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ABSTRACT 

The purpose of this paper is to present some fixed point 

theorems for non self maps in dp-complete topological spaces 

which extend the results of Linda Marie Saliga.   
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1. INTRODUCTION 
Troy L. Hicks [5] has introduced  d-complete topological 

spaces, attributing the basic ideas of these spaces to Kasahara 

([8], [9]) and Iseki [7] as follows: 

1.1 Definition: A topological space (X, t) is said to be d-

complete if there is a mapping ),0[:  XXd  such that 

(i) yxyxd  0),(  and (ii)  nx  is a sequence in X 

such that 





1

)1,(

n
nxnxd  is convergent implies that 

 nx  converges in (X, t). 

In this paper we introduce dp- complete topological spaces as 

a generalization of d-complete topological spaces for any 

integer 2p . For a non-empty set X, let pX  be  its  p-fold 

cartesian product. 

1.2 Definition: A topological space (X, t) is said to 

be pd complete if there is a mapping ),0[: p
p Xd such 

that (i) ppp xxxxxxd  ...0),...,,( 2121  and   

(ii)  nx  is a sequence in X  with 

0),...,,,(lim 121 


pnnnnp
n

xxxxd  implies that 

 nx  converges to some point in (X, t). A 

pd - complete topological space is denoted by (X, t, pd ) 

1.3 Remark: The function d in the Definition 1.1 and the 

function 2d  (the case p = 2)  in Definition 1.2 are both 

defined on XX   and satisfy condition (i) of the definitions 

which are identical. Since the convergence of an infinite series  




1n

n  of real numbers implies that 0lim 


n
n

 , but not 

conversely; it follows that every d-complete topological space 

is 2d - complete, but not conversely. Therefore the class of 

2d - complete topological spaces is wider than the class of d-

complete spaces and hence a separate study of fixed point 

theorems of self-maps on 2d - complete topological spaces is 

meaningful. 

The purpose of this paper is to establish certain fixed point 

theorems of  non self-maps of  pd - complete topological 

spaces for 2p .  

2. PRELIMINARIES 

Let X be a non-empty set. A mapping ),0[: p
p Xd  is 

called a p-non-negative on  X  provided 

ppp xxxxxxd  ...0),...,,( 2121 . 

2.1  Definition: Suppose (X, t) is a topological space and  

pd is a p-non negative on X. A sequence  nx  in  X  is said 

to be a  pd - Cauchy sequence if 

0),...,,( 11  pnnnp xxxd  as n . 

In view of Definition 2.1, a topological space (X, t) is  pd - 

complete if there is a p-non- negative pd on  X such that 

every  pd - Cauchy sequence in X converges to some point in 

(X, t). 

If T is a self map of a non-empty set X and Xx , then the 

orbit of x, )(xOT is given by  ...,,,)( 2 xTTxxxOT  . If T 

is a self map of a topological space X, then a mapping 

),0[: XG  is said to be T-orbitally lower semi-

continuous (resp. T-orbitally continuous) at Xx *  if 

 nx  is a sequence in )(xOT for some Xx  

with *xxn   as n  then )(inflim*)( n
n

xGxG


  ( resp. 

)(lim*)( n
n

xGxG


  ). A self map T of topological space X is 

said to be w-continuous at Xx  if xxn   as n  

implies TxTxn   as n . 

If  pd  is a p-non-negative on a non-empty set X, and 

XXT :  then we write, for simplicity of notation, that  

(2.2)  ),...,,,(:)( 12 xTxTTxxdxG p
pp

  for Xx   

Clearly we have  

(2.3)   0)( xGp  if and only if x is a fixed point of T .    

3. MAIN RESULTS 

3.1 Theorem: Suppose (X,t,dp) is a dp-

completeHausdorff topological space, C is a closed subset of 

X and T : C   X is an open mapping with CT(C). Suppose 

dp (x1, x2,…., xp)  k(dp(Tx1,Tx2,…,Txp)) for all 
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x1,x2,…,xpC, where k: [0,)  [0,) is a non-decreasing 

function with k(0) = 0. Then T has a fixed point iff there 

exists an x0C with kn(dp(T
p-1x0, T

p-2x0, …., Tx0,x0))  0 as n 

 . 

Proof : If x,y C are such that Tx = Ty, then the inequality 

of the theorem gives dp(x,y,y,…,y)   k(dp(Tx,Ty,Ty,…., Ty)) 

= k(0) = 0 which gives x = y. Hence T is one-one. Thus T : 

CT(C) is a bijective map and hence T-1 : T(C)C exists. 

Since T is open (by hypothesis), it follows that T-1 is a 

continuous function and hence T-1 is a w-continuous function. 

Now first suppose that T has a fixed point zC.  

Then Tz = z so that kn (dp(T
p-1z, Tp-2z,…., Tz, z)) = 0 giving 

that 
n

lim kn (dp(T
p-1z, Tp-2z,…., Tz, z)) = 0. 

Let T1 denote the restriction of T-1 to C, so that T1 : CC and  

(3.2) dp(T1x1, T1x2,…, T1xp)  k(dp(x1,x2,…, xp)) for all 

x1,x2,…., xpC, since TT1(x) = x for all xC . Let x1C be 

arbitrary and x2 = T1x1, x3 = T1
2x1,…, xp = T1

p-1x1.  

Then  (3.2) gives 

dp(T1x1, T1
2x1,…, T1

px1)  k (dp(x1,T1x1,T1
2x1,…, T1

p-1x1)) 

for all x1 C which gives, in particular, that 

dp(T1x0, T1
2x0,…, T1

px0)  k(dp(x0,T1x0,…,T1
p-1x0)) 

              k2(dp(Tx0, TT1x0,…., TT1
p-1x0)) 

                                    = k2(dp(Tx0, x0, T1x0,…, T1
p-2 x0)). 

Now by induction, we get 

dp(T1
n-p+1x0,T1

n-p+2x0,….,T1
nx0)kn(dp(T

p-1x0,T
p-2x0,…,Tx0, 0)). 

Hence dp(T1
n-p+1x0, T1

n-p+2x0,…., T1
nx0)  0 as n which 

gives that (T1
nx0) is a dp– Cauchy sequence in X. 

Since X is dp
_ complete, the sequence (T1

nx0) converges to 

some point z. That is, T1
nx0  z as n. 

Note that z  C since C is closed. 

Now T1(T1
nx0)  T1z as n   since T1 is w-continuous. 

But T1
n+1x0  z as n   and since limits are unique in X, 

we get that T1z = z. 

Now T(T1z) = Tz gives z = Tz since T(T1z) = z and hence T 

has a fixed point. 

3.3 Remark: It may be noted that in view of  Remark 

1.3, the result proved by Linda Marie Saliga ([10], Theorem 

1,pp.103,104)  is a particular case of  Theorem 3.1 . 

3.4 Corollary: Suppose T : CX where C is a closed 

subset of a dp–complete Hausdorff p-symmetrizable 

topological space with CT(C). Suppose dp(x1,x2,…, xp)  

[dp(Tx1,Tx2,…, Txp)]
s where s >1 for all x1,x2,…xpC. If 

there exists x0C such that dp (T
p-1x0, T

p-2x0, …, Tx0,x0) < 1, 

then T has a fixed point. 

Proof  Let  x,y be  in C with x  y. 

Then  0<dp (x,y,y,…, y)  [dp(Tx,Ty,…, Ty)]s which gives  

Tx  Ty. 

Thus, T is one – one and hence T-1 : T(C)  C exists. 

Now the inequality of the theorem gives  

dp(T
-1x1,T

-1x2,…., T-1xp)  [dp(x1,x2,…, xp)]
s which implies 

that  T-1 is continuous. Hence T must be an open map. 

Let x0C be such that dp (T
p-1x0, T

p-2x0,…, Tx0, x0) <1.  

If dp(T
p-1x0, T

p-2x0,…, Tx0, x0) = 0, then x0 is a fixed point  

of T. 

Suppose 0<dp (T
p-1x0, T

p-2x0,…, Tx0, x0) <1. 

Let k(t) = ts and t = dp (T
p-1x0, T

p-2x0, …, Tx0, x0). 

Note that (t)s<ts if 0<<1. Since ts < t, there is an 

(0,1)such that ts = t. 

We claim that 

(3.5)      tns  n t for all natural numbers n. 

For n = 1, (3.5) holds. Now assume that (3.5) holds for  

n = k. That  is, tks  k t. 

Then t(k+1)s = tks ts     k t t, since ts = t  

       =  k+1  t2 

          k+1 t,  since 0 < t < 1.  

Hence, by induction, we get (3.5). 

Therefore, kn(dp(T
p-1x0, T

p-2x0,…, Tx0, x0)) 

                = [dp (T
p-1x0, T

p-2x0,…, Tx0,x0)]
ns 

                = tns  n t  0 as n  , since 0 <  < 1 and 

 hence the theorem follows from Theorem 3.1.  

It may be noted that the existence of a fixed point for T on a 

closed subset of a dp-complete Hausdorff topological space 

(X,t,dp) is not ensured, if the inequality of the Theorem 3.1 is 

replaced by any one of the following : 

dp(Tx1,Tx2,…., Txp)  k(dp(x1,x2,…., xp)) for all x1,x2, 

…..,xpC. 

or 

dp(x1,x2,…., xp)  k(dp(Tx1,Tx2,…., Txp)) for all x1,x2,…., 

xpC. 

or 

k(dp(x1,x2,…., xp))  dp(Tx1,Tx2,…., Txp) for all x1,x2,…, 

xpC. 

L.M. Saliga has provided counter examples in the case p=2 

([10], Examples 2,3,4, p.105,106).  

3.6 Theorem: Let (X,t,dp) be a dp - complete Hausdorff 

topological space, C be a closed subset of X and T : C  X 

with CT(C). Suppose there exists a function k : [0, )  [0, 

) such that k(dp(Tx1,Tx2,…., Txp))  dp(x1,x2,…, xp) for all 

x1, x2,…xpC, where k is a non-decreasing function with k(0) 

=0 and there exists an x0C  such that kn (dp(T
p-1x0, T

p-2x0,…, 

Tx0,x0))0 as n. If dp(T
p-1x, Tp-2x,…, Tx,x) is lower 

semi-continuous on C, then T has a fixed point. 

Proof: If x and y are in C with xy. Then 0<dp(x,y,y,…., y) 

 k (dp(Tx,Ty,…., Ty)) gives that Tx  Ty. Hence T is one – 

one and  T-1 exists.Let T1 be the restriction of T-1 to C. That is 

, T1 = T-1C. Now T1 : C C and for x  C, we have 

dp (x,T1x, T1
2x, …, T1

p-1x)  k (dp (Tx,x, T1x,…,T1
p-2x)) 

     k2(dp(T
2x,Tx,x,T1x,…,T1

p-3x)). 

Hence, by induction, we get 

(3.7) dp(T1
n-p+1x, T1

n-p+2x,…, T1
nx)  kn (dp(T

p-1x, Tp-2x,…., 

Tx)). 

If there exists x0 C such that kn (dp(T
p-1x0, T

p-2x0, …, Tx0)) 

 0 as n, then dp(T1
n-p+1x0, T1

n-p+2x0, …, T1
nx0)  0 as n 

 , by  (3.7),which gives that (T1
nx0) is dp-Cauchy. Since X 

is dp–complete,there exists zx such that T1
nx0  z as n  . 

Note that zC since T1
nx0C for all n and C is closed. 

Now dp(T
p-1x, Tp-2x,…., Tx,x) is lower semi-continuous on C 

gives dp(T
p-1z, Tp-2z,…, Tz,z)liminf dp(T1

n-p+1x0,T1
n-p+2x0,…., 

T1
nx0)  0 as n   giving that Tz = z. 

3.7 Remark: Note that the result proved by Linda Marie 

Saliga ([10], Theorem 2, pp.105)  is a particular case of  

Theorem 3.6 . 

3.8 Theorem: Let C be a compact subset of a Hausdorff 

topological space (X,t) and dp be a p-non-negative on X. 

Suppose T : CX with CT(C), T and Gp(x) are both 

continuous, and Gp(Tx) > Gp(x) for all xT-1(C) with x  Tx. 

Then T has a fixed point in C. 

Proof: Since C is a compact subset of a Hausdorff 

topological space, we get that C is closed and since T : C  X 
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is continous, so T-1(C) is closed. Hence T-1(C) is compact 

since T-1(C) C.Also, Gp(x) is continuous so it attains its 

minimum on T-1(C), say at z. That is,   

 (3.9)  Gp(z)  Gp(x) for all xT-1(C)  

Now zC  T(C) so there exists yT-1(C) such that Ty = z. 

If y  z, then Gp(z) = Gp(Ty) > Gp(y) which is a contradiction 

to (3.9). 

Thus y = z = Ty is a fixed point of T. 

3.9 Remark: Note that the result proved by Linda Marie 

Saliga ([10], Theorem 3, pp.106)  is a particular case of  

Theorem 3.8 . 

3.10 Theorem : Let C be a compact subset of a 

Hausdorff topological space (X,t) and dp be a p-non-negative 

on X. Suppose T : CX with CT(C), T and Gp(x) are both 

continuous, f : [0,)  [0,) is continuous and f(t) > 0 for t  

0. If we know that Gp(Tx)   f(Gp(x)) where 0<<1, for all 

xT-1(C) implies T has a fixed point then Gp(Tx)<f(Gp(x)) for 

all xT-1(C) such that f(Gp(x))  0 gives a fixed point. 

Proof:Since C is a compact subset of a Hausdorff space, it 

is closed  and since T is continuous, T-1(C) is closed and 

hence is compact since T-1(C) C. 

Suppose Gp(x)0 for all xT-1(C). Then Gp(x) > 0 so that 

f(Gp(x)) >0  for all xT-1(C). 

Now define p(x) on T-1(C)  by  

p(x) = 
))((

)(

xGf

TxG

p

p
. Then p is continuous since T, f and Gp(x) 

are continuous. Therefore p attains its maximum on T-1(C), 

say at z. That is, p(x)  p(z) for all xT-1(C). 

Now p(x)  p(z) < 1 so Gp(Tx)  p(z) f(Gp(x)) and T must 

have a fixed point.  

3.11 Remark: Note that the result proved by Linda 

Marie Saliga ([10], Theorem 4, pp.106)  is a particular case of  

Theorem 3.10 . 

3.12 Theorem: Let C be a compact subset of a 

Hausdorff toplogical space (X,t) and dp be a p-non-negative 

on X. Suppose T : C  X with CT(C), T and Gp(x) are both 

continuous, f : [0, )  [0, ) is continuous and f(t) >0 for 

t0. If we know that Gp(Tx)   f(Gp(x)) where  > 1, for all 

xT-1(C)  implies T has a fixed point, then  

Gp(Tx) > f(Gp(x)) for all xT-1(C)  such that f(Gp(x))  0 

gives a fixed point. 

                                                                                                                                                                                        

Proof : Since  C is a compact subset of a Hausdorff space, 

we get that C is closed and since T is continuous, T-1(C) is 

closed. Hence T-1(C) is compact, since T-1(C) C. 

Suppose Gp(x)  0 for all xT-1(C). Then Gp(x) > 0 and 

f(Gp(x)) >0. 

Now, define  p(x) = 
))((

)(

xGf

TxG

p

p
. 

Then p is continuous, since T, f and Gp(x) are continuous and 

hence p attains its minimum on T-1(C), say at z. That is, p(z)  

p(x) for all xT-1(C). 

Now p(x)   p(z) >1 so Gp(Tx)  p(z) f(Gp(x)) and T must 

have a fixed point. 

 3.13 Remark: Note that the result proved by Linda 

Marie Saliga ([10], Theorem 5, pp.106,107)  is a particular 

case of  Theorem 3.12 . 
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