
International Journal of Computer Applications (0975 – 8887)

Volume 101– No.10, September 2014

39

A Genetic-Fuzzy Algorithm for Load Balancing in

Multiprocessor Systems

Roya Nourzadeh

Department of Computer Engineering, Germi
branch, Islamic Azad University, Germi, Iran

Mehdi Effatparvar
ECE Department, Ardebil Branch, Islamic Azad

University, Ardebil, Iran

ABSTRACT

With the increasing use of computers in research

contributions, added requirement for faster processing is now

an important necessity. Parallel Processing describes the

concept of running tasks which can be run simultaneously on

several processors. Load balancing is very important problem

in multiprocessor systems. In this paper, we introduce a

approah based on Genetic Algorithms and Fuzzy Logic for

laod balancing in parallel multiprocessor systems that call

GAF algorithm. Extensive simulation shows our algorithm is

better than other approach. Simualation results indicate our

algorithm have maximum utilization and it reduce total

response time of system.

General Terms

Scheduling, Genetic Algorithms, Fuzzy Logic.

Keywords

Load Balancing, Multiprocessor systems, Genetic Algorithm,

Fuzzy Logic, Idle Time, Load Balancing Ratio..

1. INTRODUCTION
In multiple processing, multiple processors come together to

implement a program. The major application of the systems is

for problem solving in modeling and engineering sciences.

Today, not just scientific problems solving requires parallel

processing, but in addition some commercial applications

require fast computers. number of these applications require

the processing of large volumes of complex information.

Some of these programs include data mining operations,

medical imaging, oil exploration and etc[1-4].

Operating systems manage processors and other computer

resources without the visible effect to the end user[5]. The

multiprocessor capability increases the complexity of

Operating systems and raises large amount of challenges to

Operating systems such as for example simultaneous

execution of tasks, scheduling, synchronization, processor

failure, memory management and etc[6,7]. The majority of

the modern Operating systems, like Unix, Linux, Microsoft

Windows and Mac Operating system can handle running on

multi-processor computers[8,9].

The scheduler of the Operating system has an essential role in

the machine performance and processors utilization. For

instance in the multiprocessor systems, each processor could

have own queue for tasks, scheduler selects of this tasks to

run. This may cause an imbalance one of the processors and

the load balancing algorithm must certanly be defined to

stabilize the load among the processors[9]. A periodic load

balancing is commonly used to test the existence of imbalance

among the processors. However, the periodic load balancing

might not prevent the imbalance among the processors

because of the the low response time of the load decrease.

Therefore, this paper proposes a genetic-fuzzy algorithm for

load balancing to prevent unnecessary idle periods, to

stabilize the load among the processors, and to increase

performance.

In this paper, we introduce a method based on genetic

algorithm and fuzzy logic for scheduling tasks on

multiprocessor systems. The main objective is to achieve

performance and power improvement. Our method minimize

the response time and idle time, also it maximum the

utilization. Results of the simulations indicate minimum

response time and idle time in comparison with other

algorithms. This study is divided into the following sections:

In section 2 an overview of Fuzzy Logic. Section 3 presents

System setup in detailed. The proposed method is described in

Section 3.2. Results of the study are analyzed in Section 4.

Finally, Section 5 presents the conclusions.

2. REVIEW OF PREVIOUS WORKS
Several load balancing proposals are presented for the

multiprocessor systems. Merkel and et al. proposes an optimal

scheduling policy in multiprocessor system with Linux 2.6

kernel. The goal of the proposed algorithm is to determine the

energy characteristics of tasks and to prevent overheating of

an individual task, i.e., tasks are transferred from the

overheated processor to the cooler processor. Overheating

may reduce processor’s clock frequency. However, the

addition of task migrations break processor affinity and cause

some performance penalties even if they may be negligible

compared to the performance boost[10].

Correa and et al. [11] introduce a multi-level load balancing

algorithm in NUMA systems for running in Linux operating

system. Proposed algorithm detect the number of memory

access levels in a device and builds an n-level scheduling

domain hierarchy rather than Linux’s two level memory

access. This kind of implementation does not take full benefit

of the proper machine’s topology but the average performance

improvement was as high as 10%.

Caprita and et al. [12] presents Grouped Distributed

Queues. The goal of the paper is to reach accurate

proportional fairness in scheduling with O (1)

scheduling overhead. Grouped Distributed Queues

works on the simple exponential grouping strategy and

two levels hierarchical scheduler to prepare processes

into groups. Grouping is dependant on simple processor

time allocation rights and aggregate group shares.

Based on simulations and kernel measurements, the

presented algorithm provides good proportional fairness

and scales relatively well with a big number of

processors and processes. Zomaya and et al. [13]

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.10, September 2014

40

introduces dynamic and centralized load balancing

algorithm based on genetic algorithm. The key

objectives are minimum response time, maximum

processor utilization, and a optimal balanced load

across all processors. The proposed algorithm use of

decimal encoding mechanism to initialize a population

and to make a string. Furthermore, the algorithm works

on the fitness function for the performance

measurements and the roulette wheel approach for a

selection operator. Starting point of the crossover

operation is selected randomly, and the swap mutation

is applied. The proposed algorithm is very efficient,

especially in the case of a big number of processes.

3. SYSTEM SETTING
In this section we describe system model in this paper. Model

of system for Multiprocessor is as following:

 There are Nn+1 number of processors and are fully

connected.

 Communication and computation can be executed

simultaneously. This can be accomplished by following

the non-blocking send and non-blocking receive

protocol for communication purpose.

 Before scheduling a particular task, the system assumed

to know the runtime of that task.

 Processors are homogeneous.

 Tasks are independent.

It is assume that the communication between the processors

will take place with the help of message passing interface

environment.

4. GENETIC-FUZZY ALGORITHM FOR

LOAD BALANCING
In this section, we introduce a method based on genetic

algorithm and fuzzy logic for tasks scheduling on

multiprocessor systems. The main objective is to achieve

maximum utilization and load balancing among processors or

resources. In fact, we use of Genetic Algorithm (GA) for

scheduling, fitness function of GA is base on Fuzzy Logic. In

the following we explain the our approach.

The objective of this study is to discover a sequence of tasks

for minimizing total execution time and maximum utilization

in parallel multiprocessor systems. Thus, each chromosome is

sequence variety of tasks. Each task is considered as a gene.

Therefore, the best way to encode chromosomes is

permutations encoding. To start, GA should generate an initial

random population for entry into the first generation. For this,

a random generator function of chromosomes must be

employed. Random chromosomes generate the initial

population.

The important part of GA is the fitness function. The fitness

function is defined over the genetic representation, and

measures quality of the chromosomes. The fitness function is

always dependent on the problem. In this paper, the fitness

function is base on Fuzzy Logic. For fitness function,

introduces the fuzzy approach that input variables are the sum

load of ready queues. The dynamic ranges of the input

variables (or membership functions) were divided into three

part, i.e., low, medium and high, see Figure 1.

The label low in membership functions defines that the sum

load of all ready queues is so minor, so the load balancing is

not needed. The label medium defines a range in which there

is so much load.

Therefore, all processors should be running without idle time

and utilization of processors are in maximum level. The

membership function for the label high defines a range in

which there is hug of work-loads in the system. The rules for

load balancing were defined as fuzzy conditional statements,

for example If load is low or medium then load balancing is

not required. If load is high load balancing is required.

We consider for each prossecor tow value, if load of processor

is lightly (low) or heavy (high) then p(i) = 0. Also if load of

processor is moderate (normal) then

p(i) = 1. So the fitness function is calculated according to the

(1) equation:

(1)

P(i) is Processor i and n is complete number of processors.

The fitness values have been evaluated for all chromosomes

and the probability of higher fitness is to be selected for

reproduction from current generation to the next generation.

For selection operator, we used tournament operator for

selection. Two of chromosomes in population select

randomaly. Between two chromosomes, chromosome which

has a higher fitness is selected. This operation is repeated a

number of population size.

For crossover operator, we used one point crossover for

crossover. Two chromosome with crossover probability select

for crossover. For mutation, we use bit fliping strategy that

change gens of chromosome with mutation probability. Any

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.10, September 2014

41

gene with 1/c change. Means c is all number of genes

(chromosome length). Also, we used generational strategy for

replacing new population

With previous population. In fact, the new population

replacing with all previous population in generational

strategy. Genetic algortithm repeat until achieve to acceptable

solution or the number of generations considered.

5. EVALUATION AND SIMULATION

RESULTS
In this section, the results of the simulation that are employed

to evaluate our algorithm are presented. Proposed algorithm is

compared with two different load balancing algorithms,

namely GALB and FLB. GALB proposed in [5] and it is only

based on Genetic algorithm. FLB proposed in [9] and it is

only based on Fuzzy Logic. We have used the MATLAB

simulator to evaluate the proposed algorithm. Several

experiments are considered to evaluate the algorithms.

Experimental results show that the proposed algorithm

performs better than GALB and FLB in all of the scenarios.

We considered two scenarios. This scenarios shows in table 1.

Table 1: Scenarios of simulations

Scenario
Number

of Tasks

Number

Processors
Task Processors

1 80 8 Independent Homogeneous

2 500 16 Independent Homogeneous

5.1 Evaluation of Load Balancing Ratio
Figure 2 and Figure 3 shows load balancing ratio of

algorithms in both scenarios. According to figure 2 and figure

3, load balancing ratio of proposed algorithm is better than

GALB and FLB in both scenarios.

Figur 2: Load Balancing Ratio in scenario 1.

Figure 3: Load Balancing Ratio in scenario 2.

5.2 Evaluation Idle Time of Processors
In this section, we evaluate idle time of algorithms in all

scenarios. Table 2 shows average total idle time of system in

both scenario, respectively. According to obtained results in

table 2, proposed algorithm is better than GALB and FLB in

both scenarios. Because, idle time of processors in proposed

algorithm are lesser.

Table 2: Average total idle time of system in both scenario

Proposed

Algorithm
GALB FLB

Fraction of

average idle

time in

scenario 1

%2 %6 %6

Fraction of

average idle

time in

scenario 2

%4 %8 %11

5.3 Evaluation of System Utilization
Table 3 and table 4 presents performance results of system

utilization for load balancing algorithms in scenario 1 and 2.

According to obtained results, system utilization of proposed

algorithm in both scenario is better. The proposed algorithm

can have maximum utilization comoare to GALB and FLB.

Table 2: Average of system utilization in scenario 1

Proposed

Algorithm
GALB FLB

System

Utilization
0.99 0.98 0.96

Table 3: Average of system utilization in scenario 2

Proposed

Algorithm
GALB FLB

System

Utilization
0.98 0.96 0.95

6. CONCLUSIONS
The aim of the paper was to present the developed on demand

based load balancing algorithm using Genetic Algorithm and

Fuzzy Logic for the homogeneous multiprocessor

environment. According to the simulation results, proposed

algorithm has a better performance compared to other

algorithms in all of the scenarios. We evaluate our

algorithm with GALB and FLB algorithm. The performance

metrics we use are the load balancing ratio, idle time and

0.92

0.94

0.96

0.98

1

16 12 8 4

Lo
ad

 B
al

an
ci

n
g

R
at

io

Processors

FLB

GALB

Proposed
Algorithm

0.92

0.94

0.96

0.98

1

16 12 8 4

Lo
ad

 B
al

an
ci

n
g

R
at

io

Processors

FLB

GALB

Proposed
Algorithms

International Journal of Computer Applications (0975 – 8887)

Volume 101– No.10, September 2014

42

system utilization. Proposed algortihm in all performance

metrics was better than GALB and FLB.

As future work, (1) we want investigate the performance of

our algorithm under other scenarios. For example, when

processors are heterogeneous, number of processors or

number of tasks are very much and etc. (2) we want

investigate the performance of our algorithm in Grid or Cloud

systems.

7. REFERENCES
[1] Riky Subrata, Albert Y. Zomaya, Bjorn Landfeldt.

Artificial life techniques for load balancing in

computational grids. Journal of Computer and System

Sciences 73 (2007) 1176–1190.

[2] Pratyay Kuilab, Prasanta K. Janaa. Energy Efficient Load-

Balanced Clustering Algorithm for Wireless Sensor

Networks. 2nd International Conference on

Communication, Computing & Security. (2012) 771 –

777.

[3] Timur Keskinturk , Mehmet B. Yildirim, Mehmet Barut.

An ant colony optimization algorithm for load balancing

in parallel machine swith sequenc e-dependent setup

times. Computers & Operations Research 39 (2012) 1225

–1235.

[4] Satish enmatsaa, Anthony Chronopoulos. Game-

theoreticstaticloadbalancingfordistributedsystems.

J.ParallelDistrib.Comput. 71(2011) 537–555.

[5] Hui Cheng, Shengxiang Yang, Jiannong Cao. Dynamic

genetic algorithms for the dynamic load balanced

clustering problem in mobile ad hoc networks. Expert

Systems with Applications 68 (2012) 132–144.

[6] Primoz Rus, Boris tok, Nikola Mole. Parallel computing

with load balancing on heterogeneous distributed

systems. Advances in Engineering Software 34 (2003)

185–201.

[7] A. Saffar , R. Hooshmand , A. Khodabakhshian. A new

fuzzy optimal reconfiguration of distribution systems for

loss reduction and load balancing using ant colony

search-based algorithm. Applied Soft Computing 11

(2011) 4021–4028.

[8] Maha A. Metawei, Salma A. Ghoneim ,Sahar M. Haggag.

Load balancing in distributed multiagent computing

systems. Ain Shams Engineering Journal (2012) 3, 237–

249.

[9] Mika Rantonen, Tapio Frantti, Kauko Leiviska. Fuzzy

expert system for load balancing in symmetric

multiprocessor systems. Expert Systems with

Applications 37 (2010) 8711–8720.

[10] Merkel, A., & Bellosa, F. (2006). Balancing power

consumption in multiprocessor systems. SIGOPS

Operating Systems Review, 40(4), 403–414. ISSN 0163-

5980.

[11] Corrêa, M., Zorzo, A., & Scheer, R. (2006). Operating

system multilevel load balancing. In SAC ’06:

Proceedings of the 2006 ACM symposium on applied

computing . 1-59593-108-2 (pp. 1467–1471).

[12] Caprita, B., Nieh, J., & Stein, C. (2006). Grouped

distributed queues: Distributed queue, proportional share

multiprocessor scheduling. In PODC ’06: Proceedings of

the 25th annual ACM symposium on principles of

distributed computing .1-59593-384-0 (pp. 72–81).

IJCATM : www.ijcaonline.org

