
International Journal of Computer Applications (0975 – 8887)

Volume 100– No.7, August 2014

34

Reducing Execution Time of Distributed SELECT Query

in Heterogeneous Distributed Database using Genetic

Algorithm

Nikhil S. Gajjam

Walchand Institute of Technology, Solapur

S. S. Apte, Ph.D
Head, CSE Dept.

Walchand Institute of Technology, Solapur

ABSTRACT

Centralized unit that coordinates different types of schema

running on multiple sites is getting importance now-a-days.

Heterogeneous Distributed Database System (HDDS) is the

collection of multiple different databases management

systems running on multiple systems that are linked together.

Query processing is complicated in such cases.

In this work we concentrate on utilizing Genetic Algorithm

for finding optimized query execution plan for distributed

SELECT queries. Selecting the right set of plans for queries

using Genetic Algorithm which minimizes the total execution

time is the major goal of this work. Replication of schema is

used in this work which gives multiple solutions for retrieval

of the data. We used Chromosome for specifying plan for

query. Chromosome structures consist of combination of data

site and join order.

Aglet, Mobile agent, is used to connect all the database

servers with centralized server.

By implementing this, we get the optimized plan for the select

query.

Keywords

Heterogeneous Distributed Database, Genetic Algorithm,

Aglet.

1. INTRODUCTION

1.1 Heterogeneous Distributed Database

System (HDDS):
HDDS is the collection of multiple databases management

systems (may be same or different) running on multiple

systems that are linked together.

Fig 1: Heterogeneous Distributed Database

In Heterogeneous Distributed Database System,

Heterogeneous term specifies different and distributed term

specifies multiple. Most of the distributed queries require

relations from multiple sites for their processing. The number

of possible alternative query plans increases exponentially

with increase in the number of relations required for

processing the query [17]. Query processing cost also

increased for distributed queries because of fragmentation or

replication of the data and network cost.

In Fig 1, 3 sites are connected in network consisting of 3

different database management systems. Site 1 consists of

MySQL database, site 2 consists of MSSQL database and site

3 consists of Oracle database.

To make database distributed, generally 2 methods are used.

Fragmentation: It is the process of dividing the table either

row wise (horizontally) or column wise (vertically).

Replication: It is the process of keeping the table as it is on

multiple sites.

1.1.1 Replication
In this research, replication method is used. Replication is the

process of storing tables at multiple sites with same schema

and same data in the table.

Advantages of replication are

 Increased availability

 Increased reliability

 Less response time

 Less network traffic

1.2 Aglet as a Mobile Agent
Agent: Agent performs task on behalf of user. That task may

require single machine or multiple machines.

2 Broader types of agents are

Stationary: Agent that performs task only on single machine

where it is created.

Mobile: A mobile agent is not bound to the system where it

begins execution. It has the unique ability to transport itself

from one system in a network to another [3]. It requires

visiting multiple machines to complete its task.

Mobile agents can provide single uniform paradigm for

distributed environment. Mobile Agents are the programs that

can be dispatched from one machine to another machine for

performing distributed task.

Along with mobility, Mobile Agent has following properties

 Autonomous

 Local Interaction

 Parallel Execution

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.7, August 2014

35

1.2.1 Aglet
Recently Mobile Agent development has been done using

Java and has proved to be powerful tool. Java is proved to be

more suitable for creating mobile agents because of reasons

like platform independence, multithreading programming [4].

Simply aglet is defined as mobile agent designed in Java or

Java based mobile agent. Aglet is developed by IBM as

Tokyo Lab Project.

Aglet is the class having some methods like start(), stop(),

onArrival(), onReturn(), transfer() etc.In this work, Aglet acts

as agent and performs tasks that are given by

server(centralised or DBserver). Data transfer between the

sites is done using Aglet.

1.3 Genetic Algorithm
Genetic Algorithm is an evolutionary algorithm generally

used to find an optimal solution among multiple solutions to

the problem. It uses crossover and mutation operation for

finding multiple solutions for given problem. Fitness function

is useful to find out whether we are on track of getting best

solution or not. Out of multiple crossover techniques, we used

single point crossover technique. Genetic Algorithm has been

already used for Distributed Query Plans Generation[15].We

extended this work to find best plan for Distributed Query and

also executed this plans on Heterogeneous Distributed

Environment.

2. RELATED WORK
Many algorithms have been implemented for reducing

response time of the running query like dynamic

programming algorithms, Genetic Algorithms. Reza Ghaemi,

Amin Milani Fard, Hamid Tabatabaee, and Mahdi

Sadeghizadeh[13] have presented paper on Evolutionary

Query Optimization for Heterogeneous Distributed Database

Systems. They have proposed an evolutionary query

optimization technique in distributed heterogeneous systems

using multi-agent architecture and genetic algorithm

approach.They concentrated on join order for optimizing the

query, but in our work we concentrated on finding optimized

execution plan instead of query optimization in combination

with data site.

Ender Sevinç and Ahmet Cosar [5] proposed a new genetic

algorithm (GA)-based query optimizer in which chromosome

consists of Copy Id, Semi-join, Join-site, Join-order.In our

work we concentrated on data site and join order.

Murat Ali Bayir, Ismail H. Toroslu, and Ahmet Cosar [9]

presented the Genetic Algorithm for Multiple Query

Optimization problem. In this paper they have solved Multiple

Query Optimization Problem with different types of Genetic

Algorithm. They also compared Genetic Algorithm with A*

heuristic technique and proved that Genetic Algorithm works

better than A* heuristic technique.

Danny B. Lange, Mitsuru Oshima [4] presented a paper on

Mobile Agents with Java: The Aglet API1. They showed that

why Java is a powerful technique for mobile agent

development. They also specified working of an Aglet, life

cycle methods of an Aglet and application of Aglet. In this

research, we implemented Aglet life cycle model as specified

in the paper.

Kristin Bennett ,Michael C. Ferris,Yannis

E.Ioannidis[1]worked on Genetic Algorithm for Query

Optimization.They presented a method for encoding arbitrary

binary trees as chromosomes and describe several crossover

operators for chromosomes. They want to improve GA to

work for parallel databases.

Danny B. Lange [3] presented paper on Mobile Objects and

Mobile Agents: The Future of Distributed Computing?

Mobile agents reduces network load, encapsulates protocols,

executes asynchronously, adapt dynamically. Because of these

reasons mobile agents are good in distributed systems.

3. METHODOLOGY

Fig 2: Developed Architecture

Fig 2 shows developed architecture & it consists of following

modules.

 GENETIC ALGORITHM EXECUTER

 EXECUTION UNIT

 AGLET HOST

 DBSE RVER

When we start execution, first work that server does is to

collect metadata from all the 3 sites. Metadata is nothing but

overall schema of database. Metadata is required for knowing

which table is stored at which site and columns of the

corresponding table.

Client or user gives SELECT query as input to the server.

Server is combination of Genetic Algorithm Executer,

Execution Unit and Aglet Host.

3.1 Genetic Algorithm Executer (GAE) :
Genetic Algorithm Executer retrieves the query and parses the

query i.e. it finds out number of tables and name of the tables

present in the query.

Major operations of GAE are selection, crossover and

mutation.

Selection – between all individuals in the current

population are chose those, who will continue and by means

of crossover and mutation will produce offspring population.

Crossover – Different chromosomes are created using

interchanging the genes of the previous chromosomes.

Mutation – by means of random change of some of the

genes.

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.7, August 2014

36

Each Chromosome has one fitness value associated with it.

Here fitness=1/time

Where time= time required to execute query using given

chromosome structure.

3.1.1 Chromosome Structure
As specified chromosome is nothing but the plan for

executing the query. We took Chromosome Structure as a

combination of Data Site and Join Order.

Here Data Site specifies location of the table and Join

Order specifies Order for joining the data.

Eg: 3 tables are there in query and that are Student,

Teacher, College.

Sample Chromosome is [[2,0,0] [2,1,0]]

Here [[2,0,0] [2,1,0]] means

3.1 Title and Authors

[2, 0, 0] for Data Site means retrieve Student table from site 2,

Teacher table from site 0, College table from site 0.

[2,1,0] for join order means joining of data is performed in

order College with Teacher and then result is joined with table

Student to find final result.

3.1.2 Validation of Chromosome
Validation of data site means table must be present at that

site.

E.g.: if data site is [1, 2, 0] then 1st table must be present at

site 1, 2nd table must be present at site 2, 3rd table must be

present at site 0. If any one condition is false then

chromosome is invalid.

Validation of join order means checking whether joining of

table according to join order is possible or not. Joining of 2

tables is possible only if both the tables must have at least one

common attribute.If both data site and join order are correct

then only we can say that chromosome is valid.

3.2 Execution Unit
Execution Unit is another important module of this work.

Main work of this module is to execute the query according to

the plan suggested by corresponding chromosome.

 Input to execution Unit is valid chromosome. Execution

Unit will execute the query according to that chromosome and

find out the time required for executing the query according to

the plan suggested by chromosome.

First step that Execution Unit does after receiving valid

chromosome is to parse the chromosome. I.e. to find out data

site and join order. Then Execution unit will create number of

aglet (Total number of aglet is equals to the number of

database sites. Here it is 3). Then Execution Unit will parse

the original query and find out different query for different

table.

 Next step that execution Unit does is to send aglet to

the correspond site that is specified by the chromosome

structure along with parsed query. These aglets are received at

DBserver. After executing query DBserver will send aglet

back to Execution Unit. After retrieving all the aglets from

DBserver, Execution Unit will join the partial result in the

order specified by the chromosome structure to get complete

result.

 Execution Unit finds out the time required to get

complete result for query according to the plan specified by

chromosome. So Execution Unit will contain table containing

chromosome structure and time required for executing query

with corresponding chromosome structure.

3.3 Aglet Host
Aglet host is the platform for aglets and whose job is to

listen to the network for aglets. Aglet Host is present at

centralized server and all the DB server site for receiving aglet

and sending aglets.

3.4 Database Server (DBserver)
In this work we used 3 DBserver i. e. MySQL, MSSQL,

Oracle. Main job of database server is to retrieve query from

aglet and execute that query.

4. ALGORITHM

The title (Helvetica 18-point bold), authors' names (Helvetica

4.1 Processing of Query
Table 1. Processing of sample Query

Step
Process Processin

g done at

1

Select * from student, college where

student.college.id=

college.college_id

client

2

Table list=student , college

And parse query=

select college_id from student

select college_id from college

GAE

3
Chromosome : data site size=2

Join order size=2
GAE

4

Finds number of valid chromosomes

like

 [[0,0] [1,0]]

 [[2,2] [0,1]]

 [[0,2] [0,1]]etc….

GAE

5

Execution Unit one by one from

GAE and Execution Unit parse that

chromosome

Suppose chromosome is [[2,2] [0,1]]

Data site=[2,2]

Join order=[0,1]

Execution

Unit

Chromosome Structure=Data Site + Join Order

[[2, 0, 0] [2, 1, 0]]

Data Site Join Order

Step 1: Connect centralized server with all the distributed

 databases & collect metadata to centralised server

Step 2: Receive the query from client. Parse the query

&find valid chromosomes.

 While (all valid chromosomes get executed)

 {

 -create partial queries

 -create aglets based on number of tables in query.

 -send aglets to corresponding sites

 -execute query at DBserver

 -Retrieve all the aglets and join partial results

 -find out time required for executing chromosome

}

Step 3: Find out optimized chromosome & store it.

Step 4: Write back results back to client.

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.7, August 2014

37

6

Execution Unit create 2 aglet and

sends those aglets to site 2 and site 2

with

Aglet1 having query select

college_id from student

Aglet 2 having query select

college_id from college

Execution

Unit

7

After receiving aglet, Database

server retrieves queries select

collge_id from student and select

college_id from college and execute

those queries

Result are stored in corresponding

aglet and those aglets are sent back

to Execution Unit

Database

Server

8

Execution Unit will join those

partial result in order student data

join with college data

Execution

Unit

9

Execution Unit will find ids where

condition holds true

Execution

Unit

10

Creation of in queries

Select * from student where

collge_id in(-,-,-)

Select * from college where

collge_id in(-,-,-)

Execution

Unit

11

Again Execution Unit create 2 aglet

and sends those aglets to site 2 and

site 2 with

Aglet1 having query Select *

from student where collge_id in(-,-,-

)

Aglet 2 having query Select * from

college where collge_id in(-,-,-)

Execution

Unit

12

After receiving aglet, Database

server retrieves queries Select *

from student where collge_id in(-,-,-

) and Aglet 2 having query Select *

from college where collge_id in(-,-,-

) and execute those queries

Result are stored in

corresponding aglet and those aglets

are sent back to Execution Unit

Database

Server

13

Execution Unit will join those

partial result in order student data

join with college data

Execution

Unit

14
GAE calculate time required for

chromosome

 GAE

15

Similarly all chromosomes are

executed one by one. then GAE will

find fittest chromosome

GAE

16
Finally results are sent to client Execution

Unit

5. RESULT AND ANALYSIS
Experiments were carried out on following scenario.

 Table 2. Replication of table at sites 0, 1, 2

Site 0 Site 1 Site2

Student

Teacher

College

Teacher Student

Teacher

College

Table 3. Databases at sites 0, 1, 2

 Table 4. Parameters setting for Genetic Algorithm

Table 5: Result analysis of Query1

Query1

:

Select *

from

student

,

college

Chromosome

Time

Required for

executing

chromosome

Fitness

(fitness=1/t

ime) Data

Site

Join

Order

[0, 0] [0, 1] 0.124 8.064

[2, 2] [0, 1] 0.825 1.2121

[0, 0] [1, 0] 0.059 16.6461

[2, 0] [1, 0] 0.335 2.9850

[0, 2] [1, 0] 0.364 2.7472

[2, 2] [1, 0] 0.750 1.3333

[2, 0] [0, 1] 0.406 2.4630

Here for query “select * from student, college” Genetic

Algorithm has created 7 chromosomes. Execution Unit has

executed all these valid chromosomes and finds out the time

required for executing each chromosome.

 Here third chromosome with data site = [0,0] and

join order is [1,0] requires 0.059 sec. which is minimum

amongst all the chromosome

 Chromosome with maximum fitness value is the

best chromosome. So chromosome [[0,0] [1,0]] gives optimal

plan for given query. And that plan is [[0,0] [1,0]] indicating

retrieve table student from site 0 and table college from site

0.And perform join in order college table joining with student

table.

Table 6: Result Analysis of Query2

Query2:

Select *

from

student,

Teacher,

college

Chromosome

Time

Required

for

executing

chromoso

me

Fitness

(fitness=1

/time) Data

Site

Join

Order

[2, 0,0] [2,1,0] 0.321 3.11

[2,2,0] [2,1, 0] 0.693 1.44

[2, 2,0] [0,2, 1] 1.054 0.9487

[0,1, 2] [1,2,0] 0.394 2.5380

[0,1, 0] [2,1,0] 0.163 6.134

[2,1, 0] [0,2,1] 0.282 3.5460

[0, 2,0] [1,2,0] 0.308 3.2467

Here query is “select * from student, teacher, college”.

Here fifth chromosome with data site = [0,1,0] and join order

is [2,1,0] requires 0.163sec which is minimum amongst all the

chromosomes. Chromosome [[2,0,2] [2,0,1]] gives optimal

plan for given query with fitness value=6.134.

We store queries along with its optimized plan at the server

side. We use these optimized plan when same query is fired

again for execution.

Site Database

Site 0 MySQL

Site 1 MSSQL

Site 2 Oracle

Parameter Value

Number of Generation 100

Population Size 20

Crossover Percentage 75

Mutation rate 4

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.7, August 2014

38

Fig 3. comparison of time required for execution

With GA and without GA

Above figure shows the difference in time(msec) when

query is executed with optimized plan of Genetic Algorithm

and without using Genetic Algorithm where

Q1: select * from student

Q2: select * from student,teacher

where student.student_id>2

Q3: select * from student,college

Q4: select * from student, college

where student.college_name= college.college_name

Q5: select * from student,teacher,college

6. CONCLUSION AND FUTURE WORK
In this work, multiple plans were generated for given

SELECT query using Genetic Algorithm. And retrieved

optimized plan from all the plans on the basis of fitness value

and time. This optimized plan is useful when similar query is

fired for execution. At that time, we execute that query with

optimized plan.

We also compared time required for executing query using

Genetic Algorithm and without using Genetic Algorithm

(joining of the data is performed in order of the tables that is

specified in query). And it is observed that execution time is

reduced by minimum 20% when query is executed using

Genetic Algorithm.

This work is more efficient in environment where Database

having large data and replication of tables.

As a future work, we are planning to extend this work for

horizontal and vertical fragmentation of the tables. Natural

language processing techniques can be included in this work.

7. REFERENCES
[1] Bennet K, Ferris MC, Ioannidis YE (1991) A genetic

algorithm for database query optimization. In: Proc 4th

Int Conf Genetic Algorithms, SanDiego,Calif,pp400–407

2011

[2] B. Lange, D. T. Chang, ÏBM Aglets Workbench -

Programming Mobile Agents in Java”, IBM Corporation

White Paper, September 1996..

[3] D. B. Lange, Mobile Objects and mobile agents: The

future of distributed computing? In Proceedings of The

European Conference on Object-Oriented Programming,

1998.

[4] D. B. Lange and M. Oshima, “Mobile agents with Java:

The Aglet API,” World Wide Web Journal,1998.

[5] Ender Sevinc and Ahmet Co¸sar(2011). An Evolutionary

Genetic Algorithm for Optimization of Distributed

Database Queries. The Computer Journal, Vol. 54 No. 5

[6] E.-P. Lim and J. Srivastava(1993), ‘Query

optimization/processing in federated database systems’,

in Conference of Information and Knowledge

Management.

[7] Joachim Baumann, Fritz Hohl, Kurt Rothermel, and

Markus Straßer. Mole— concepts of a mobile agent

system. World Wide Web Journal, 1(3):123–137,1998.

[8] Michael L. Rupley, Jr. (2008): Introduction to Query

Processing and Optimization.

http://www.cs.iusb.edu/technical_repots/TR- 20080105-

1.pdf

[9] Murat Ali Bayir, Ismail H. Toroslu, and Ahmet

Cosar(2007). Genetic Algorithm for the Multiple-Query

Optimization Problem. IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS—PART C:

APPLICATIONS AND REVIEWS, VOL. 37, NO. 1

[10] M. Stillger and M. Spiliopoulou, “Genetic programming

in database query optimization,” in Proc First Annu.

Conf. Genetic Programming,Stanford, CA, July 1996

[11] N. B. Herodotos Herodotou and S. Babu. Query

optimization techniques for partitioned tables. In

SIGMOD Conference,pages49–60,

[12] Papastavrou, S., Samaras, G., Pitoura, E.: Mobile Agents

for WWW Distributed Database Access. In: Proceedings

of the 15th International Conference on Data

Engineering, Sydney, Australia (1999) Available

at<http://ada.cs.ucy.ac.cy/˜cssamara/DBMS-

agents/Paper/papastavrous.ps>

[13] Reza Ghaemi, Amin Milani Fard, Hamid Tabatabaee,

and Mahdi Sadeghizadeh September 2008, Evolutionary

Query Optimization for Heterogeneous Distributed

Database Systems. World Academy of Science

[14] Smith, J. M., P.A. Bernstein, U. Dayal, N. Goodman, T.

Landers, K.W.T. Lin, E. Wong. MULTIBASE --

Integrating heterogeneous distributed database systems.

Proceedings of 1981 National Computer Conference,

AFIPS Press, 487-499

[15] T.V.Vijay Kumar, Vikram Singh, “Distributed Query

Processing Plans Generation Using GA”, IJCTE, Vol 3.

No.1, Feb 2011

[16] Wiesman, M., et al. Database Replication Techniques: A

Three Paramater Classification. in 19th IEEE

Symposium on Reliable Distributed Systems. 2000.

Nuernberg, Germany

[17] Y..E. Ioannidis and Y.C. Kang, “Randomized algorithms

for optimizing large join queries, ACM 1990

0

200

400

600

800

1000

Q1 Q2 Q3 Q4 Q5

with GA

without GA

IJCATM : www.ijcaonline.org

http://www.cs.iusb.edu/technical_repots/TR-%2020080105-1.pdf
http://www.cs.iusb.edu/technical_repots/TR-%2020080105-1.pdf

