1 (n ≥
6),

gs(Wn) =

 n+2
2

if n is even
n+1
2

if n is odd.
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THEOREM 2.3. [1] For the wheel Wn = K1 + Cn−1 (n ≥

6),

gss(Wn) =

 n+2
2

if n is even
n+1
2

if n is odd.

PROPOSITION 2.4. For any graph G, gs(G) ≤ gss(G).

3. MAIN RESULTS

THEOREM 3.1. For any path Pn of order n > 5, g(K2 �

Pn) = 4.

Proof. Let K2 � Pn be formed from two copies of G1 and G2 of
Pn. Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪ W . Let S = {u1, un, w1, wn} be the
geodetic set of K2 � Pn, where d(u1, un) = diam(K2 � Pn) =
d(w1, wn), which covers all the vertices of K2 � Pn. If possible
let P = {u1, un, w1}, |P | < |S| be set of vertices, for any wi ∈
V (K2 � Pn), wi /∈ I[P ] hence P is not a geodetic set. Thus S is
the minimum geodetic set, there fore g(K2 � Pn) = 4.

THEOREM 3.2. For any path Pn of order n > 5, gs(K2 �

Pn) = 6.

Proof. Let K2 � Pn be formed from two copies of G1 and G2 of
Pn. Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪ W . Let S = H1 ∪ H2, where H1 =
{u1, un, w1, wn} ⊆ V (K2 � Pn) which covers all the vertices of
K2�Pn and H2 = (ui, wi) ∈ E(K2�Pn) ⊆ V −H1, ui and wi

are the vertices having maximum degree i.e deg(ui) = deg(wi) =
5. Now S be the set of vertices which covers all the vertices of
K2 �Pn. Such that V −S has more then one component. Then by
the above argument S is the minimal split geodetic set of K2�Pn.
Clearly it follows that |S| = |H1 ∪H2| = 4 + 2 = 6. There fore
gs(K2 � Pn) = 6.

THEOREM 3.3. For any path Pn of order n ≥ 5

gss(K2 � Pn)

 = 4 + n− 2 + bn
3
c n = 5, 6, 7

≥ 4 + n− 2 + dn
3
e n ≥ 8.

Proof. Let K2 � Pn be formed from two copies of G1 and G2 of
Pn. Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪W .
We have the following results.
Case i. Let n = 5, 6, 7.
Consider S = H1 ∪H2 ∪H3, where H1 = {u1, un, w1, wn} ⊆
V (K2 � Pn), which covers all the vertices of K2 � Pn, H2 =
{w2, w3, ..., wn−1} ⊆ V − H1, |H2| = n − 2 and H3 =
{w3, w5, ..., wi} ⊆ V − H1, |H3| = bn3 c. Now S be the set of
vertices which covers all the vertices of K2 �Pn, such that V − S
is totally disconnected. Then by the above argument S is a minimal
strong split geodetic set of K2 � Pn. Clearly |S| = |H1 ∪ H2 ∪
H3| = 4+n−2+bn

3
c. There fore gss(K2�Pn) = 4+n−2+bn

3
c.

Case ii. Let n ≥ 8.
Consider S = H1 ∪H2 ∪H3, where H1 = {u1, un, w1, wn} ⊆
V (K2 � Pn), which covers all the vertices of K2 � Pn, H2 =
{w2, w3, ..., wn−1} ⊆ V − H1, |H2| = n − 2 and H3 =
{w3, w5, ..., wi} ⊆ V − H1, |H3| ≥ dn3 e. Now S be the set of

vertices which covers all the vertices of K2 �Pn, such that V − S
is totally disconnected. Then by the above argument S is a minimal
strong split geodetic set of K2 � Pn. Clearly |S| = |H1 ∪ H2 ∪
H3| ≥ 4+n−2+dn

3
e. There fore gss(K2�Pn) ≥ 4+n−2+dn

3
e.

THEOREM 3.4. For any path Pn of order n > 5, gns(K2 �

Pn) = 4.

Proof. Let K2 � Pn be formed from two copies of G1 and G2 of
Pn. Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪W . Let S = {u1, un, w1, wn} be the non
split geodetic set of K2 � Pn, where d(u1, un) = diam(K2 �
Pn) = d(w1, wn), which covers all the vertices of K2 � Pn such
that V − S is connected. If possible let P = {u1, un, w1}, |P | <
|S| be set of vertices, for any wi ∈ V (K2 �Pn), wi /∈ I[P ] hence
P is not a geodetic set. Thus S is the minimum non split geodetic
set, there fore gns(K2 � Pn) = 4.

THEOREM 3.5. For any cycle Cn of order n > 3,

g(K2 � Cn) =

 4 if n is even

6 if n is odd.

Proof. Let K2 � Cn be formed from two copies of G1 and G2 of
Cn. Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪W .
We have the following results.
Case i. Let n be even.
Consider S = {ui, uj , wi, wj} be the set of vertices such
that d(ui, uj) = diam(K2 � Cn) = d(wi, wj) and
{(ui, wi), (uj , wj)} ∈ E(K2 � Cn), which covers all the ver-
tices of K2 � Cn. Let P = {ui, uj , wi}, |P | < |S|, for any
wk ∈ V (K2 � Cn), wk /∈ I[P ]. Hence P is not a geodetic
set. Thus S is the minimum geodetic set of K2 � Cn. There fore
g(K2 � Cn) = 4.
Case ii. Let n be odd.
Consider S = {ui, uj , uk, wi, wj} be the set of vertices
such that d(ui, uj) = d(uj , uk) = diam(K2 � Cn) =
d(wi, wj) = d(wj , wk) and {(ui, wi), (uj , wj), (uk, wk)} ∈
E(K2 � Cn), which covers all the vertices of K2 � Cn. Let
P = {ui, uj , uk, wi, wj}, |P | < |S|, for any wl ∈ V (K2 � Cn),
wl /∈ I[P ]. Hence P is not a geodetic set. Thus S is the minimum
geodetic set of K2 � Cn. There fore g(K2 � Cn) = 6.

THEOREM 3.6. For any cycle Cn of order n > 3,

gs(K2 � Cn) =

 4 if n is even

6 if n is odd.

Proof. Let K2 � Cn be formed from two copies of G1 and G2 of
Cn. Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪W .
We have the following results.
Case i. Let n be even.
Consider S = {ui, uj , wi, wj} be the split geodetic set,
where d(ui, uj) = diam(K2 � Cn) = d(wi, wj) and
{(ui, wi), (uj , wj)} ∈ E(K2 �Cn), which covers all the vertices
of K2�Cn, such that V −S is disconnected. Let P = {ui, uj , wi},
|P | < |S|, for any wk ∈ V (K2 �Cn), wk /∈ I[P ]. Hence P is not
a geodetic set. Thus S is the minimal split geodetic set of K2�Cn.
There fore gs(K2 � Cn) = 4.
Case ii. Let n be odd.
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Consider S = {ui, uj , uk, wi, wj} be the split geodetic set, where
d(ui, uj) = d(uj , uk) = diam(K2 � Cn) = d(wi, wj) =
d(wj , wk) and {(ui, wi), (uj , wj), (uk, wk)} ∈ E(K2 � Cn),
which covers all the vertices of K2 � Cn, such that V − S is
disconnected. Let P = {ui, uj , uk, wi, wj}, |P | < |S|, for any
wl ∈ V (K2 � Cn), wl /∈ I[P ]. Hence P is not a geodetic set.
Thus S is the minimal split geodetic set of K2 � Cn. There fore
gs(K2 � Cn) = 6.

THEOREM 3.7. For any cycle Cn of order n > 3, gss(K2�

Cn) = 2n− 4.

Proof. Let K2 � Cn be formed from two copies of G1 and G2 of
Cn. Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪W .
We have the following results.
Case i. Let n be even.
Let H1 = {ui, uj , wi, wj} be the minimum set of vertices which
covers all the vertices of K2 �Cn by case i of Theorem 3.5 . Now
S = H1 ∪ H2, where H2 ∈ V − H1, V − H1 has two identical
components and |H2| = 2(n − 4). Thus I(S) = V (K2 � Cn),
clearly V − S has independent set. Then by the above argument S
is a minimal strong split geodetic set of K2 � Cn. Hence |S| =
|H1 ∪H2| = 4+2(n− 4) = 2n− 4. There fore gss(K2 �Cn) =
2n− 4.
Case ii. Let n be odd.
Let H1 = {ui, uj , uk, wi, wj , wk} be the minimum set of vertices
which covers all the vertices of K2 � Cn by case ii of Theorem
3.5 . Now S = H1 ∪ H2, where H2 ∈ V − H1, V − H1 has
two identical components and |H2| = 2(n − 5). Thus I(S) =
V (K2 � Cn), clearly V − S has independent set. Then by the
above argument S is a minimal strong split geodetic set of K2�Cn.
Hence |S| = |H1 ∪ H2| = 6 + 2(n − 5) = 2n − 4. There fore
gss(K2 � Cn) = 2n− 4.

THEOREM 3.8. G
′
be the graph obtained by adding an end-

edge (x, y) to a cycle Cn = G of order n > 3, with x ∈ G and

y /∈ G. Then

g(K2 �G
′
) =

 4 for even cycle

6 for odd cycle.

Proof. Let K2 � G
′

be formed from two copies of G
′
1 and G

′
2 of

G
′
. Let U = {u1, u2, ..., un} ∈ V (G

′
1), W = {w1, w2, ..., wn}

∈ V (G
′
2) and V = U ∪W .

We have the following results.
Case i. For even cycle.
Let S = {ui, uj , wi, wj} be the set of vertices such that ui and
wi are the vertices formed from end-vertex of G

′
, (ui, wi) ∈

E(K2 � G
′
) and uj , wj are the vertices formed from the antipo-

dal vertex of G corresponding to the vertex adjacent to end vertex,
(uj , wj) ∈ E(K2 �G

′
). Clearly I(S) = V (K2 �G

′
). Thus S is

the minimal geodetic set. There fore g(K2 �G
′
) = 4.

Case ii. For odd cycle.
Let S = {ui, uj , uk, wi, wj , wk} be the set of vertices such that ui

and wi are the vertices formed from end-vertex of G
′
, (ui, wi) ∈

E(K2 � G
′
) and d(ui, uj) = 2, d(uj , uk) = bn

2
c similarly

d(wi, wj) = 2, d(wj , wk) = bn
2
c and {(uj , wj), (uk, wk)} ∈

E(K2 �G
′
). Clearly I(S) = V (K2 �G

′
). Thus S is the minimal

geodetic set. There fore g(K2 �G
′
) = 6.

THEOREM 3.9. G
′
be the graph obtained by adding an end-

edge (x, y) to a cycle Cn = G of order n > 3, with x ∈ G and

y /∈ G. Then

gs(K2 �G
′
) =

 7 for even cycle

6 for odd cycle.

Proof. Let K2 � G
′

be formed from two copies of G
′
1 and G

′
2 of

G
′
. Let U = {u1, u2, ..., un} ∈ V (G

′
1), W = {w1, w2, ..., wn}

∈ V (G
′
2) and V = U ∪W .

We have the following results.
Case i. For even cycle.
Let H1 = {ui, uj , wi, wj} be the minimum set of vertices which
covers all the vertices of K2 � G

′
by case i of Theorem 3.8. Con-

sider S = H1 ∪ H2, where H2 = {uk, wk, wl} ⊆ V − H1

such that V − S has more then one component. Then by the
above argument S is minimal split geodetic set of K2 �G

′
. Hence

|S| = |H1 ∪H2| = 4 + 3 = 7. There fore gs(K2 �G
′
) = 7.

Case ii. For odd cycle.
Let S = {ui, uj , uk, wi, wj , wk} be the minimal geodetic set
by case ii of Theorem 3.8. Since V − S has two components S
it self is the minimal split geodetic set of K2 � G

′
.There fore

gs(K2 �G
′
) = 6.

THEOREM 3.10. G
′

be the graph obtained by adding an

end-edge (x, y) to a cycle Cn = G of order n > 3, with x ∈ G

and y /∈ G. Then

gss(K2 �G
′
) =



3n+4
2

for even cycle

6 + n− 2 + bn
3
c for n=5

6 + n for n=7

6 + n− 2 + dn
3
e for odd cycle.

Proof. Let K2 � G
′

be formed from two copies of G
′
1 and G

′
2 of

G
′
. Let U = {u1, u2, ..., un} ∈ V (G

′
1), W = {w1, w2, ..., wn}

∈ V (G
′
2) and V = U ∪W .

We have the following results.
Case i. For even cycle.
Consider S = H1 ∪ H2 be the minimal strong split geode-
tic set of K2 � G

′
, where H1 = {ui, uj , wi, wj , uk, wk, wl},

I(H1) = V (K2�G
′
) by case i of Theorem 3.9 and H2 ⊆ V −H1,

|H2| = 3n−10
2

, such that V − S is totally disconnected. Hence
|S| = |H1∪H2| = 7+ 3n−10

2
= 3n+4

2
. There fore gss(K2�G

′
) =

3n+4
2

.
Case ii. For n = 5.
Consider S = H1 ∪H2 be the minimal strong split geodetic set of
K2 � G

′
, where H1 = {ui, uj , uk, wi, wj , wk} be the set of ver-

tices which covers all the vertices of K2�G
′
by case ii of Theorem

3.8 and H2 ⊆ V −H1, |H2| = n − 2 + bn
3
c, such that V − S is

totally disconnected. Hence |S| = |H1 ∪H2| = 6+ n− 2 + bn
3
c.

There fore gss(K2 �G
′
) = 6 + n− 2 + bn

3
c.

Case iii. For n = 7.
Consider S = H1 ∪ H2 be the minimal strong split geodetic set
of K2 � G

′
, where H1 = {ui, uj , uk, wi, wj , wk} be the set of

vertices which covers all the vertices of K2 �G
′

by case ii of The-
orem 3.8 and H2 ⊆ V − H1, |H2| = n, such that V − S is to-
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tally disconnected. Hence |S| = |H1 ∪ H2| = 6 + n. There fore
gss(K2 �G

′
) = 6 + n.

Case iv. For odd cycle (n > 7).
Consider S = H1 ∪H2 be the minimal strong split geodetic set of
K2 � G

′
, where H1 = {ui, uj , uk, wi, wj , wk} be the set of ver-

tices which covers all the vertices of K2�G
′
by case ii of Theorem

3.8 and H2 ⊆ V −H1, |H2| = n − 2 + dn
3
e, such that V − S is

totally disconnected. Hence |S| = |H1 ∪H2| = 6+ n− 2 + dn
3
e.

There fore gss(K2 �G
′
) = 6 + n− 2 + dn

3
e.

THEOREM 3.11. For the wheel Wn = K1+Cn−1 (n ≥ 6),

g(K2 �Wn) =

 n if n is even

n− 1 if n is odd.

Proof. Let K2 �Wn be formed from two copies of G1 and G2 of
Wn. Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪W .
We have the following results.
Case i. Let n be even.
Consider the geodesic P : {u1, u2, u6, w2, w6, u3},
Q : {u3, u4, u6, w4, w6, u5},..., R :
{un−3, un−2, un, wn−2, wn, un−1} and the geodesics,
H = {w1 − w3, w3 − w5, ..., wn−3 − wn−1} It is clear
that the vertices u2, u4, u6, ..., un−2,w2, w4, w6, ..., wn−2
lies on the geodesics P ,Q,R and H . Thus the set
S = {u1, u3, ..., un−1,w1, w3, ..., wn−1} is the minimum
geodetic set K2 �Wn. There fore g(K2 �Wn) = |S| = n.
Case ii. Let n be odd.
Consider the geodesic P : {u1, u2, u7, w2, w7, u3},
Q : {u3, u4, u7, w4, w7, u5},..., R :
{un−4, un−3, un, wn−3, wn, un−2} and the geodesics,
H = {w1 − w3, w3 − w5, ..., wn−4 − wn−2} It is clear
that the vertices u2, u4, u6, ..., un−1,w2, w4, w6, ..., wn−1
lies on the geodesics P ,Q,R and H . Thus the set
S = {u1, u3, ..., un−2,w1, w3, ..., wn−2} is the minimum
geodetic set K2 �Wn. There fore g(K2 �Wn) = |S| = n− 1.

THEOREM 3.12. For the wheel Wn = K1+Cn−1 (n ≥ 6),

gs(K2 �Wn) =

 n+ 2 if n is even

n+ 1 if n is odd.

Proof. Let K2 �Wn be formed from two copies of G1 and G2 of
Wn. Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪W .
We have the following results.
Case i. Let n be even.
Consider S = H1 ∪ H2 where H1 =
{u1, u3, ..., un−1,w1, w3, ..., wn−1} be the minimum geodetic set
by case i of Theorem 3.11 and H2 = {vi, wi} ⊆ V (K2 � Wn),
formed from the vertex K1 of Wn. Now S is the minimal split
geodetic set of K2 � Wn, since V − S has n−2

2
times K2

components. Hence |S| = |H1 ∪ H2| = n + 2. There fore
gs(K2 �Wn) = n+ 2.
Case ii. Let n be odd.
Consider S = H1 ∪ H2 where H1 =
{u1, u3, ..., un−2,w1, w3, ..., wn−2} be the minimum geodetic set
by case ii of Theorem 3.11 and H2 = {vi, wi} ⊆ V (K2 � Wn),
formed from the vertex K1 of Wn. Now S is the minimal split
geodetic set of K2 � Wn, since V − S has n−1

2
times K2

components. Hence |S| = |H1 ∪H2| = n− 1+ 2 = n+1. There
fore gs(K2 �Wn) = n+ 1.

THEOREM 3.13. For the wheel Wn = K1+Cn−1 (n ≥ 6),

gss(K2 �Wn) =

 3n+2
2

if n is even
3n+1

2
if n is odd.

Proof. Let K2 �Wn be formed from two copies of G1 and G2 of
Wn. Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪W .
We have the following results.
Case i. Let n be even.
Consider H = H1 ∪ H2 where H1 =
{u1, u3, ..., un−1,w1, w3, ..., wn−1} be the minimum geodetic set
by case i of Theorem 3.11 and H2 = {vi, wi} ⊆ V (K2 � Wn),
formed from the vertex K1 of Wn, such that V − H has
n−2
2

times K2 components. Let S = H ∪ H3, where
H3 ⊆ V − H consists of one vertex from each K2 compo-
nents, |H3| = n−2

2
. Now S is the minimal strong split geodetic

set of K2 � Wn since V − S has isolated vertices. Hence
|S| = |H ∪ H3| = |H1 ∪ H2 ∪ H3| = n + 2 + n−2

2
= 3n+2

2
.

There fore gss(K2 �Wn) =
3n+2

2
.

Case ii. Let n be odd.
Consider H = H1 ∪ H2 where H1 =
{u1, u3, ..., un−2,w1, w3, ..., wn−2} be the minimum geodetic set
by case ii of Theorem 3.11 and H2 = {vi, wi} ⊆ V (K2 � Wn),
formed from the vertex K1 of Wn, such that V −H has n−1

2
times

K2 components. Let S = H ∪H3, where H3 ⊆ V −H consists
of one vertex from each K2 components, |H3| = n−1

2
. Now S is

the minimal strong split geodetic set of K2 � Wn since V − S
has isolated vertices. Hence |S| = |H ∪ H3| = |H1 ∪ H2 ∪ H3|
= n− 1 + 2 + n−1

2
= 3n+1

2
. There fore gss(K2 �Wn) =

3n+1
2

.

THEOREM 3.14. For the wheel Wn = K1+Cn−1 (n ≥ 6),

gns(K2 �Wn) =

 n if n is even

n− 1 if n is odd.

Proof. Let K2 �Wn be formed from two copies of G1 and G2 of
Wn. Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪W .
We have the following results.
Case i. Let n be even.
Consider the geodesic P : {u1, u2, u6, w2, w6, u3},
Q : {u3, u4, u6, w4, w6, u5} , ..., R :
{un−3, un−2, un, wn−2, wn, un−1} and the geodesics,
H = {w1 − w3, w3 − w5, ..., wn−3 − wn−1} It is clear
that the vertices u2, u4, u6, ..., un−2,w2, w4, w6, ..., wn−2
lies on the geodesics P ,Q,R and H . Thus the set
S = {u1, u3, ..., un−1,w1, w3, ..., wn−1} is the minimum
non split geodetic set K2 �Wn, since V − S is connected. There
fore gns(K2 �Wn) = |S| = n.
Case ii. Let n be odd.
Consider the geodesic P : {u1, u2, u7, w2, w7, u3},
Q : {u3, u4, u7, w4, w7, u5} , ..., R :
{un−4, un−3, un, wn−3, wn, un−2} and the geodesics,
H = {w1 − w3, w3 − w5, ..., wn−4 − wn−2} It is clear
that the vertices u2, u4, u6, ..., un−1,w2, w4, w6, ..., wn−1
lies on the geodesics P ,Q,R and H . Thus the set
S = {u1, u3, ..., un−2,w1, w3, ..., wn−2} is the minimum
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non split geodetic set K2 �Wn, since V − S is connected. There
fore gns(K2 �Wn) = |S| = n− 1.

THEOREM 3.15. For any tree T with each internal vertex

connected to single end-edge, having k end-edges. Then g(K2 �

T ) = 2k.

Proof. Let K2 � T be formed from two copies of G1 and G2 of
T . Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn} ∈
V (G2) and V = U ∪W . Let S = {u1, u2, ..., uk, w1, w2, ..., wk}
be the set of vertices of K2�T formed from the set of end-edges of
T , such that I(S) = V (K2 � T ). Thus S is the minimal geodetic
set of K2 � T . There fore g(K2 � T ) = |S| = 2k.

THEOREM 3.16. For any tree T with each internal vertex

connected to single end-edge, having k end-edges. Then gs(K2 �

T ) = 2k + 2.

Proof. Let K2 � T be formed from two copies of G1 and G2 of
T . Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪ W . Consider S = H1 ∪ H2, where
H1 = {u1, u2, ..., uk, w1, w2, ..., wk} ⊆ V (K2�T ) formed from
the set of end-edges of T and H2 = {ui, wi} ⊆ V − H1 having
maximum degree, I(S) = V (K2�T ) and V −S is disconnected.
Thus by the above argument S is the minimal split geodetic set of
K2 � T . There fore gs(K2 � T ) = |S| = |H1 ∪H2| = 2k + 2.

THEOREM 3.17. For any tree T with each internal vertex

connected to single end-edge, having k end-edges. Then

gss(K2 � T ) =

 7k
2

if k is even
7k−1

2
if k is odd.

Proof. Let K2 � T be formed from two copies of G1 and G2 of
T . Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪W .
We have the following results.
Case i. Let k be even.
Consider S = H1 ∪ H2, be the strong split geodetic set of K2 �
T , where H1 = {u1, u2, ..., uk, w1, w2, ..., wk} ⊆ V (K2 � T )
formed from the set of end-edges of T , I(H1) = V (K2 � T )
and H2 = {ui, wi, uj , wj , ....} ⊆ V − H1, |H2| = 3k

2
. Thus

by the above argument S is the minimal strong split geodetic set of
K2�T . There fore gss(K2�T ) = |S| = |H1∪H2| = 2k+ 3k

2
=

7k
2

.
Case ii. Let k be odd.
Consider S = H1 ∪ H2, be the strong split geodetic set of K2 �
T , where H1 = {u1, u2, ..., uk, w1, w2, ..., wk} ⊆ V (K2 � T )
formed from the set of end-edges of T , I(H1) = V (K2 � T )
and H2 = {ui, wi, uj , wj , ....} ⊆ V − H1, |H2| = 3k−1

2
. Thus

by the above argument S is the minimal strong split geodetic set
of K2 � T . There fore gss(K2 � T ) = |S| = |H1 ∪ H2| =
2k + 3k−1

2
= 7k−1

2
.

4. COMPOSITION OF GRAPHS
The composition G = G1[G2] has V = V1 × V2 as its point set,
and u = (u1, u2) is adjacent with v = (v1, v2) whenever [u1 adj
v1] or [u1 = v1 and u2 adj v2].

THEOREM 4.1. For any cycle Cn of order n > 3,

g(K2[Cn]) =


2 for n =4

3 for n =5, 6

4 for n ¿ 6.

Proof. Let K2[Cn] be formed from two copies of G1 and G2 of
Cn. Let U = {u1, u2, ..., un} ∈ V (G1), W = {w1, w2, ..., wn}
∈ V (G2) and V = U ∪W .
We have the following results.
Case i. Let n = 4.
Consider S = {v1, v3} be the set which covers all the vertices
of K2[Cn], where {v1, v3} /∈ E(G1). Which forms a minimum
geodetic set of K2[Cn], therefore g(K2[Cn]) = 2.
Case ii. Let n = 5, 6.
Consider S = {v1, v3, v5} be the set which covers all the vertices
of K2[Cn], where {(v1, v3), (v3, v5)} /∈ E(G1) and d(v1, v3) =
d(v3, v5) = diam(K2[Cn]). If possible let P = {v1, v3} ∈
V (K2[Cn]), |P | < |S| be a set, for any vi /∈ I[P ]. Thus S ia
minimal geodetic set K2[Cn]. Therefore g(K2[Cn]) = 3.
Case iii. Let n > 6.
Consider S = {vi, vj , wi, wj} be the minimal geodetic set
of K2[Cn], where {(vi, vj), (wi, wj)} /∈ E(K2[Cn]) and
d(vi, vj) = d(wi, wj) = diam(K2[Cn]), which covers all the
vertices of K2[Cn]. Thus g(K2[Cn]) = 4.

THEOREM 4.2. For any cycle Cn of order n > 3,

gs(K2[Cn]) =

 2n+4
2

for n =4,5,6

n+ 2 for n¿6.

THEOREM 4.3. For any cycle Cn of order n > 3,

gss(K2[Cn]) =

 3n
2

if n is even
3n+1

2
if n is odd.

THEOREM 4.4. G
′
be the graph obtained by adding an end-

edge (x, y) to a cycle Cn = G of order n > 3, with x ∈ G and

y /∈ G. Then g(K2[G
′
]) = 4.

THEOREM 4.5. G
′
be the graph obtained by adding an end-

edge (x, y) to a cycle Cn = G of order n > 3, with x ∈ G and

y /∈ G. Then gs(K2[G
′
]) = n+ 3

THEOREM 4.6. G
′
be the graph obtained by adding an end-

edge (x, y) to a cycle Cn = G of order n > 3, with x ∈ G and

y /∈ G. Then

gss(K2[G
′
]) =

 3n+2
2

for even cycle
3n+3

2
for odd cycle.

5. JOIN OF GRAPHS
The join of two graphs G1 and G2, written as G1 +G2, is defined
as the union of G1 and G2 together with all edges (u, v) for which
u ∈ V (G1) and v ∈ V (G2). Two vertices of a graph G are said to
be joined in G if the edge (u, v) is contained in the edge set of G.
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THEOREM 5.1. For any cycle Cn of order n > 3,

g(K2 + Cn) =

 n
2

if n is even
n+1
2

if n is odd.

THEOREM 5.2. For any cycle Cn of order n > 3,

gs(K2 + Cn) = gss(K2 + Cn) =

 n+4
2

if n is even
n+5
2

if n is odd.

THEOREM 5.3. G
′
be the graph obtained by adding an end-

edge (x, y) to a cycle Cn = G of order n > 3, with x ∈ G and

y /∈ G. Then

g(K2 +G
′
) =

 n+2
2

for even cycle
n+3
2

for odd cycle.

THEOREM 5.4. G
′
be the graph obtained by adding an end-

edge (x, y) to a cycle Cn = G of order n > 3, with x ∈ G and

y /∈ G. Then

gs(K2 +G
′
) = gss(K2 +G

′
) =

 n+6
2

for even cycle
n+7
2

for odd cycle.

6. CONCLUSION
In this paper we have establish many results on split geodetic
number, nonsplit geodetic number, strong split geodetic number
of strong product of graph and some observation on split geode-
tic number, nonsplit geodetic number, strong split geodetic number
of composition graphs and join of graphs.
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