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ABSTRACT

In this paper we investigate the numerical solution of Abel’s
integral equations of the first and second kind by chebychev
polynomials of the first ,second ,third and fourth kinds. Some
numerical examples are presented to illustrate the method.
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1. INTRODUCTION

Abel’s integral equations provide an important tool for
modeling a numerous phenomena in basic and engineering
sciences such as physics, chemistry, biology, electronics and
mechanics [4,14,20]. Abel’s integral equations often appears
in two forms the first and second kind as follows.

flx) = J\/(u(%)td (1.1

And
t
u(t) dt
JEx -1
where f(x) is a continuous function with 0 < x,t < T, where

T is constant. Moreover, generalized Abel’s integral equation
can be considered the foIIowing forms

u(®
f) = f e (13)

u(®) = FO0) + f 12)

And

u(t)
(x =)

u(t) = f(x) +f dt (1.4)

Where0 < a <1, f(x) € C[0,T],0<x,t<Tand Tis
constant.

The paper it organized the following way: In section 2, we
present the fractional integral and derivative operators and
some their properties. In section 3, we combined fractional
technique, Chebyshev  polynomials and the collocation
method for solving Abel’s integral equation. Some examples
are investigated in section 4. The numerical results show the
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accuracy of the method. Last section is conclusion that gives
some points of the method.

2. FRACTIONAL INTEGRAL AND
DERIVATIVE

Definition 2.1. A real function u(x),x > 0, is said to be
in the space C,, u € R if there exists a real number(p >

w1 such that u(x) = xPv(x), where
v(x)C[0, o), Jand it is said to be in the space C*, iff
u™ e C,,meN.

Definition 2.2. The Riemann-Liouville fractional integral
operator of order ¢ > 0, of afunction u(x) € C,, u = -1
is define as

1 X
J%u(x) = m[ (x — t)* tu(t)de 2.1)
0
such that J%u(x) = u(x)

proposition 2.1. The operator J* in definition 2.2 satisfies
the following properties for u; € C,, i =0..n,
p=-1.

1. ]a(zll oui(x)) = ?:o]a u; (%),

a B r(g+1) a+ﬁ _
2, ] x I"(a+B+1) p>-1

Definition 2.3. The Riemann-Liouville fractional derivative
operator of order o > 0, of a function u(x) is define as
X

1 -a
D u(x) = mDL (x - t) u(t)dtr (22)

0<a<l, x>0
where DulImeans the first order derivative of u.

Definition 2.4. The Caputo fractional derivative of order a
is define as

Def(x)
= J’”‘“Dmf(x)
f (x — )ym-a"L M (p)qt,
T (m —-a)

Where, m-1< a < m,m € N,x > 0 it has the following two
basic properties

(23)

DY*f(x) = f(x) (2.4)

and

k
JDU) = ) = Y fPON T, x>0 (@25)
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3. DESCRIPTION OF THE METHOD

In this method, we use the Chebyshev polynomials through
the fractional calculus to approximate the solution of Abel.s
integral equations. So, we introduce briefly orthogonal
Chebyshev polynomials as a suitable tool for approximation
[7,18].
Definition 3.1. The Chebyshev polynomial T, (t) of the first
kind for t = cos(8), (0 < 6 < m),[Ithe function

T, (t) = cos(nf) = cos(n cos™1(t)) 3.1)

is a polynomial of degree n , T,(t) is called Chebyshev
polynomial of degree n. When 6 increase from 0 tom, t
decrease from 1 to —1. Then the interval [—1,1] is domain of
definition of Tn(t) Also, the roots of Chebyshev polynomial
of degree n + 1 can be obtained by the following formula

i—-Dr
2n+1)’
In addition, the successive Chebyshev polynomials can be
obtain by the following recursive relation

t; = cos i=1..,n+1 (3.2)

To(x) = 1,

Ti(x) = x,

T,(x) = 2x*—1,

T,(x) = 2xTp_1(x) — Tp—2(x), n = 2,3,4,..

(3.3)

Definition 3.2. The Chebyshev polynomial U, (t) of the
second kind for t = cos(8), (0 < 0 < m) the function

_sin(n+1)6

Up(t) = Sin @) (3.4)

is a polynomial of degree n , U, (t) is called Chebyshev
polynomial of degree n. When 6 increase from 0 tom , t
decrease from 1 to —1. Then the interval [—1,1] is domain of
definition of U,, (t)Also, the roots of Chebyshev polynomial
of degree n + 1 can be obtained by the following formula

t; =cosn7, i=1,..,n+1 (3.5)

In addition, the successive Chebyshev polynomials can be
obtain by the following recursive relation

Up(x) = 1,

Ui(x) = 2x,

Uy(x) = 4x% — 1,

U,(x) = 2xUp—1(x) — Up—p(x), n = 2,3,4,..

(3.6)

Definition 3.3. The Chebyshev polynomial V; (t) of the
second kind for t = cos(8), (0 < 8 < m) the function

cos(n + %)0
Vo(t) = ———5"— (3.7)
cos>
is a polynomial of degree n , V,(t) is called Chebyshev
polynomial of degree n. When 6 increase from 0 tom , t
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decrease from 1 to —1. Then the interval [—1,1] is domain of

definition of 17,(t)) Also, the roots of Chebyshev polynomial

of degree n + 1 can be obtained by the following formula
2ir

t. = -_,
L+ 3)

i=1,..n+1 (3.8)

In addition, the successive Chebyshev polynomials can be
obtain by the following recursive relation

Vo(x) =1,

Vilx) = 2x—1,

Vo(x) = 4x% —2x—1,

Vo) = 2xV,_1(x) — V,o(x), n = 2,3,4,..

(3.9)

Definition 3.4. The Chebyshev polynomial W,,(t) of the
second kind for t = cos(8), (0 < 8 < m) the function

sin(n + %)9
Wo(t) = ———"— (3.10)
sin(z)e

is a polynomial of degree n , W, (t) is called Chebyshev
polynomial of degree n. When @ increase from 0 tom , t
decrease from 1 to —1. Then the interval [—1,1] is domain of
definition of W, (t) Also, the roots of Chebyshev polynomial
of degree n + 1 can be obtained by the following formula

ti=cosn7, i=1,..,n+1 (3.11)

In addition, the successive Chebyshev polynomials can be
obtain by the following recursive relation

Wo(x) =1,

Wilx) = 2x+1,

W,o(x) = 4x% +2x—1,

W,(x) = 2xW,_1(x) — W,_2(x),n = 2,3,4, ...

(3.12)

Now, we apply chebyshev polynomials for solving Abel’s
integral equation of the first and second kind.

3.1. First kind

According to (1.3) and (2.1), Abel’s integral equation of the
first kind can be rewritten as follow

fO) =T - a)]' " *u(x) (3.13)

Since calculating of J1=%u(x) is directly cost and inefficient,
we will use Chebyshev polynomials for approximating w(x).
We assume u(x) on interval [-1,1], can be written as a
infinite series of Chebyshev basis

u(x) = Z a; Gi(x), (3.14)
i=0

where G;(x) = T;(x), U;(x),V;(x) and W;(x) are the first,
second, third and forth kind of chebyshev polynomials. For
interval [a,b], we can use suitable change of variable to
obtain this interval. So we express u(x) as a truncated
Chebyshev series as follow
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n

Un(0) = ) 46,0, 3.15)

i=0

such that w,(x) will be approximated solution of Abel’s
integral equation. Now, we can write (3,13) in the form

) =T =) ) a;J'"G(x) (3.16)

Note that, we applied the linear combination property of
fractional integral according to proposition 2.1. So, it is
sufficient to obtain J1~%G;(x). Assume

i
Gi(x) = Z by %, (3.17)
k=0
where b,k = 0 ...1 are coefficients of Chebyshev polynomial

of degree i that are defined by (3.3). Now, by replacing
(3.17) in J179G;(x) we have

J76 () = ) bk, (3.18)

Proposition 2.1. confirms validity of (3.17) and utilizes
computation of J'~*T;. So, substitution (3.18) in (3.16)
gives the following form

fx)=T(-a) Z a; Z by J1%xk (3.19)

Now, we collocate the roots of Chebyshev polynomial of
degree n + 1 in (3.19). It leads to a system of linear
equations. By solution of obtained system we have the
approximate solution of Abel’s integral equation as (3.15).
For more efficiency of this method, we suggest reordering
Chebychev series as follows

n n

zai Gi(x) = ZCixi (3.20)

i=0 i=0

where c; is linear combination of a;. Then (3.16) is reformed

F() =T - a) Z ¢ Ji-ox (321)
i=0

This reformation leads to reduce computation the term J1~%x!
We remind using directly {1, x, ..., x™} as basis instead of
Chebyshev.

3.2. Second kind

We can rewrite (1.4) with consideration (2.1) in the form

ulx) = f(x) + Tl — &) %*u(x) (3.22)

Similarly, we replace (3.15) to (3.22). So we have
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n

D @G0 = FE+TU-@) ) @/ "Gi(x)  (323)
i=0

i=0
or equivalently by using (3.20)

n

n
Z a; Gi(x)=f(x)+T(1 —a) Z cJU% (3.24)
i=0 i=0

After computing J1~%x¢ and substitute the collocation points
we have asystem of linear equations. Solution of the system
leads to the approximated solution of Abel’s integral equation.
We solve some examples by this method and assess the
accuracy of method in the next section.

4. NUMERICAL EXAMPLES

This section is devoted to computational results.We apply
the presented method in this paper and solve several
examples. Those examples are chosen whose exact solutions
exist.All of the computations have been done using the Maple
16.

Example.1l. Consider Abel’s integral equation

u(t)
f ——\F(105 56x2 +48x3)  (4.1)
m 105

with the exact solution x3 —x2+1 [17,3,21]. Applying
chebyshev polynomials of the first kind to integral equation
(4.1) at n = 3, we obtain the approximate solution which is
the same as the exact solution. Similarly in all caces of
chebyshev polynomials.

Note : We note that if the exact solution is a polynomial of
degree k, the solution is the same as the exact solution for all
n>k.

Example.2. Consider the following Abel’s integral equation
of the second kind

u(x) = x? +—x J- u(®) dt (4.2)

V=1

with exact solution x2 [15,17,3,21]. Similar to the previous
example, Applying chebyshev polynomials of the second kind
to integral equation (4.2) at n = 2, we obtain the
approximate solution which is the same as the exact solution.
Similarly in all cases of chebyshev polynomials.

Example.3. Consider the following Abel’s integral equation
of the second kind

u(x)=%nx+\/§—f\/(ux(%)td (4.3)

with exact solution u(x) =+ [3]. The numerical results
are shown in table 1 .

Example.4. Consider the following Abel’s integral equation
of the first kind
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f

u(t)
(x=1)

dt=§nx

(4-4)
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1
with the exact solution u(x) = x3 . The numerical results are
shown in table 3.

Example.6. Consider the following Abel’s integral equation
of the second kind

with exact solution u(x) = +/x . The numerical results are
shown in table 2.

Example.5. Consider the following Abel’s integral equation

of the first kind

u(x)=i7rx+x%—fL)1
0 (x—1t)2

242

dt (4.6)

1
with exact solution u(x) = x= . The numerical results are

¢ u(t) 2 shown in table 4.
fﬁdt = Wg X (45)
0 (x—1)3
Table 1: Estimate the exact , approximate solution and error of Example 3.
Chebyshev at First kind Second kind Third kind Fourth kind
x Exact Approximate | Abs.Error | Approximate | Abs.Error | Approximate | Abs.Error | Approximate | Abs.Error
0.1 | 03162277660 | 0.3262289843 | 0.0100012183 | 0.1633385109 | 0.1528892551 | 0.3118947197 | 0.0043330463 | 0.2860710870 | 0.0301566790
0.2 | 0.4472135955 | 0.4370911793 | 0.0101224162 | 0.3382916170 | 0.1089219785 | 0.4284104918 | 0.0188031037 | 0.4118411422 | 0.0353724533
0.3 | 0.5477225575 | 0.5514814746 | 0.0037589171 | 0.5116141282 | 0.0361084293 | 0.5371406971 | 0.0105818604 | 0.5445463708 | 0.0031761867
0.4 | 0.6324555320 | 0.6504046356 | 0.0179491036 | 0.6639959271 | 0.0315403951 | 0.6303329948 | 0.0021225372 | 0.6594473042 | 0.0269917722
0.5 | 07071067812 | 0.7275839923 | 0.0204772111 | 0.7782388816 | 0.0711321004 | 0.7088529798 | 0.0017461986 | 0.7467007601 | 0.0395939789
0.6 | 07745966692 | 0.7843527148 | 0.0097560456 | 0.8460402700 | 0.0714436008 | 0.7759456911 | 0.0013490219 | 0.8050278933 | 0.0304312241
0.7 | 0.8366600265 | 0.8277730839 | 0.0088869426 | 0.8734083956 | 0.0367483691 | 0.8342817618 | 0.0023782647 | 0.8412925127 | 0.0046324862
0.8 | 0.8944271910 | 0.8695680595 | 0.0248591315 | 0.8841209990 | 0.0103061920 | 0.8883016507 | 0.0061255403 | 0.8714991594 | 0.0229280316
0.9 | 09486832981 | 0.9273276526 | 0.0213556455 | 0.9207990287 | 0.0278842694 | 0.9589703168 | 0.0102870187 | 0.9224970442 | 0.261862539
1.0 1.0 1.032310535 | 0.032310535 | 1.049560627 | 0.049560627 | 1.115689009 | 0.115689009 | 1.034768546 | 0.034768546
Table 2 : Estimate the exact , approximate solution and error of Example 4.
Che:yihg" at First kind Second kind Third kind Fourth kind
x Exact Approximate | Abs.Error | Approximate | Abs.Error | Approximate | Abs.Error | Approximate | Abs.Error
0.1 | 0.3162277660 | 0.3096574554 | 0.0065703106 | 0.09650710208 | 0.2197206639 | 0.1081840013 | 0.2080437647 | 0.07941293031 | 0.2368148357
0.2 | 04472135955 | 0.4383222520 | 0.0088913435 | 0.1837835895 | 0.2634300060 | 0.2009414857 | 0.2462721098 | 0.1782092498 | 0.2690043457
0.3 | 0.5477225575 | 0.5641447309 | 0.0164221734 | 0.2627601481 | 0.2849624094 | 0.2799339030 | 0.2677886545 | 0.2674991351 | 0.2802234224
0.4 | 0.6324555320 | 0.6634064973 | 0.0309509653 | 0.3336195724 | 0.2988359596 | 0.3436918146 | 0.2887637174 | 0.3444498621 | 0.2880056699
05 | 07071067812 | 0.7316987094 | 0.0245919282 | 0.3963925876 | 0.3107141936 | 0.3940059987 | 0.3131007825 | 0.4080523267 | 0.2990544545
0.6 | 07745966692 | 0.7761659683 | 0.0015692991 | 0.4517554768 | 0.3228411924 | 0.4355618482 | 0.3390348210 | 0.4592908605 | 0.3153058087
0.7 | 0.8366600265 | 0.8108917730 | 0.0257682535 | 0.5014894547 | 0.3351705718 | 0.4764192978 | 0.3602407287 | 0.5016469736 | 0.3350130529
0.8 | 0.8944271910 | 0.8531739009 | 0.0412532901 | 0.5482220071 | 0.3462051839 | 0.5290043915 | 0.3654227995 | 0.5413950124 | 0.3530321786
0.9 | 09486832981 | 0.9319331428 | 0.0167501553 | 0.5946638006 | 0.3540194975 | 0.6116873125 | 0.3369959856 | 0.5877273581 | 0.3609559400
1.0 1.0 1124303414 | 0.124303414 | 0.6438172447 | 03561827553 | 075020747 | 0.2497739253 | 0.6533237187 | 0.3466762813
Table 3 : Estimate the exact , approximate solution and error of Example 5.
Chepyshev at First kind Second kind Third kind Fourth kind
x Exact Approximate | Abs.Error | Approximate | Abs.Error | Approximate | Abs.Error | Approximate | Abs.Error
0.1 | 04641588834 | 0.4569993988 | 0.0071594846 | 0.5007413075 | 0.0365824241 | 0.4219664362 | 0.0421924472 | 04178182891 | 0.0463405943
0.2 | 0.5848035476 | 0.5648062624 | 0.0199972852 | 0.5647654482 | 0.0200380994 | 0.5304792281 | 0.0543243195 | 0.5581733339 | 0.0266302137
0.3 | 0.6694329501 | 0.6741151721 | 0.0046822220 | 0.6446275115 | 0.0248054386 | 0.6359209305 | 0.0335120196 | 0.7045568396 | 0.0351238895
0.4 | 07368062997 | 0.7567189773 | 0.0199126776 | 0.7212234573 | 0.0155828424 | 0.7347652689 | 0.0020410308 | 0.8113846895 | 0.0745783898
0.5 | 07937005260 | 0.8091090403 | 0.0154085143 | 0.7863475338 | 0.0073529922 | 0.8384039045 | 0.0447033785 | 0.8613622282 | 0.0676617022
0.6 | 0.8434326653 | 0.8430983615 | 0.0003343038 | 0.8402400594 | 0.0031926059 | 0.9368654900 | 0.0934328247 | 0.8611466043 | 0.0177139390
0.7 | 0.8879040017 | 0.8727473801 | 0.0151566216 | 0.8866552229 | 0.0012487788 | 0.9820057276 | 0.0941017259 | 0.8393594463 | 0.0485445554
0.8 | 0.9283177667 | 0.9037438304 | 0.0245739363 | 0.9275154108 | 0.0008023559 | 0.9342787222 | 0.0059609555 | 0.8409844892 | 0.0873332775
0.9 | 09654893846 | 0.9610088165 | 0.0044805681 | 0.9631994230 | 0.0022899616 | 1.034528994 | 0.0690396094 | 0.9363116813 | 0.0291777033
1.0 1 1.199736936 | 0.199736936 | 1.011724263 | 0.011724263 | 2.026969975 | 1.026969975 1.282205790 | 0.282205790
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Table 4 : Estimate the exact , approximate solution and error of Example 6.

Chebyshev at First kind Fourth kind
x Exact Approximate | Abs.Error | Approximate | Abs.Error
0.1 | 0.5623413252 | 0.6414337651 | 0.0084209913 | 0.5216812833 | 0.0406600419
0.2 | 0.6687403050 | 0.6414337651 | 0.0273065399 | 0.6442374879 | 0.0245028171
0.3 | 0.7400828045 | 0.7333926615 | 0.0066901430 | 0.7732884738 | 0.0332056693
04 | 07952707288 | 0.8039736577 | 0.0087029289 | 0.8641481389 | 0.0688774101
0.5 | 0.8408964153 | 0.8504766728 | 0.0095802575 | 0.8995728907 | 0.0586764754
0.6 | 08801117368 | 0.8845770520 | 0.0044653152 | 0.8887329864 | 0.0086212496
0.7 | 09146912192 | 0.9156105062 | 0.0009192870 | 0.8626871131 | 0.0520041061
0.8 | 0.9457416090 | 0.9387555460 | 0.0069860630 | 0.8630102041 | 0.0827314049
0.9 | 09740037464 | 0.9740746809 | 0.0000709345 | 0.9570313674 | 0.0169723790
1.0 1 1.218950038 | 0.218950038 1.336801386 | 0.336801386

We note that the second and third kind of chebyshev
polynomials are similar.

5. CONCLUSION

In this method, we develop the Chebyshev method through
the fractional calculus for solving generalized Abel's integral
equations. We note that this method is easy to compute. Also,
ability and efficiency of the method are great. In particular,
when the exact solution of the problem is polynomial, the
method gives the exact solution.
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