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ABSTRACT 

The purpose of this paper is to present some fixed point 

theorems for non self maps in dp-complete topological spaces 

which extend the results of Linda Marie Saliga.   
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1. INTRODUCTION 
Troy L. Hicks [5] has introduced  d-complete topological 

spaces, attributing the basic ideas of these spaces to Kasahara 

([8], [9]) and Iseki [7] as follows: 

1.1 Definition: A topological space (X, t) is said to be d-

complete if there is a mapping ),0[:  XXd  such that 

(i) yxyxd  0),(  and (ii)  nx  is a sequence in X 

such that 





1

)1,(

n
nxnxd  is convergent implies that 

 nx  converges in (X, t). 

In this paper we introduce dp- complete topological spaces as 

a generalization of d-complete topological spaces for any 

integer 2p . For a non-empty set X, let pX  be  its  p-fold 

cartesian product. 

1.2 Definition: A topological space (X, t) is said to 

be pd complete if there is a mapping ),0[: p
p Xd such 

that (i) ppp xxxxxxd  ...0),...,,( 2121  and   

(ii)  nx  is a sequence in X  with 

0),...,,,(lim 121 


pnnnnp
n

xxxxd  implies that 

 nx  converges to some point in (X, t). A 

pd - complete topological space is denoted by (X, t, pd ) 

1.3 Remark: The function d in the Definition 1.1 and the 

function 2d  (the case p = 2)  in Definition 1.2 are both 

defined on XX   and satisfy condition (i) of the definitions 

which are identical. Since the convergence of an infinite series  




1n

n  of real numbers implies that 0lim 


n
n

 , but not 

conversely; it follows that every d-complete topological space 

is 2d - complete, but not conversely. Therefore the class of 

2d - complete topological spaces is wider than the class of d-

complete spaces and hence a separate study of fixed point 

theorems of self-maps on 2d - complete topological spaces is 

meaningful. 

The purpose of this paper is to establish certain fixed point 

theorems of  non self-maps of  pd - complete topological 

spaces for 2p .  

2. PRELIMINARIES 

Let X be a non-empty set. A mapping ),0[: p
p Xd  is 

called a p-non-negative on  X  provided 

ppp xxxxxxd  ...0),...,,( 2121 . 

2.1  Definition: Suppose (X, t) is a topological space and  

pd is a p-non negative on X. A sequence  nx  in  X  is said 

to be a  pd - Cauchy sequence if 

0),...,,( 11  pnnnp xxxd  as n . 

In view of Definition 2.1, a topological space (X, t) is  pd - 

complete if there is a p-non- negative pd on  X such that 

every  pd - Cauchy sequence in X converges to some point in 

(X, t). 

If T is a self map of a non-empty set X and Xx , then the 

orbit of x, )(xOT is given by  ...,,,)( 2 xTTxxxOT  . If T 

is a self map of a topological space X, then a mapping 

),0[: XG  is said to be T-orbitally lower semi-

continuous (resp. T-orbitally continuous) at Xx *  if 

 nx  is a sequence in )(xOT for some Xx  

with *xxn   as n  then )(inflim*)( n
n

xGxG


  ( resp. 

)(lim*)( n
n

xGxG


  ). A self map T of topological space X is 

said to be w-continuous at Xx  if xxn   as n  

implies TxTxn   as n . 

If  pd  is a p-non-negative on a non-empty set X, and 

XXT :  then we write, for simplicity of notation, that  

(2.2)  ),...,,,(:)( 12 xTxTTxxdxG p
pp

  for Xx   

Clearly we have  

(2.3)   0)( xGp  if and only if x is a fixed point of T .    

3. MAIN RESULTS 

3.1 Theorem: Suppose (X,t,dp) is a dp-

completeHausdorff topological space, C is a closed subset of 

X and T : C   X is an open mapping with CT(C). Suppose 

dp (x1, x2,…., xp)  k(dp(Tx1,Tx2,…,Txp)) for all 
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x1,x2,…,xpC, where k: [0,)  [0,) is a non-decreasing 

function with k(0) = 0. Then T has a fixed point iff there 

exists an x0C with kn(dp(T
p-1x0, T

p-2x0, …., Tx0,x0))  0 as n 

 . 

Proof : If x,y C are such that Tx = Ty, then the inequality 

of the theorem gives dp(x,y,y,…,y)   k(dp(Tx,Ty,Ty,…., Ty)) 

= k(0) = 0 which gives x = y. Hence T is one-one. Thus T : 

CT(C) is a bijective map and hence T-1 : T(C)C exists. 

Since T is open (by hypothesis), it follows that T-1 is a 

continuous function and hence T-1 is a w-continuous function. 

Now first suppose that T has a fixed point zC.  

Then Tz = z so that kn (dp(T
p-1z, Tp-2z,…., Tz, z)) = 0 giving 

that 
n

lim kn (dp(T
p-1z, Tp-2z,…., Tz, z)) = 0. 

Let T1 denote the restriction of T-1 to C, so that T1 : CC and  

(3.2) dp(T1x1, T1x2,…, T1xp)  k(dp(x1,x2,…, xp)) for all 

x1,x2,…., xpC, since TT1(x) = x for all xC . Let x1C be 

arbitrary and x2 = T1x1, x3 = T1
2x1,…, xp = T1

p-1x1.  

Then  (3.2) gives 

dp(T1x1, T1
2x1,…, T1

px1)  k (dp(x1,T1x1,T1
2x1,…, T1

p-1x1)) 

for all x1 C which gives, in particular, that 

dp(T1x0, T1
2x0,…, T1

px0)  k(dp(x0,T1x0,…,T1
p-1x0)) 

              k2(dp(Tx0, TT1x0,…., TT1
p-1x0)) 

                                    = k2(dp(Tx0, x0, T1x0,…, T1
p-2 x0)). 

Now by induction, we get 

dp(T1
n-p+1x0,T1

n-p+2x0,….,T1
nx0)kn(dp(T

p-1x0,T
p-2x0,…,Tx0, 0)). 

Hence dp(T1
n-p+1x0, T1

n-p+2x0,…., T1
nx0)  0 as n which 

gives that (T1
nx0) is a dp– Cauchy sequence in X. 

Since X is dp
_ complete, the sequence (T1

nx0) converges to 

some point z. That is, T1
nx0  z as n. 

Note that z  C since C is closed. 

Now T1(T1
nx0)  T1z as n   since T1 is w-continuous. 

But T1
n+1x0  z as n   and since limits are unique in X, 

we get that T1z = z. 

Now T(T1z) = Tz gives z = Tz since T(T1z) = z and hence T 

has a fixed point. 

3.3 Remark: It may be noted that in view of  Remark 

1.3, the result proved by Linda Marie Saliga ([10], Theorem 

1,pp.103,104)  is a particular case of  Theorem 3.1 . 

3.4 Corollary: Suppose T : CX where C is a closed 

subset of a dp–complete Hausdorff p-symmetrizable 

topological space with CT(C). Suppose dp(x1,x2,…, xp)  

[dp(Tx1,Tx2,…, Txp)]
s where s >1 for all x1,x2,…xpC. If 

there exists x0C such that dp (T
p-1x0, T

p-2x0, …, Tx0,x0) < 1, 

then T has a fixed point. 

Proof  Let  x,y be  in C with x  y. 

Then  0<dp (x,y,y,…, y)  [dp(Tx,Ty,…, Ty)]s which gives  

Tx  Ty. 

Thus, T is one – one and hence T-1 : T(C)  C exists. 

Now the inequality of the theorem gives  

dp(T
-1x1,T

-1x2,…., T-1xp)  [dp(x1,x2,…, xp)]
s which implies 

that  T-1 is continuous. Hence T must be an open map. 

Let x0C be such that dp (T
p-1x0, T

p-2x0,…, Tx0, x0) <1.  

If dp(T
p-1x0, T

p-2x0,…, Tx0, x0) = 0, then x0 is a fixed point  

of T. 

Suppose 0<dp (T
p-1x0, T

p-2x0,…, Tx0, x0) <1. 

Let k(t) = ts and t = dp (T
p-1x0, T

p-2x0, …, Tx0, x0). 

Note that (t)s<ts if 0<<1. Since ts < t, there is an 

(0,1)such that ts = t. 

We claim that 

(3.5)      tns  n t for all natural numbers n. 

For n = 1, (3.5) holds. Now assume that (3.5) holds for  

n = k. That  is, tks  k t. 

Then t(k+1)s = tks ts     k t t, since ts = t  

       =  k+1  t2 

          k+1 t,  since 0 < t < 1.  

Hence, by induction, we get (3.5). 

Therefore, kn(dp(T
p-1x0, T

p-2x0,…, Tx0, x0)) 

                = [dp (T
p-1x0, T

p-2x0,…, Tx0,x0)]
ns 

                = tns  n t  0 as n  , since 0 <  < 1 and 

 hence the theorem follows from Theorem 3.1.  

It may be noted that the existence of a fixed point for T on a 

closed subset of a dp-complete Hausdorff topological space 

(X,t,dp) is not ensured, if the inequality of the Theorem 3.1 is 

replaced by any one of the following : 

dp(Tx1,Tx2,…., Txp)  k(dp(x1,x2,…., xp)) for all x1,x2, 

…..,xpC. 

or 

dp(x1,x2,…., xp)  k(dp(Tx1,Tx2,…., Txp)) for all x1,x2,…., 

xpC. 

or 

k(dp(x1,x2,…., xp))  dp(Tx1,Tx2,…., Txp) for all x1,x2,…, 

xpC. 

L.M. Saliga has provided counter examples in the case p=2 

([10], Examples 2,3,4, p.105,106).  

3.6 Theorem: Let (X,t,dp) be a dp - complete Hausdorff 

topological space, C be a closed subset of X and T : C  X 

with CT(C). Suppose there exists a function k : [0, )  [0, 

) such that k(dp(Tx1,Tx2,…., Txp))  dp(x1,x2,…, xp) for all 

x1, x2,…xpC, where k is a non-decreasing function with k(0) 

=0 and there exists an x0C  such that kn (dp(T
p-1x0, T

p-2x0,…, 

Tx0,x0))0 as n. If dp(T
p-1x, Tp-2x,…, Tx,x) is lower 

semi-continuous on C, then T has a fixed point. 

Proof: If x and y are in C with xy. Then 0<dp(x,y,y,…., y) 

 k (dp(Tx,Ty,…., Ty)) gives that Tx  Ty. Hence T is one – 

one and  T-1 exists.Let T1 be the restriction of T-1 to C. That is 

, T1 = T-1C. Now T1 : C C and for x  C, we have 

dp (x,T1x, T1
2x, …, T1

p-1x)  k (dp (Tx,x, T1x,…,T1
p-2x)) 

     k2(dp(T
2x,Tx,x,T1x,…,T1

p-3x)). 

Hence, by induction, we get 

(3.7) dp(T1
n-p+1x, T1

n-p+2x,…, T1
nx)  kn (dp(T

p-1x, Tp-2x,…., 

Tx)). 

If there exists x0 C such that kn (dp(T
p-1x0, T

p-2x0, …, Tx0)) 

 0 as n, then dp(T1
n-p+1x0, T1

n-p+2x0, …, T1
nx0)  0 as n 

 , by  (3.7),which gives that (T1
nx0) is dp-Cauchy. Since X 

is dp–complete,there exists zx such that T1
nx0  z as n  . 

Note that zC since T1
nx0C for all n and C is closed. 

Now dp(T
p-1x, Tp-2x,…., Tx,x) is lower semi-continuous on C 

gives dp(T
p-1z, Tp-2z,…, Tz,z)liminf dp(T1

n-p+1x0,T1
n-p+2x0,…., 

T1
nx0)  0 as n   giving that Tz = z. 

3.7 Remark: Note that the result proved by Linda Marie 

Saliga ([10], Theorem 2, pp.105)  is a particular case of  

Theorem 3.6 . 

3.8 Theorem: Let C be a compact subset of a Hausdorff 

topological space (X,t) and dp be a p-non-negative on X. 

Suppose T : CX with CT(C), T and Gp(x) are both 

continuous, and Gp(Tx) > Gp(x) for all xT-1(C) with x  Tx. 

Then T has a fixed point in C. 

Proof: Since C is a compact subset of a Hausdorff 

topological space, we get that C is closed and since T : C  X 
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is continous, so T-1(C) is closed. Hence T-1(C) is compact 

since T-1(C) C.Also, Gp(x) is continuous so it attains its 

minimum on T-1(C), say at z. That is,   

 (3.9)  Gp(z)  Gp(x) for all xT-1(C)  

Now zC  T(C) so there exists yT-1(C) such that Ty = z. 

If y  z, then Gp(z) = Gp(Ty) > Gp(y) which is a contradiction 

to (3.9). 

Thus y = z = Ty is a fixed point of T. 

3.9 Remark: Note that the result proved by Linda Marie 

Saliga ([10], Theorem 3, pp.106)  is a particular case of  

Theorem 3.8 . 

3.10 Theorem : Let C be a compact subset of a 

Hausdorff topological space (X,t) and dp be a p-non-negative 

on X. Suppose T : CX with CT(C), T and Gp(x) are both 

continuous, f : [0,)  [0,) is continuous and f(t) > 0 for t  

0. If we know that Gp(Tx)   f(Gp(x)) where 0<<1, for all 

xT-1(C) implies T has a fixed point then Gp(Tx)<f(Gp(x)) for 

all xT-1(C) such that f(Gp(x))  0 gives a fixed point. 

Proof:Since C is a compact subset of a Hausdorff space, it 

is closed  and since T is continuous, T-1(C) is closed and 

hence is compact since T-1(C) C. 

Suppose Gp(x)0 for all xT-1(C). Then Gp(x) > 0 so that 

f(Gp(x)) >0  for all xT-1(C). 

Now define p(x) on T-1(C)  by  

p(x) = 
))((

)(

xGf

TxG

p

p
. Then p is continuous since T, f and Gp(x) 

are continuous. Therefore p attains its maximum on T-1(C), 

say at z. That is, p(x)  p(z) for all xT-1(C). 

Now p(x)  p(z) < 1 so Gp(Tx)  p(z) f(Gp(x)) and T must 

have a fixed point.  

3.11 Remark: Note that the result proved by Linda 

Marie Saliga ([10], Theorem 4, pp.106)  is a particular case of  

Theorem 3.10 . 

3.12 Theorem: Let C be a compact subset of a 

Hausdorff toplogical space (X,t) and dp be a p-non-negative 

on X. Suppose T : C  X with CT(C), T and Gp(x) are both 

continuous, f : [0, )  [0, ) is continuous and f(t) >0 for 

t0. If we know that Gp(Tx)   f(Gp(x)) where  > 1, for all 

xT-1(C)  implies T has a fixed point, then  

Gp(Tx) > f(Gp(x)) for all xT-1(C)  such that f(Gp(x))  0 

gives a fixed point. 

                                                                                                                                                                                        

Proof : Since  C is a compact subset of a Hausdorff space, 

we get that C is closed and since T is continuous, T-1(C) is 

closed. Hence T-1(C) is compact, since T-1(C) C. 

Suppose Gp(x)  0 for all xT-1(C). Then Gp(x) > 0 and 

f(Gp(x)) >0. 

Now, define  p(x) = 
))((

)(

xGf

TxG

p

p
. 

Then p is continuous, since T, f and Gp(x) are continuous and 

hence p attains its minimum on T-1(C), say at z. That is, p(z)  

p(x) for all xT-1(C). 

Now p(x)   p(z) >1 so Gp(Tx)  p(z) f(Gp(x)) and T must 

have a fixed point. 

 3.13 Remark: Note that the result proved by Linda 

Marie Saliga ([10], Theorem 5, pp.106,107)  is a particular 

case of  Theorem 3.12 . 
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