Weakly Compatible Maps in Complex Valued G- Metric Spaces

S. Mudgal Department of Mathematics Echelon Institute of Technology Jasana, Faridabad:121101, India

ABSTRACT

In this paper, we introduce the notion of complex valued Gmetric spaces and prove a common fixed point theorem for weakly compatible maps in this newly defined spaces.

Mathematics Subject Classification (2000): 47H10, 54H25.

Keywords

Complex valued G-metric space, weakly compatible.

1. INTRODUCTION

The study of fixed points of mappings satisfying certain contractive conditions have been at the center of rigorous research activity. Recently, Mustafa and Sims [8,9] have shown that most of the results concerning Dhage's D-metric spaces are invalid, therefore they introduced an improved version of the generalized metric space structure which they called G-metric spaces.

In 2006, Mustafa and Sims [9] introduced the concept of Gmetric spaces as follows:

Definition 1.1. Let X be a non-empty set, and let G: $X \times X \times X \rightarrow \mathbb{R}^+$ be a function satisfying the following properties:

- (G1) G(x, y, z) = 0 if x = y = z,
- (G2) 0 < G(x, y, z) for all $x, y \in X$ with $x \neq y$,
- (G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all three variables), (G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all x, y, z, $a \in X$ (rectangle inequality).

Then the function G is called a generalized metric or, more specially a G-metric on X, and the pair (X, G) is called a G-metric space.

The idea of complex metric space was initiated by Azam et.al.[1] to exploit the idea of complex valued normed spaces and complex valued Hilbert spaces.

Definition 1.2. Let \mathbb{C} be the set of complex numbers and z_1 , $z_2 \in \mathbb{C}$. Define a partial order \leq on \mathbb{C} as follows:

 $z_1 \lesssim z_2$ if and only if Re $(z_1) \leq$ Re (z_2) and Im $(z_1) \leq$ Im (z_2)

That is $z_1 \leq z_2$ if one of the following holds

(C1): Re $(z_1) = \text{Re}(z_2)$ and Im $(z_1) = \text{Im}(z_2)$

(C2): Re $(z_1) <$ Re (z_2) and Im $(z_1) =$ Im (z_2)

(C3): Re (z_1) = Re (z_2) and Im $(z_1) < \text{Im}(z_2)$

(C4): Re $(z_1) < \text{Re}(z_2)$ and Im $(z_1) < \text{Im}(z_2)$

In particular, we will write $z_1 \neq z_2$ if $z_1 \neq z_2$ and one of (C2), (C3) and (C4) is satisfied and we will write $z_1 \prec z_2$ if only (C4) is satisfied.

Remark 1.3. We obtained that the following statements hold:

- (i) $a, b \in R$ and $a \le b \Longrightarrow az \le bz$ for all $z \in \mathbb{C}$
- (ii) $0 \leq z_1 \leq z_2 \implies |z_1| < |z_2|$
- (iii) $z_1 \leq z_2$ and $z_2 \prec z_3 \Longrightarrow z_1 \prec z_3$.

Now we introduce the notion of complex valued G-metric space akin to the notion of complex valued metric spaces [1] as follows:

Definition 1.4. Let X be a non-empty set. Let G: $X \times X \times X \rightarrow \mathbb{C}$ be a function satisfying the following properties:

(CG1) G(x, y, z) =0 if x = y = z,

(CG2) $0 \prec G(x, y, z)$ for all $x, y \in X$ with $x \neq y$,

(CG3) $G(x, x, y) \preceq G(x, y, z)$ for all x, y, $z \in X$ with $y \neq z$,

(CG4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all three variables) (CG5) $G(x, y, z) \preceq G(x, a, a) + G(a, y, z)$ for all x, y, z, $a \in X$.

Then the function G is called a complex valued generalized metric or more specially, a complex valued G-metric on X, and the pair (X, G) is called a complex valued G- metric space.

2. THE COMPLEX VALUED G-METRIC TOPOLOGY

A point $x \in X$ is called *interior point* of a set $A \subseteq X$, whenever there exists $0 < r \in \mathbb{C}$ such that

 $B_G(x, r) = \{ y \in X : G(x, y, y) \prec r \} \subseteq A.$

A point $x \in X$ is called *limit point* of a set A whenever there exists $0 < r \in \mathbb{C}$,

$$B_G(x, r) \cap (A/X) \neq \emptyset.$$

A is called *open* whenever each element of A is an interior point of A. A subset $B \subseteq X$ is called *closed* whenever each limit point of B belongs to B.

Proposition 2.1. Let (X, G) be complex valued G-metric space, then for any $x_0 \in X$ and r > 0, we have

(1) If
$$G(x_0, x, y) \prec r$$
, then $x, y \in B_G(x_0, r)$

(2) If $y \in B_G(x_0, r)$, then there exists a $\delta > 0$ such that $B_G(y, \delta) \subseteq B_G(x_0, r)$.

Proposition 2.2 Let (X, G) be complex valued G-metric space, then for all $x_0 \in X$ and r > 0, we have,

$$B_G\left(x_0,\frac{1}{3}r\right) \subseteq B_{d_G}(x_0,r) \subseteq B_G(x_0,r).$$

Where $d_G(x, y) = G(x, y, y) + G(x, x, y)$.

3. CONVERGENCE, CONTINUITY AND COMPLETENESS IN COMPLEX VALUED G-METRIC SPACES

Definition 3.1. Let (X, G) be a complex valued G-metric space, let $\{x_n\}$ be a sequence of points of X, we say that $\{x_n\}$ is complex valued G-convergent to x if for any $\epsilon > 0$, there exists $k \in N$ such that $G(x, x_n, x_m) \prec \epsilon$, for all n, $m \ge k$. We refer to x as the limit of the sequence $\{x_n\}$ and we write $x_n \stackrel{(G)}{\longrightarrow} x$.

Proposition 3.1. Let (X, G) be complex valued G-metric space, then for a sequence $\{x_n\} \subseteq X$ and point $x \in X$, the following are equivalent:

- (1) $\{x_n\}$ is complex valued G convergent to x
- (2) $|G(x_n, x_n, x)| \to 0 \text{ as } n \to \infty$
- (3) $|G(x_n, x, x)| \to 0 \text{ as } n \to \infty$
- (4) $|G(x_m, x_n, x)| \to 0 \text{ as } n, m \to \infty$

Definition 3.2. Let (X, G) and (X', G') be two complex valued G-metric spaces. Then a function f: $X \rightarrow X'$ is complex valued G-continuous at a point $x_0 \in X$ if $f^{-1}(B_{G'}(f(x_0), r)) \in \tau(G)$, for all r > 0. We say f is complex valued G-continuous if it complex valued G-continuous at all points of X; that is, continuous as a function from X with the $\tau(G)$ - topology to X' with $\tau(G')$ - topology.

Since complex valued G-metric topologies are metric topologies we have:

Proposition 3.2. Let (X, G) and (X', G') be two complex valued G-metric spaces. Then a function $f : X \rightarrow X'$ is complex valued G-continuous at a point $x \in X$ if and only if it is complex valued G-sequentially continuous at x: that is whenever $\{x_n\}$ is complex valued G-convergent to x we have $(f\{x_n\})$ is complex valued G-convergent to f(x).

Proposition 3.3. Let (X, G) be a complex valued G-metric spaces, then the function G(x,y,z) is jointly continuous in all three of its variables.

Proof. Suppose $\{x_k\}$, $\{y_m\}$, and $\{z_n\}$, are complex valued G-convergent to x, y and z respectively. Then, by (CG5) we have,

$$G(x, y, z) \preceq G(y, y_m, y_m) + G(y_m, x, z)$$

 $G(z, x, y_m) \preceq G(x, x_k, x_k) + G(x_k, y_m, z)$

and

 $G(z, x_k, y_m) \preceq G(z, z_n, z_n) + G(z_n, y_m, x_k),$

so,

 $\begin{array}{rl} G(x,\ y,\ z) & - & G(x_k,y_m,z_n) \ \lesssim G(y,y_m,y_m) + G(x,x_k,x_k) + \\ G(z,z_n,z_n). \end{array}$

Similarly,

$$\begin{split} & G(x_k,y_m,z_n)-G(x,y,z) \qquad \quad \ \ \, \lesssim \, G(x_k,x,x)+ \\ & G(y_m,y,y)+G(\,z_n,z,z). \end{split}$$

But then combining these using (3) of proposition 4.1 we have,

$$\begin{split} |G(x_k,y_m,z_n) - G(x,y,z)| &\leq 2(G(x,x_k,x_k) + G(y,y_m,y_m) + G(z,z_n,z_n)), \end{split}$$

 $|G(x_k, y_m, z_n) - G(x, y, z)| \rightarrow 0$, as k, m, n, $\rightarrow \infty$ and the result follows by proposition 3.2.

Definition 3.2. Let (X, G) be a complex valued G-metric space, a sequence $\{x_n\}$ is complex valued G- Cauchy if given $\epsilon > 0$, there exists $k \in N$ such that $G(x_n, x_m, x_l) \prec \epsilon$ for all n, m, $l \ge k$.

Definition 3.3. A complex valued G-metric space (X, G) is said to be complex valued G-complete if every complex valued G-Cauchy sequence is complex valued G-convergent in (X, G).

Proposition 3.4. Let (X, G) be a complex valued G-metric space. Then the following are equivalent:

- (1) The sequence $\{x_n\}$ is a complex valued G-Cauchy in X.
- (2) For every $\epsilon > 0$, there exists $k \in N$ such that $G(x_n, x_m, x_m) \prec \epsilon$, for all $n, m \ge k$.
- (3) $\{x_n\}$ is a Cauchy sequence in the complex valued metric space (X, d_G).

Proposition 3.5. Let (X, G) be a complex valued G-metric space and $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is complex valued G- convergent to x if and only if $|G(x, x_n, x_m)| \to 0$ as n, $m \to \infty$.

Proof. Suppose that $\{x_n\}$ is complex valued G- convergent to x. For a given real number $\epsilon > 0$, let

$$c = \frac{\epsilon}{\sqrt{2}} + i \frac{\epsilon}{\sqrt{2}}.$$

Then $0 < r \in \mathbb{C}$ and there is a natural number k, such that $G(x, x_n, x_m) < \epsilon$ for all n, m \geq k.

International Journal of Computer Applications (0975 – 8887) Volume 101– No.10, September 2014

Therefore,

 $|G(x, x_n, x_m)| < |c| = \epsilon$ for all n, m $\geq k$.

It follows that $|G(x, x_n, x_m)| \to 0$ as n, $m \to \infty$.

Conversely, suppose that $|G(x, x_n, x_m)| \to 0$ as n, $m \to \infty$. Then given $r \in \mathbb{C}$ with $0 \prec c$, there exists a real number $\delta > 0$, such that for $z \in \mathbb{C}$

 $|z| < \delta \Longrightarrow z < c.$

For this δ , there is a natural number k such that

$$|G(x, x_n, x_m)| < \delta$$
 for all $n, m \ge k$.

This means that $G(x, x_n, x_m) \prec \epsilon$ for all n, m $\geq k$. Hence $\{x_n\}$ is complex valued G- convergent to x.

Proposition 3.6. Let (X, G) be a complex valued G-metric space and $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is complex valued G- Cauchy sequence if and only if $|G(x_n, x_m, x_l)| \to 0$ as n, m $\to \infty$.

Proof. Suppose that $\{x_n\}$ is complex valued G- Cauchy sequence. For a given real number $\epsilon > 0$, let

$$c = \frac{\epsilon}{\sqrt{2}} + i \frac{\epsilon}{\sqrt{2}}.$$

Then $0 < r \in \mathbb{C}$ and there is a natural number k, such that $G(x_n, x_m, x_l) < \epsilon$ for all n, m \geq k.

Therefore,

 $|G(x_n, x_m, x_l)| < |c| = \epsilon$ for all n, m $\geq k$.

It follows that $|G(x_n, x_m, x_l)| \to 0$ as n, m $\to \infty$.

Conversely, suppose that $|G(x_n, x_m, x_l)| \to 0$ as n, $m \to \infty$. Then given $c \in \mathbb{C}$ with $0 \prec c$, there exists a real number $\delta > 0$, such that for $z \in \mathbb{C}$

$$|z| < \delta \Longrightarrow z < c.$$

For this δ , there is a natural number k such that

 $|G(x_n, x_m, x_l)| < \delta$ for all $n, m \ge k$.

This means that $G(x_n, x_m, x_l) \prec \epsilon$ for all n, m \geq k. Hence $\{x_n\}$ is complex valued G- Cauchy sequence.

4. PROPERTIES OF COMPLEX VALUED G-METRIC SPACES

Proposition 4.1. Let (X, G) be a complex valued G-metric space. Then for any x, y, z, a in X it follows that:

- (i) If G(x, y, z) = 0 if x = y = z
- $\begin{array}{ll} (ii) & G(x, \ y, \ z) & \precsim G(x, x, y) + \\ & G(x, x, z) \end{array}$
- (iii) $G(x, y, y) \preceq 2G(y, x, x)$
- (iv) $G(x, y, z) \preceq G(x, a, z) + G(a, y, z)$

- (v) $G(x, y, z) \leq 2/3(G(x, y, a) + G(x, a, z) + G(a, y, z))$
- (vi) $G(x, y, z) \preceq (G(x, a, a) + G(y, a, a) + G(z, a, a)).$

Proposition 4.2. Let (X, G) be a complex valued G-metric space. Then the following are equivalent:

- (i) (X, G) is symmetric.
- (ii) $G(x, y, y) \preceq G(x, y, a)$, for all x, y, a $\in X$.

(iii)
$$G(x, y, z) \leq G(x, y, a) + G(z, y, b)$$
 for all x,
y, a, b $\in X$.

In 1998, Jungck [7] introduced the concept of weakly compatibility as follows:

Definition 4.3 Two self mappings S and T are said to be weakly compatible if they commute at their coincidence points.

5. MAIN RESULT

Now we prove our main result for a pair of self mappings:

Theorem 5.1. Let (X, G) be a complete complex valued Gmetric space. Let S, T: $X \rightarrow X$ be self mappings satisfying the following conditions:

 $(2.1) S(X) \subseteq T(X),$

(2.2) any one of the subspace S(X) or T(X) is complete,

(2.3) $G(Sx, Sy, Sz) \leq k G(Tx, Ty, Tz)$ for all x, y, z $\in X$, where $0 \leq k < 1$,

(2.4) S and T are weakly compatible self maps.

Then S and T have a unique common fixed point in X.

Proof. Let $x_0 \in X$ be an arbitrary point in X. By (2.1), one can choose a point x_1 in X such that $Sx_0 = Tx_1$. In general choose x_{n+1} such that

$$y_n = Sx_n = Tx_{n+1}.$$

Now, we prove $\{y_n\}$ is a complex valued G- Cauchy sequence in X.

Putting $x=x_n$, $y=x_{n+1}$, $z=x_{n+1}$ in (2.1), we have

 $G(Sx_n, Sx_{n+1}, Sx_{n+1}) \leq kG(Tx_n, Tx_{n+1}, Tx_{n+1}) = kG(Sx_{n-1}, Sx_n, Sx_n)$

Continuing in the same way, we have

 $\mathbf{G}\left(Sx_n, Sx_{n+1}, Sx_{n+1}\right) \preceq k^n \mathbf{G}\left(Sx_0, Sx_1, Sx_1\right)$

This implies that $G(y_n, y_{n+1}, y_{n+1}) \leq k^n G(y_0, y_1, y_1)$

Then, for all $n, m \in N$, n < m, we have by (CG5)

 $\begin{array}{lll} \mathrm{G} \; (y_n, y_m, y_m) \lesssim & \mathrm{G} \; (y_n, y_{n+1}, y_{n+1}) + \mathrm{G}(y_{n+1}, y_{n+2}, y_{n+2} + \\ \mathrm{G}(y_{n+2}, y_{n+3}, y_{n+3}) + & \ldots & + \mathrm{G}(y_{m-1}, y_m, y_m) \; \lesssim \; (k^n + \\ \end{array}$

 $k^{n+1} + k^{n+2} + \dots + k^{m-1}$) G $(y_0, y_1, y_1) \qquad \lesssim \frac{k^n}{1-k}$ G $(y_0, y_1, y_1),$

Therefore,

$$|G(y_n, y_m, y_m)| \le \left(\frac{k^n}{1-k}\right) |G(y_0, y_1, y_1)|$$

Since $k \in [0, 1]$, if we taking limit as n, $m \to \infty$, then $\frac{k^n}{1-k}$ |G $(y_0, y_1, y_1) \mid \to 0$,

i.e., G $(y_0, y_1, y_1) \rightarrow 0$

For n, m, $l \in N$ (CG5) implies that

 $\mathbf{G}(y_n, y_m, y_l) \preceq \mathbf{G}(y_n, y_m, y_m) + \mathbf{G}(y_l, y_m, y_m),$

Therefore, $|G(y_n, y_m, y_l)| \le |G(y_n, y_m, y_m)| + |G(y_l, y_m, y_m)|$

Taking limit as n, m, $l \to \infty$, we get $|G(y_n, y_m, y_l)| \to 0$ i.e., $G(y_n, y_m, y_l) \to 0$. So $\{y_n\}$ is complex valued G-Cauchy sequence. Since either S(X) or T(X) is complete. Without loss of generality, we assume that T(X) is complete subspace of X, then the subsequence of $\{y_n\}$ must get a limit in T(X) (say) z. Then Tu=z for some $u \in X$, as $\{y_n\}$ is a complex valued G-Cauchy sequence containing a convergent subsequence, therefore the sequence $\{y_n\}$ also convergent implying thereby the convergence of subsequence of the convergent sequence. Next we show that Su = z. On setting x = u, y = x_n and $z = x_n$, in (2.3), we have

 $G(Su, Sx_n, Sx_n) \leq kG(Tu, Tx_n, Tx_n)$

Taking limit as $n \rightarrow \infty$, we have $G(Su, z, z) \preceq kG(Tu, z, z)$

Therefore, $|G(Su, z, z)| \le k |G(Tu, z, z)|$ implies that Su=z.

Therefore, Su =Tu =z. i.e., u is coincidence point of S and T. Since S and T are weakly compatible, it follows that STu = TSu i.e., Sz = Tz.

We now show that Sz = z. Suppose that $S(z) \neq z$, therefore $0 \prec G(Sz, z, z)$ implies that |G(Sz, z, z)| > 0.

Putting x = z, y = u, z = u in (2.3), we have

 $G(Sz, Su, Su) \preceq kG(Tz, Tu, Tu) = kG(Sz, z, z)$

i.e., $|G(Sz, z, z)| \le k|G(Sz, z, z)| < |G(Sz, z, z)|$ which is a contradiction, therefore

Sz = z. Thus Sz = Tz = z i.e., z is a common fixed point of S and T.

Uniqueness: To prove uniqueness, suppose that $w \neq z$ be another common fixed point of S and T. Then $0 \prec G(z, w, w)$ implies that |G(z, w, w)| > 0.

Putting x = z, y = u, z = u in (2.3), we have

 $G(z, w, w) = G(Sz, Sw, Sw) \preceq kG(Tz, Tw, Tw) = kG(z, w, w)$

i.e., $|G(z, w, w)| \le k|G(z, w, w)| < |G(Sz, z, z)|$, which is a contradiction, therefore

z = w. Thus Sz = Tz = z i.e., z is a unique common fixed point of S and T.

Example 5.1. Let X = [-1, 1] and let $G: X \times X \times X \to \mathbb{C}$ be complex valued G-metric space defined as follows:

 $\begin{array}{l} G(x, y, z) = |x - y| + |y - z| + |z - x|, \text{ for all } x, y, \\ z \in X. \text{ Then } (X, G) \text{ is complex valued G-metric space.} \\ \text{Define } S, T: X \rightarrow X \text{ as } Sx = \frac{x}{2} \text{ and } Tx = \frac{x}{6}. \end{array}$

Here we note that, (2.1) $S(X) \subseteq T(X)$, (2.2) Both S(X) and T(X) are complete,

(2.3) $G(Sx, Sy, Sz) \leq k G(Tx, Ty, Tz)$ holds for all x, y, $z \in X$, $1/3 \leq k < 1$, (2.4) S and T are weakly compatible because S and T commute at their coincidence point i.e., at x=0 and x=0 is the unique common fixed point of S and T.

6. REFERENCES

- [1] Azam, A Fisfer, B, Khan, M: Common fixed point theorems in complex valued metric Spaces. Number. Funct. Anal. Optim.. 32(3), 243-253 (2011).
- [2] B.C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutt Math. Soc.84 (1992), 329-336.
- [3] B. C. Dhage, " On generalized metric spaces and topological structure. II," Pure and applied Mathematika Sciences, Vol.40, no.1-2,pp.37-41,1994.
- [4] B. C. Dhage, "A common fixed point principle in Dmetric spaces." Bulletin of the Calcutta Mathematical Society, vol. 91, no.6, pp. 475-480, 1999.
- [5] B. C. Dhage, "Generalized metric spaces and topological structure I," Annalele Stintifice ale Universitatii Al.l Cuza, vol. 46, no. 1, pp.3-24, 2000.
- [6] Balbir Singh, Vishal Gupta and Sanjay Kumar, " Contraction Principle in Complex valued G-metric spaces" Journal of Complex system (under communication).
- [7] G. Jungck, Common fixed point for non continuous non self mappings on non metric Spaces, Far East J. Math.Sci. 4(2) (1996), 199-212.
- [8] Z. Mustafa and B.Sims, Some remarks concering Dmetric spaces, Proceedings of International Conference on Fixed Point Theory and applications, Yokohama Publishers Valencia Spain, July 13-19(2004), 189-198.
- [9] Z. Mustafa and B.Sims, A new approach to a generalised metric spaces, J. Nonlinear Convex Anal., 7(2006), 289-297.