The Geodetic Parameters of Strong Product Graphs

Ashalatha K.S
Research Scholar,Sri Gauthama Research Center, (Affiliated to Kuvempu university),Government First Grade College, Gubbi, Tumkur,Karnataka,India

Venkanagouda M Goudar
Sri Gauthama Research Center, Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur,
Karnataka, India

Venkatesha
Department of Mathematics, Kuvempu University Shankarghatta, Shimoga, Karnataka, India.

Abstract

A set $S \subseteq V(G)$ is a split geodetic set of G, if S is a geodetic set and $\langle V-S\rangle$ is disconnected. The split geodetic number of a graph G, is denoted by $g_{s}(G)$, is the minimum cardinality of a split geodetic set of G. A set $S \subseteq V(G)$ is a strong split geodetic set of G, if S is a geodetic set and $\langle V-S\rangle$ is totally disconnected. The strong split geodetic number of a graph G, is denoted by $g_{s s}(G)$, is the minimum cardinality of a strong split geodetic set of G. In this paper we obtain the geodetic number, split geodetic number, strong split geodetic number and non split geodetic number of strong product graphs, composition of graphs and join of graphs.

Keywords:

Cartesian product, Distance, Edge covering number, Split geodetic number, Vertex covering number

1. INTRODUCTION

In this paper we follow the notations of [4]. As usual $n=|V|$ and $m=|E|$ denote the number of vertices and edges of a graph G respectively.
The graphs considered here have at least one component which is not complete or at least two non trivial components.
The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G . It is well known that this distance is a metric on the vertex set $V(G)$. For a vertex v of G , the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is radius, rad G , and the maximum eccentricity is the diameter, diam G. A $u-v$ path of length $\mathrm{d}(u, v)$ is called a $u-v$ geodesic. We define $I[u, v]$ to the set (interval) of all vertices lying on some $u-v$ geodesic of G and for a nonempty subset S of $V(G), I[S]=$ $\bigcup_{u, v \in S} I[u, v]$.
A set S of vertices of G is called a geodetic set in G if $I[S]=V(G)$, and a geodetic set of minimum cardinality is a minimum geodetic set. The cardinality of a minimum geodetic set in G is called the geodetic number of G, and we denote it by $g(G)$.

Split geodetic number of a graph was studied by in [5]. A geodetic set S of a graph $G=(V, E)$ is a split geodetic set if the induced subgraph $\langle V-S\rangle$ is disconnected. The split geodetic number $g_{s}(G)$ of G is the minimum cardinality of a split geodetic set. Strong split geodetic number of a graph was studied by in [1]. A set S^{\prime} of vertices of $G=(V, E)$ is called the strong split geodetic set if the induced subgraph $\left\langle V-S^{\prime}\right\rangle$ is totally disconnected and a strong split geodetic set of minimum cardinality is the strong split geodetic number of G and is denoted by $g_{s s}(G)$. Non split geodetic number of a graph was studied by in [6]. A geodetic set S of a graph $G=(V, E)$ is a non split geodetic set if the induced subgraph $\langle V-S\rangle$ is connected. The non split geodetic number $g_{n s}(G)$ of G is the minimum cardinality of a non split geodetic set.
The strong product of graphs G_{1} and G_{2}, denoted by $G_{1} \boxtimes G_{2}$, has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$, where two distinct vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent with respect to the strong product if
(a) $x_{1}=x_{2}$ and $y_{1} y_{2} \in E\left(G_{2}\right)$ or
(b) $y_{1}=y_{2}$ and $x_{1} x_{2} \in E\left(G_{1}\right)$ or
(c) $x_{1} x_{2} \in E\left(G_{1}\right)$ and $y_{1} y_{2} \in E\left(G_{2}\right)$.

For any undefined term in this paper, see [3] and [4].

2. PRELIMINARY NOTES

We need the following results to prove further results.

Theorem 2.1. [2] Every geodetic set of a graph contains its extreme vertices.

Theorem 2.2. [5] For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq$ $6)$,

$$
g_{s}\left(W_{n}\right)= \begin{cases}\frac{n+2}{2} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { if } n \text { is odd } .\end{cases}
$$

Volume 101-No. 12, September 2014
Theorem 2.3. [1] For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq$ $6)$,

$$
g_{s s}\left(W_{n}\right)= \begin{cases}\frac{n+2}{2} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { if } n \text { is odd } .\end{cases}
$$

Proposition 2.4. For any graph $G, g_{s}(G) \leq g_{s s}(G)$.

3. MAIN RESULTS

Theorem 3.1. For any path P_{n} of order $n>5, g\left(K_{2} \boxtimes\right.$ $\left.P_{n}\right)=4$.

Proof. Let $K_{2} \boxtimes P_{n}$ be formed from two copies of G_{1} and G_{2} of P_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}\right)$ and $V=U \cup W$. Let $S=\left\{u_{1}, u_{n}, w_{1}, w_{n}\right\}$ be the geodetic set of $K_{2} \boxtimes P_{n}$, where $d\left(u_{1}, u_{n}\right)=\operatorname{diam}\left(K_{2} \boxtimes P_{n}\right)=$ $d\left(w_{1}, w_{n}\right)$, which covers all the vertices of $K_{2} \boxtimes P_{n}$. If possible let $P=\left\{u_{1}, u_{n}, w_{1}\right\},|P|<|S|$ be set of vertices, for any $w_{i} \in$ $V\left(K_{2} \boxtimes P_{n}\right), w_{i} \notin I[P]$ hence P is not a geodetic set. Thus S is the minimum geodetic set, there fore $g\left(K_{2} \boxtimes P_{n}\right)=4$.

Theorem 3.2. For any path P_{n} of order $n>5, g_{s}\left(K_{2} \boxtimes\right.$ $\left.P_{n}\right)=6$.
Proof. Let $K_{2} \boxtimes P_{n}$ be formed from two copies of G_{1} and G_{2} of P_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}\right)$ and $V=U \cup W$. Let $S=H_{1} \cup H_{2}$, where $H_{1}=$ $\left\{u_{1}, u_{n}, w_{1}, w_{n}\right\} \subseteq V\left(K_{2} \boxtimes P_{n}\right)$ which covers all the vertices of $K_{2} \boxtimes P_{n}$ and $H_{2}=\left(u_{i}, w_{i}\right) \in E\left(K_{2} \boxtimes P_{n}\right) \subseteq V-H_{1}, u_{i}$ and w_{i} are the vertices having maximum degree i.e $\operatorname{deg}\left(u_{i}\right)=\operatorname{deg}\left(w_{i}\right)=$ 5 . Now S be the set of vertices which covers all the vertices of $K_{2} \boxtimes P_{n}$. Such that $V-S$ has more then one component. Then by the above argument S is the minimal split geodetic set of $K_{2} \boxtimes P_{n}$. Clearly it follows that $|S|=\left|H_{1} \cup H_{2}\right|=4+2=6$. There fore $g_{s}\left(K_{2} \boxtimes P_{n}\right)=6$.

Theorem 3.3. For any path P_{n} of order $n \geq 5$

$$
g_{s s}\left(K_{2} \boxtimes P_{n}\right)\left\{\begin{array}{lr}
=4+n-2+\left\lfloor\frac{n}{3}\right\rfloor & n=5,6,7 \\
\geq 4+n-2+\left\lceil\frac{n}{3}\right\rceil & n \geq 8 .
\end{array}\right.
$$

Proof. Let $K_{2} \boxtimes P_{n}$ be formed from two copies of G_{1} and G_{2} of P_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}\right)$ and $V=U \cup W$.
We have the following results.
Case i. Let $n=5,6,7$.
Consider $S=H_{1} \cup H_{2} \cup H_{3}$, where $H_{1}=\left\{u_{1}, u_{n}, w_{1}, w_{n}\right\} \subseteq$ $V\left(K_{2} \boxtimes P_{n}\right)$, which covers all the vertices of $K_{2} \boxtimes P_{n}, H_{2}=$ $\left\{w_{2}, w_{3}, \ldots, w_{n-1}\right\} \subseteq V-H_{1},\left|H_{2}\right|=n-2$ and $H_{3}=$ $\left\{w_{3}, w_{5}, \ldots, w_{i}\right\} \subseteq \bar{V}-H_{1},\left|H_{3}\right|=\left\lfloor\frac{n}{3}\right\rfloor$. Now S be the set of vertices which covers all the vertices of $K_{2} \boxtimes P_{n}$, such that $V-S$ is totally disconnected. Then by the above argument S is a minimal strong split geodetic set of $K_{2} \boxtimes P_{n}$. Clearly $|S|=\mid H_{1} \cup H_{2} \cup$ $H_{3} \left\lvert\,=4+n-2+\left\lfloor\frac{n}{3}\right\rfloor\right.$. There fore $g_{s s}\left(K_{2} \boxtimes P_{n}\right)=4+n-2+\left\lfloor\frac{n}{3}\right\rfloor$. Case ii. Let $n \geq 8$.
Consider $S=H_{1} \cup H_{2} \cup H_{3}$, where $H_{1}=\left\{u_{1}, u_{n}, w_{1}, w_{n}\right\} \subseteq$ $V\left(K_{2} \boxtimes P_{n}\right)$, which covers all the vertices of $K_{2} \boxtimes P_{n}, H_{2}=$ $\left\{w_{2}, w_{3}, \ldots, w_{n-1}\right\} \subseteq V-H_{1},\left|H_{2}\right|=n-2$ and $H_{3}=$ $\left\{w_{3}, w_{5}, \ldots, w_{i}\right\} \subseteq \bar{V}-H_{1},\left|H_{3}\right| \geq\left\lceil\frac{n}{3}\right\rceil$. Now S be the set of
vertices which covers all the vertices of $K_{2} \boxtimes P_{n}$, such that $V-S$ is totally disconnected. Then by the above argument S is a minimal strong split geodetic set of $K_{2} \boxtimes P_{n}$. Clearly $|S|=\mid H_{1} \cup H_{2} \cup$ $H_{3} \left\lvert\, \geq 4+n-2+\left\lceil\frac{n}{3}\right\rceil\right.$. There fore $g_{s s}\left(K_{2} \boxtimes P_{n}\right) \geq 4+n-2+\left\lceil\frac{n}{3}\right\rceil$.

THEOREM 3.4. For any path P_{n} of order $n>5, g_{n s}\left(K_{2} \boxtimes\right.$ $\left.P_{n}\right)=4$.
Proof. Let $K_{2} \boxtimes P_{n}$ be formed from two copies of G_{1} and G_{2} of P_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}\right)$ and $V=U \cup W$. Let $S=\left\{u_{1}, u_{n}, w_{1}, w_{n}\right\}$ be the non split geodetic set of $K_{2} \boxtimes P_{n}$, where $d\left(u_{1}, u_{n}\right)=\operatorname{diam}\left(K_{2} \boxtimes\right.$ $\left.P_{n}\right)=d\left(w_{1}, w_{n}\right)$, which covers all the vertices of $K_{2} \boxtimes P_{n}$ such that $V-S$ is connected. If possible let $P=\left\{u_{1}, u_{n}, w_{1}\right\},|P|<$ $|S|$ be set of vertices, for any $w_{i} \in V\left(K_{2} \boxtimes P_{n}\right), w_{i} \notin I[P]$ hence P is not a geodetic set. Thus S is the minimum non split geodetic set, there fore $g_{n s}\left(K_{2} \boxtimes P_{n}\right)=4$.

THEOREM 3.5. For any cycle C_{n} of order $n>3$,

$$
g\left(K_{2} \boxtimes C_{n}\right)=\left\{\begin{array}{l}
4 \text { if } n \text { is even } \\
6 \text { if } n \text { is odd } .
\end{array}\right.
$$

Proof. Let $K_{2} \boxtimes C_{n}$ be formed from two copies of G_{1} and G_{2} of C_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}\right)$ and $V=U \cup W$.
We have the following results.
Case i. Let n be even.
Consider $S=\left\{u_{i}, u_{j}, w_{i}, w_{j}\right\}$ be the set of vertices such that $d\left(u_{i}, u_{j}\right)=\operatorname{diam}\left(K_{2} \boxtimes C_{n}\right)=d\left(w_{i}, w_{j}\right)$ and $\left\{\left(u_{i}, w_{i}\right),\left(u_{j}, w_{j}\right)\right\} \in E\left(K_{2} \boxtimes C_{n}\right)$, which covers all the vertices of $K_{2} \boxtimes C_{n}$. Let $P=\left\{u_{i}, u_{j}, w_{i}\right\},|P|<|S|$, for any $w_{k} \in V\left(K_{2} \boxtimes C_{n}\right), w_{k} \notin I[P]$. Hence P is not a geodetic set. Thus S is the minimum geodetic set of $K_{2} \boxtimes C_{n}$. There fore $g\left(K_{2} \boxtimes C_{n}\right)=4$.
Case ii. Let n be odd.
Consider $S=\left\{u_{i}, u_{j}, u_{k}, w_{i}, w_{j}\right\}$ be the set of vertices such that $d\left(u_{i}, u_{j}\right)=d\left(u_{j}, u_{k}\right)=\operatorname{diam}\left(K_{2} \boxtimes C_{n}\right)=$ $d\left(w_{i}, w_{j}\right)=d\left(w_{j}, w_{k}\right)$ and $\left\{\left(u_{i}, w_{i}\right),\left(u_{j}, w_{j}\right),\left(u_{k}, w_{k}\right)\right\} \in$ $E\left(K_{2} \boxtimes C_{n}\right)$, which covers all the vertices of $K_{2} \boxtimes C_{n}$. Let $P=\left\{u_{i}, u_{j}, u_{k}, w_{i}, w_{j}\right\},|P|<|S|$, for any $w_{l} \in V\left(K_{2} \boxtimes C_{n}\right)$, $w_{l} \notin I[P]$. Hence P is not a geodetic set. Thus S is the minimum geodetic set of $K_{2} \boxtimes C_{n}$. There fore $g\left(K_{2} \boxtimes C_{n}\right)=6$.

Theorem 3.6. For any cycle C_{n} of order $n>3$,

$$
g_{s}\left(K_{2} \boxtimes C_{n}\right)=\left\{\begin{array}{l}
4 \text { if } n \text { is even } \\
6 \text { if } n \text { is odd } .
\end{array}\right.
$$

Proof. Let $K_{2} \boxtimes C_{n}$ be formed from two copies of G_{1} and G_{2} of C_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}\right)$ and $V=U \cup W$.
We have the following results.
Case i. Let n be even.
Consider $S=\left\{u_{i}, u_{j}, w_{i}, w_{j}\right\}$ be the split geodetic set, where $d\left(u_{i}, u_{j}\right)=\operatorname{diam}\left(K_{2} \boxtimes C_{n}\right)=d\left(w_{i}, w_{j}\right)$ and $\left\{\left(u_{i}, w_{i}\right),\left(u_{j}, w_{j}\right)\right\} \in E\left(K_{2} \boxtimes C_{n}\right)$, which covers all the vertices of $K_{2} \boxtimes C_{n}$, such that $V-S$ is disconnected. Let $P=\left\{u_{i}, u_{j}, w_{i}\right\}$, $|P|<|S|$, for any $w_{k} \in V\left(K_{2} \boxtimes C_{n}\right), w_{k} \notin I[P]$. Hence P is not a geodetic set. Thus S is the minimal split geodetic set of $K_{2} \boxtimes C_{n}$. There fore $g_{s}\left(K_{2} \boxtimes C_{n}\right)=4$.
Case ii. Let n be odd.

Volume 101-No. 12, September 2014
THEOREM 3.9. G^{\prime} be the graph obtained by adding an endedge (x, y) to a cycle $C_{n}=G$ of order $n>3$, with $x \in G$ and $y \notin G$. Then

$$
g_{s}\left(K_{2} \boxtimes G^{\prime}\right)=\left\{\begin{array}{l}
7 \text { for even cycle } \\
6 \text { for odd cycle }
\end{array}\right.
$$

Proof. Let $K_{2} \boxtimes G^{\prime}$ be formed from two copies of G_{1}^{\prime} and G_{2}^{\prime} of G^{\prime}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}^{\prime}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}^{\prime}\right)$ and $V=U \cup W$.
We have the following results.
Case i. For even cycle.
Let $H_{1}=\left\{u_{i}, u_{j}, w_{i}, w_{j}\right\}$ be the minimum set of vertices which covers all the vertices of $K_{2} \boxtimes G^{\prime}$ by case i of Theorem 3.8. Consider $S=H_{1} \cup H_{2}$, where $H_{2}=\left\{u_{k}, w_{k}, w_{l}\right\} \subseteq V-H_{1}$ such that $V-S$ has more then one component. Then by the above argument S is minimal split geodetic set of $K_{2} \boxtimes G^{\prime}$. Hence $|S|=\left|H_{1} \cup H_{2}\right|=4+3=7$. There fore $g_{s}\left(K_{2} \boxtimes G^{\prime}\right)=7$.
Case ii. For odd cycle.
Let $S=\left\{u_{i}, u_{j}, u_{k}, w_{i}, w_{j}, w_{k}\right\}$ be the minimal geodetic set by case ii of Theorem 3.8. Since $V-S$ has two components S it self is the minimal split geodetic set of $K_{2} \boxtimes G^{\prime}$. There fore $g_{s}\left(K_{2} \boxtimes G^{\prime}\right)=6$.

THEOREM 3.10. G^{\prime} be the graph obtained by adding an end-edge (x, y) to a cycle $C_{n}=G$ of order $n>3$, with $x \in G$ and $y \notin G$. Then

$$
g_{s s}\left(K_{2} \boxtimes G^{\prime}\right)=\left\{\begin{array}{lr}
\frac{3 n+4}{2} & \text { for even cycle } \\
6+n-2+\left\lfloor\frac{n}{3}\right\rfloor & \text { for } n=5 \\
6+n & \text { for } n=7 \\
6+n-2+\left\lceil\frac{n}{3}\right\rceil & \text { for odd cycle }
\end{array}\right.
$$

Proof. Let $K_{2} \boxtimes G^{\prime}$ be formed from two copies of G_{1}^{\prime} and G_{2}^{\prime} of G^{\prime}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}^{\prime}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}^{\prime}\right)$ and $V=U \cup W$.
We have the following results.
Case i. For even cycle.
Consider $S=H_{1} \cup H_{2}$ be the minimal strong split geodetic set of $K_{2} \boxtimes G^{\prime}$, where $H_{1}=\left\{u_{i}, u_{j}, w_{i}, w_{j}, u_{k}, w_{k}, w_{l}\right\}$, $I\left(H_{1}\right)=V\left(K_{2} \boxtimes G^{\prime}\right)$ by case i of Theorem 3.9 and $H_{2} \subseteq V-H_{1}$, $\left|H_{2}\right|=\frac{3 n-10}{2}$, such that $V-S$ is totally disconnected. Hence $|S|=\left|H_{1} \cup H_{2}\right|=7+\frac{3 n-10}{2}=\frac{3 n+4}{2}$. There fore $g_{s s}\left(K_{2} \boxtimes G^{\prime}\right)=$ $\frac{3 n+4}{2}$.
Case ii. For $n=5$.
Consider $S=H_{1} \cup H_{2}$ be the minimal strong split geodetic set of $K_{2} \boxtimes G^{\prime}$, where $H_{1}=\left\{u_{i}, u_{j}, u_{k}, w_{i}, w_{j}, w_{k}\right\}$ be the set of vertices which covers all the vertices of $K_{2} \boxtimes G^{\prime}$ by case ii of Theorem 3.8 and $H_{2} \subseteq V-H_{1},\left|H_{2}\right|=n-2+\left\lfloor\frac{n}{3}\right\rfloor$, such that $V-S$ is totally disconnected. Hence $|S|=\left|H_{1} \cup H_{2}\right|=6+n-2+\left\lfloor\frac{n}{3}\right\rfloor$. There fore $g_{s s}\left(K_{2} \boxtimes G^{\prime}\right)=6+n-2+\left\lfloor\frac{n}{3}\right\rfloor$.
Case iii. For $n=7$.
Consider $S=H_{1} \cup H_{2}$ be the minimal strong split geodetic set of $K_{2} \boxtimes G^{\prime}$, where $H_{1}=\left\{u_{i}, u_{j}, u_{k}, w_{i}, w_{j}, w_{k}\right\}$ be the set of vertices which covers all the vertices of $K_{2} \boxtimes G^{\prime}$ by case ii of Theorem 3.8 and $H_{2} \subseteq V-H_{1},\left|H_{2}\right|=n$, such that $V-S$ is to-

Volume 101-No. 12, September 2014
tally disconnected. Hence $|S|=\left|H_{1} \cup H_{2}\right|=6+n$. There fore $g_{s s}\left(K_{2} \boxtimes G^{\prime}\right)=6+n$.
Case iv. For odd cycle ($n>7$).
Consider $S=H_{1} \cup H_{2}$ be the minimal strong split geodetic set of $K_{2} \boxtimes G^{\prime}$, where $H_{1}=\left\{u_{i}, u_{j}, u_{k}, w_{i}, w_{j}, w_{k}\right\}$ be the set of vertices which covers all the vertices of $K_{2} \boxtimes G^{\prime}$ by case ii of Theorem 3.8 and $H_{2} \subseteq V-H_{1},\left|H_{2}\right|=n-2+\left\lceil\frac{n}{3}\right\rceil$, such that $V-S$ is totally disconnected. Hence $|S|=\left|H_{1} \cup H_{2}\right|=6+n-2+\left\lceil\frac{n}{3}\right\rceil$. There fore $g_{s s}\left(K_{2} \boxtimes G^{\prime}\right)=6+n-2+\left\lceil\frac{n}{3}\right\rceil$.

THEOREM 3.11. For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq 6)$,

$$
g\left(K_{2} \boxtimes W_{n}\right)= \begin{cases}n & \text { if } n \text { is even } \\ n-1 & \text { if } n \text { is odd } .\end{cases}
$$

Proof. Let $K_{2} \boxtimes W_{n}$ be formed from two copies of G_{1} and G_{2} of W_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}\right)$ and $V=U \cup W$.
We have the following results.
Case i. Let n be even.
Consider the geodesic $P:\left\{u_{1}, u_{2}, u_{6}, w_{2}, w_{6}, u_{3}\right\}$, $\begin{array}{ccc}Q & : & \left\{u_{3}, u_{4}, u_{6}, w_{4}, w_{6}, u 5\right\}, \ldots, \\ \left\{u_{n-3}, u_{n-2}, u_{n}, w_{n-2}, w_{n}, u_{n-1}\right\} & R & \text { and } \\ \text { the } & \text { geodesics, }\end{array}$ $H=\left\{w_{1}-w_{3}, w_{3}-w_{5}, \ldots, w_{n-3}-w_{n-1}\right\}$ It is clear that the vertices $u_{2}, u_{4}, u_{6}, \ldots, u_{n-2}, w_{2}, w_{4}, w_{6}, \ldots, w_{n-2}$ lies on the geodesics P, Q, R and H. Thus the set $S=\left\{u_{1}, u_{3}, \ldots, u_{n-1}, w_{1}, w_{3}, \ldots, w_{n-1}\right\}$ is the minimum geodetic set $K_{2} \boxtimes W_{n}$. There fore $g\left(K_{2} \boxtimes W_{n}\right)=|S|=n$.
Case ii. Let n be odd.
Consider the geodesic $P:\left\{u_{1}, u_{2}, u_{7}, w_{2}, w_{7}, u_{3}\right\}$, $Q \quad: \quad\left\{u_{3}, u_{4}, u_{7}, w_{4}, w_{7}, u 5\right\}, \ldots, \quad R \quad:$ $\left\{u_{n-4}, u_{n-3}, u_{n}, w_{n-3}, w_{n}, u_{n-2}\right\}$ and the geodesics, $H=\left\{w_{1}-w_{3}, w_{3}-w_{5}, \ldots, w_{n-4}-w_{n-2}\right\}$ It is clear that the vertices $u_{2}, u_{4}, u_{6}, \ldots, u_{n-1}, w_{2}, w_{4}, w_{6}, \ldots, w_{n-1}$ lies on the geodesics P, Q, R and H. Thus the set $S=\left\{u_{1}, u_{3}, \ldots, u_{n-2}, w_{1}, w_{3}, \ldots, w_{n-2}\right\}$ is the minimum geodetic set $K_{2} \boxtimes W_{n}$. There fore $g\left(K_{2} \boxtimes W_{n}\right)=|S|=n-1$.

Theorem 3.12. For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq 6)$,

$$
g_{s}\left(K_{2} \boxtimes W_{n}\right)= \begin{cases}n+2 & \text { if } n \text { is even } \\ n+1 & \text { if } n \text { is odd }\end{cases}
$$

Proof. Let $K_{2} \boxtimes W_{n}$ be formed from two copies of G_{1} and G_{2} of W_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}\right)$ and $V=U \cup W$.
We have the following results.
Case i. Let n be even.
Consider $S=H_{1} \cup H_{2}$ where $H_{1}=$ $\left\{u_{1}, u_{3}, \ldots, u_{n-1}, w_{1}, w_{3}, \ldots, w_{n-1}\right\}$ be the minimum geodetic set by case i of Theorem 3.11 and $H_{2}=\left\{v_{i}, w_{i}\right\} \subseteq V\left(K_{2} \boxtimes W_{n}\right)$, formed from the vertex K_{1} of W_{n}. Now S is the minimal split geodetic set of $K_{2} \boxtimes W_{n}$, since $V-S$ has $\frac{n-2}{2}$ times K_{2} components. Hence $|S|=\left|H_{1} \cup H_{2}\right|=n+\stackrel{2}{2}$. There fore $g_{s}\left(K_{2} \boxtimes W_{n}\right)=n+2$.
Case ii. Let n be odd.
Consider $S=H_{1} \cup H_{2}$ where $H_{1}=$ $\left\{u_{1}, u_{3}, \ldots, u_{n-2}, w_{1}, w_{3}, \ldots, w_{n-2}\right\}$ be the minimum geodetic set by case ii of Theorem 3.11 and $H_{2}=\left\{v_{i}, w_{i}\right\} \subseteq V\left(K_{2} \boxtimes W_{n}\right)$, formed from the vertex K_{1} of W_{n}. Now S is the minimal split geodetic set of $K_{2} \boxtimes W_{n}$, since $V-S$ has $\frac{n-1}{2}$ times K_{2}
components. Hence $|S|=\left|H_{1} \cup H_{2}\right|=n-1+2=n+1$. There fore $g_{s}\left(K_{2} \boxtimes W_{n}\right)=n+1$.

Theorem 3.13. For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq 6)$,

$$
g_{s s}\left(K_{2} \boxtimes W_{n}\right)= \begin{cases}\frac{3 n+2}{2} & \text { if } n \text { is even } \\ \frac{3 n+1}{2} & \text { if } n \text { is odd. }\end{cases}
$$

Proof. Let $K_{2} \boxtimes W_{n}$ be formed from two copies of G_{1} and G_{2} of W_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}\right)$ and $V=U \cup W$.
We have the following results.
Case i. Let n be even.
Consider $H=H_{1} \cup H_{2}$ where $H_{1}=$ $\left\{u_{1}, u_{3}, \ldots, u_{n-1}, w_{1}, w_{3}, \ldots, w_{n-1}\right\}$ be the minimum geodetic set by case i of Theorem 3.11 and $H_{2}=\left\{v_{i}, w_{i}\right\} \subseteq V\left(K_{2} \boxtimes W_{n}\right)$, formed from the vertex K_{1} of W_{n}, such that $V-H$ has $\frac{n-2}{2}$ times K_{2} components. Let $S=H \cup H_{3}$, where $H_{3} \subseteq V-H$ consists of one vertex from each K_{2} components, $\left|H_{3}\right|=\frac{n-2}{2}$. Now S is the minimal strong split geodetic set of $K_{2} \boxtimes W_{n}^{2}$ since $V-S$ has isolated vertices. Hence $|S|=\left|H \cup H_{3}\right|=\left|H_{1} \cup H_{2} \cup H_{3}\right|=n+2+\frac{n-2}{2}=\frac{3 n+2}{2}$. There fore $g_{s s}\left(K_{2} \boxtimes W_{n}\right)=\frac{3 n+2}{2}$.
Case ii. Let n be odd.
Consider $H=H_{1} \cup H_{2}$ where $H_{1}=$ $\left\{u_{1}, u_{3}, \ldots, u_{n-2}, w_{1}, w_{3}, \ldots, w_{n-2}\right\}$ be the minimum geodetic set by case ii of Theorem 3.11 and $H_{2}=\left\{v_{i}, w_{i}\right\} \subseteq V\left(K_{2} \boxtimes W_{n}\right)$, formed from the vertex K_{1} of W_{n}, such that $V-H$ has $\frac{n-1}{2}$ times K_{2} components. Let $S=H \cup H_{3}$, where $H_{3} \subseteq V-H$ consists of one vertex from each K_{2} components, $\left|H_{3}\right|=\frac{n-1}{2}$. Now S is the minimal strong split geodetic set of $K_{2} \boxtimes W_{n}{ }^{2}$ since $V-S$ has isolated vertices. Hence $|S|=\left|H \cup H_{3}\right|=\left|H_{1} \cup H_{2} \cup H_{3}\right|$ $=n-1+2+\frac{n-1}{2}=\frac{3 n+1}{2}$. There fore $g_{s s}\left(K_{2} \boxtimes W_{n}\right)=\frac{3 n+1}{2}$.

Theorem 3.14. For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq 6)$,

$$
g_{n s}\left(K_{2} \boxtimes W_{n}\right)= \begin{cases}n & \text { if } n \text { is even } \\ n-1 & \text { if } n \text { is odd } .\end{cases}
$$

Proof. Let $K_{2} \boxtimes W_{n}$ be formed from two copies of G_{1} and G_{2} of W_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}\right)$ and $V=U \cup W$.
We have the following results.
Case i. Let n be even.
Consider the geodesic P : $\left\{u_{1}, u_{2}, u_{6}, w_{2}, w_{6}, u_{3}\right\}$, $Q \quad: \quad\left\{u_{3}, u_{4}, u_{6}, w_{4}, w_{6}, u 5\right\} \quad, \ldots, \quad R \quad:$ $\left\{u_{n-3}, u_{n-2}, u_{n}, w_{n-2}, w_{n}, u_{n-1}\right\}$ and the geodesics, $H=\left\{w_{1}-w_{3}, w_{3}-w_{5}, \ldots, w_{n-3}-w_{n-1}\right\}$ It is clear that the vertices $u_{2}, u_{4}, u_{6}, \ldots, u_{n-2}, w_{2}, w_{4}, w_{6}, \ldots, w_{n-2}$ lies on the geodesics P, Q, R and H. Thus the set $S=\left\{u_{1}, u_{3}, \ldots, u_{n-1}, w_{1}, w_{3}, \ldots, w_{n-1}\right\}$ is the minimum non split geodetic set $K_{2} \boxtimes W_{n}$, since $V-S$ is connected. There fore $g_{n s}\left(K_{2} \boxtimes W_{n}\right)=|S|=n$.
Case ii. Let n be odd.
Consider the geodesic $P:\left\{u_{1}, u_{2}, u_{7}, w_{2}, w_{7}, u_{3}\right\}$, $Q \quad: \quad\left\{u_{3}, u_{4}, u_{7}, w_{4}, w_{7}, u 5\right\} \quad, \ldots, \quad R \quad:$ $\left\{u_{n-4}, u_{n-3}, u_{n}, w_{n-3}, w_{n}, u_{n-2}\right\}$ and the geodesics, $H=\left\{w_{1}-w_{3}, w_{3}-w_{5}, \ldots, w_{n-4}-w_{n-2}\right\}$ It is clear that the vertices $u_{2}, u_{4}, u_{6}, \ldots, u_{n-1}, w_{2}, w_{4}, w_{6}, \ldots, w_{n-1}$ lies on the geodesics P, Q, R and H. Thus the set $S=\left\{u_{1}, u_{3}, \ldots, u_{n-2}, w_{1}, w_{3}, \ldots, w_{n-2}\right\}$ is the minimum

Volume 101-No. 12, September 2014
Theorem 4.1. For any cycle C_{n} of order $n>3$,

$$
g\left(K_{2}\left[C_{n}\right]\right)=\left\{\begin{array}{rr}
2 & \text { for } n=4 \\
3 & \text { for } n=5,6 \\
4 & \text { for } n_{6} 6 .
\end{array}\right.
$$

Proof. Let $K_{2}\left[C_{n}\right]$ be formed from two copies of G_{1} and G_{2} of C_{n}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in V\left(G_{1}\right), W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\in V\left(G_{2}\right)$ and $V=U \cup W$.
We have the following results.
Case i. Let $n=4$.
Consider $S=\left\{v_{1}, v_{3}\right\}$ be the set which covers all the vertices of $K_{2}\left[C_{n}\right]$, where $\left\{v_{1}, v_{3}\right\} \notin E\left(G_{1}\right)$. Which forms a minimum geodetic set of $K_{2}\left[C_{n}\right]$, therefore $g\left(K_{2}\left[C_{n}\right]\right)=2$.
Case ii. Let $n=5,6$.
Consider $S=\left\{v_{1}, v_{3}, v_{5}\right\}$ be the set which covers all the vertices of $K_{2}\left[C_{n}\right]$, where $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{5}\right)\right\} \notin E\left(G_{1}\right)$ and $d\left(v_{1}, v_{3}\right)=$ $d\left(v_{3}, v_{5}\right)=\operatorname{diam}\left(K_{2}\left[C_{n}\right]\right)$. If possible let $P=\left\{v_{1}, v_{3}\right\} \in$ $V\left(K_{2}\left[C_{n}\right]\right),|P|<|S|$ be a set, for any $v_{i} \notin I[P]$. Thus S ia minimal geodetic set $K_{2}\left[C_{n}\right]$. Therefore $g\left(K_{2}\left[C_{n}\right]\right)=3$.
Case iii. Let $n>6$.
Consider $S=\left\{v_{i}, v_{j}, w_{i}, w_{j}\right\}$ be the minimal geodetic set of $K_{2}\left[C_{n}\right]$, where $\left\{\left(v_{i}, v_{j}\right),\left(w_{i}, w_{j}\right)\right\} \notin E\left(K_{2}\left[C_{n}\right]\right)$ and $d\left(v_{i}, v_{j}\right)=d\left(w_{i}, w_{j}\right)=\operatorname{diam}\left(K_{2}\left[C_{n}\right]\right)$, which covers all the vertices of $K_{2}\left[C_{n}\right]$. Thus $g\left(K_{2}\left[C_{n}\right]\right)=4$.

Theorem 4.2. For any cycle C_{n} of order $n>3$,

$$
g_{s}\left(K_{2}\left[C_{n}\right]\right)=\left\{\begin{array}{lr}
\frac{2 n+4}{2} & \text { for } n=4,5,6 \\
n+2 & \text { for } n_{6} 6 .
\end{array}\right.
$$

THEOREM 4.3. For any cycle C_{n} of order $n>3$,

$$
g_{s s}\left(K_{2}\left[C_{n}\right]\right)= \begin{cases}\frac{3 n}{2} & \text { if } n \text { is even } \\ \frac{3 n+1}{2} & \text { if } n \text { is odd } .\end{cases}
$$

THEOREM 4.4. G^{\prime} be the graph obtained by adding an endedge (x, y) to a cycle $C_{n}=G$ of order $n>3$, with $x \in G$ and $y \notin G$. Then $g\left(K_{2}\left[G^{\prime}\right]\right)=4$.

THEOREM 4.5. G^{\prime} be the graph obtained by adding an endedge (x, y) to a cycle $C_{n}=G$ of order $n>3$, with $x \in G$ and $y \notin G$. Then $g_{s}\left(K_{2}\left[G^{\prime}\right]\right)=n+3$

THEOREM 4.6. G^{\prime} be the graph obtained by adding an endedge (x, y) to a cycle $C_{n}=G$ of order $n>3$, with $x \in G$ and $y \notin G$. Then

$$
g_{s s}\left(K_{2}\left[G^{\prime}\right]\right)=\left\{\begin{array}{l}
\frac{3 n+2}{2} \text { for even cycle } \\
\frac{3 n+3}{2} \text { for odd cycle }
\end{array}\right.
$$

5. JOIN OF GRAPHS

The join of two graphs G_{1} and G_{2}, written as $G_{1}+G_{2}$, is defined as the union of G_{1} and G_{2} together with all edges (u, v) for which $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Two vertices of a graph G are said to be joined in G if the edge (u, v) is contained in the edge set of G.

Volume 101-No. 12, September 2014
[6] Venkanagouda. M. Goudar, Tejaswini K. M, Venkatesha., Non split geodetic number of a graph, Indian Journal of Pure and Applied Mathematics. (Communicated).

THEOREM 5.2. For any cycle C_{n} of order $n>3$,
$g_{s}\left(K_{2}+C_{n}\right)=g_{s s}\left(K_{2}+C_{n}\right)= \begin{cases}\frac{n+4}{2} & \text { if } n \text { is even } \\ \frac{n+5}{2} & \text { if } n \text { is odd } .\end{cases}$
THEOREM 5.3. G ' be the graph obtained by adding an endedge (x, y) to a cycle $C_{n}=G$ of order $n>3$, with $x \in G$ and $y \notin G$. Then

$$
g\left(K_{2}+G^{\prime}\right)= \begin{cases}\frac{n+2}{2} & \text { for even cycle } \\ \frac{n+3}{2} & \text { for odd cycle }\end{cases}
$$

THEOREM 5.4. G^{\prime} be the graph obtained by adding an endedge (x, y) to a cycle $C_{n}=G$ of order $n>3$, with $x \in G$ and $y \notin G$. Then

$$
g_{s}\left(K_{2}+G^{\prime}\right)=g_{s s}\left(K_{2}+G^{\prime}\right)=\left\{\begin{array}{l}
\frac{n+6}{2} \text { for even cycle } \\
\frac{n+7}{2} \text { for odd cycle } .
\end{array}\right.
$$

6. CONCLUSION

In this paper we have establish many results on split geodetic number, nonsplit geodetic number, strong split geodetic number of strong product of graph and some observation on split geodetic number, nonsplit geodetic number, strong split geodetic number of composition graphs and join of graphs.

7. ACKNOWLEDGEMENT

Our thanks to the referee's for the help in revising the manuscript.

8. REFERENCES

[1] Ashalatha K.S.,Venkanagouda. M. Goudar, Venkatesha., 2014. Strong split geodetic number of a graph, International Journal of Computer Applications., 89(4) (2014), 1-4
[2] G. Chartrand, F. Harary, and P.Zhang, 2002.
On the geodetic number of a graph.Networks.39,(2002),1-6.
[3] G. Chartrand and P.Zhang, 2006.
Introduction to Graph Theory, Tata McGraw Hill Pub.Co.Ltd.
[4] F.Harary, 1969. Graph Theory,Addison-Wesely,Reading, MA.
[5] Venkanagouda M.Goudar, K.S.Ashalatha, Venkatesha, 2014.
Split Geodetic Number of a Graph, Advances and
Applications in Discrete Mathematics. 13(1) (2014), 9-22.

