Fixed Points of Non Self Maps

V.Naga Raju Department of Mathematics College of Engineering Osmania University Hyderabad-500007, India

ABSTRACT

The purpose of this paper is to present some fixed point theorems for non self maps in d_p -complete topological spaces which extend the results of Linda Marie Saliga.

Keywords

 $\rm d_{p^-}$ complete topological spaces, d-complete topological spaces and non self maps.

1. INTRODUCTION

Troy L. Hicks [5] has introduced *d-complete* topological spaces, attributing the basic ideas of these spaces to Kasahara ([8], [9]) and Iseki [7] as follows:

1.1 Definition: A topological space (X, t) is said to be *d*-complete if there is a mapping $d: X \times X \to [0, \infty)$ such that

(i) $d(x, y) = 0 \Leftrightarrow x = y$ and (ii) $\langle x_n \rangle$ is a sequence in X

such that $\sum_{n=1}^{\infty} d(x_n, x_{n+1})$ is convergent implies that

 $\langle x_n \rangle$ converges in (X, t).

In this paper we introduce d_p - *complete* topological spaces as a generalization of *d*-complete topological spaces for any integer $p \ge 2$. For a non-empty set X, let X^p be its *p*-fold cartesian product.

1.2 Definition: A topological space (X, t) is said to be d_p complete if there is a mapping $d_p: X^p \to [0, \infty)$ such that (i) $d_p(x_1, x_2, \dots, x_p) = 0 \Leftrightarrow x_1 = x_2 = \dots = x_p$ and (ii) $\langle x_n \rangle$ is a sequence in X with $\lim_{n \to \infty} d_p(x_n, x_{n+1}, x_{n+2}, \dots, x_{n+p-1}) = 0$ implies that

 $\langle x_n \rangle$ converges to some point in (X, t). A

 d_p - complete topological space is denoted by (X, t, d_p)

1.3 Remark: The function *d* in the Definition 1.1 and the function d_2 (the case p = 2) in Definition 1.2 are both defined on $X \times X$ and satisfy condition (i) of the definitions which are identical. Since the convergence of an infinite series $\sum_{n=1}^{\infty} \alpha_n$ of real numbers implies that $\lim_{n \to \infty} \alpha_n = 0$, but not

 $\sum_{n=1}^{\infty} \alpha_n \text{ of real numbers implies that } \lim_{n \to \infty} \alpha_n = 0, \text{ but not}$

conversely; it follows that every *d*-complete topological space is d_2 - complete, but not conversely. Therefore the class of d_2 - complete topological spaces is wider than the class of *d*complete spaces and hence a separate study of fixed point theorems of self-maps on d_2 - complete topological spaces is meaningful.

The purpose of this paper is to establish certain fixed point theorems of non self-maps of d_p - complete topological spaces for $p \ge 2$.

2. PRELIMINARIES

Let X be a non-empty set. A mapping $d_p: X^p \to [0, \infty)$ is called a *p*-non-negative on X provided $d_p(x_1, x_2, \dots, x_p) = 0 \Leftrightarrow x_1 = x_2 = \dots = x_p$.

2.1 Definition: Suppose (X, t) is a topological space and d_p is a *p*-non negative on *X*. A sequence $\langle x_n \rangle$ in *X* is said to be a d_p - *Cauchy sequence* if $d_p(x_n, x_{n+1}, \ldots, x_{n+p-1}) \rightarrow 0$ as $n \rightarrow \infty$.

In view of Definition 2.1, a topological space (X, t) is d_p complete if there is a *p*-non- negative d_p on X such that every d_p -Cauchy sequence in X converges to some point in (X, t).

If *T* is a self map of a non-empty set *X* and $X \in X$, then the orbit of *x*, $O_T(x)$ is given by $O_T(x) = \{x, Tx, T^2x, \ldots\}$. If *T* is a self map of a topological space *X*, then a mapping $G: X \to [0, \infty)$ is said to be *T*-orbitally lower semicontinuous (resp. *T*-orbitally continuous) at $x^* \in X$ if $\langle x_n \rangle$ is a sequence in $O_T(x)$ for some $x \in X$ with $x_n \to x^*$ as $n \to \infty$ then $G(x^*) \leq \liminf_{n \to \infty} G(x^*) = \lim_{n \to \infty} G(x_n)$). A self map *T* of topological space *X* is said to be *w*-continuous at $x \in X$ if $x_n \to x$ as $n \to \infty$.

If d_p is a *p*-non-negative on a non-empty set *X*, and $T: X \to X$ then we write, for simplicity of notation, that (2.2) $G_1(x) := d_1(x, Tx, T^2x) = T^{p-1}x)$ for $x \in X$

(2.2)
$$G_p(x) = a_p(x, 1x, 1 - x, \dots, 1 - x)$$
 for x

Clearly we have

(2.3) $G_p(x) = 0$ if and only if x is a fixed point of T.

3. MAIN RESULTS

3.1 Theorem: Suppose (X,t,d_p) is a d_p completeHausdorff topological space, C is a closed subset of
X and T : C \rightarrow X is an open mapping with C \subset T(C). Suppose d_p $(x_1, x_2,..., x_p) \leq k(d_p(Tx_1,Tx_2,...,Tx_p))$ for all

 $x_1, x_2, \dots, x_p \in C$, where k: $[0, \infty) \rightarrow [0, \infty)$ is a non-decreasing function with k(0) = 0. Then T has a fixed point iff there exists an $x_0 \in C$ with $k^n(d_p(T^{p-1}x_0, T^{p-2}x_0, ..., Tx_0, x_0)) \to 0$ as n $\rightarrow \infty$.

Proof: If $x, y \in C$ are such that Tx = Ty, then the inequality of the theorem gives $d_p(x,y,y,...,y) \le k(d_p(Tx,Ty,Ty,...,Ty))$ = k(0) = 0 which gives x = y. Hence T is one-one. Thus T : $C \rightarrow T(C)$ is a bijective map and hence $T^{-1} : T(C) \rightarrow C$ exists. Since T is open (by hypothesis), it follows that T^{-1} is a continuous function and hence T^{-1} is a w-continuous function. Now first suppose that T has a fixed point $z \in C$.

Then Tz = z so that $k^n (d_p(T^{p-1}z, T^{p-2}z, \dots, Tz, z)) = 0$ giving that $\lim_{n \to \infty} k^n (d_p(T^{p-1}z, T^{p-2}z, ..., Tz, z)) = 0.$

Let T_1 denote the restriction of T^{-1} to C, so that $T_1 : C \rightarrow C$ and (3.2) $d_p(T_1x_1, T_1x_2,..., T_1x_p) \leq k(d_p(x_1,x_2,..., x_p))$ for all $x_1, x_2, \dots, x_p \in C$, since $TT_1(x) = x$ for all $x \in C$. Let $x_1 \in C$ be arbitrary and $x_2 = T_1 x_1$, $x_3 = T_1^2 x_1, \dots, x_p = T_1^{p-1} x_1$. Then (3.2) gives

 $d_p(T_1x_1, T_1^2x_1, ..., T_1^px_1) \le k (d_p(x_1, T_1x_1, T_1^2x_1, ..., T_1^{p-1}x_1))$ for all $x_1 \in C$ which gives, in particular, that $d_p(T_1x_0, T_1^{2}x_0, \dots, T_1^{p}x_0) \le k(d_p(x_0, T_1x_0, \dots, T_1^{p-1}x_0))$

 $\leq k^{2}(d_{p}(Tx_{0}, TT_{1}x_{0}, ..., TT_{1}^{p-1}x_{0}))$ $= k^{2}(d_{p}(Tx_{0}, x_{0}, T_{1}x_{0}, \dots, T_{1}^{p-2}x_{0})).$

Now by induction, we get

 $d_{p}(T_{1}^{n-p+1}x_{0},T_{1}^{n-p+2}x_{0},...,T_{1}^{n}x_{0}) \leq k^{n}(d_{p}(T^{p-1}x_{0},T^{p-2}x_{0},...,Tx_{0},_{0})).$ Hence $d_{p}(T_{1}^{n-p+1}x_{0},T_{1}^{n-p+2}x_{0},...,T_{1}^{n}x_{0}) \rightarrow 0$ as $n \rightarrow \infty$ which gives that $(T_1^n x_0)$ is a d_p-Cauchy sequence in X. Since X is d_p - complete, the sequence $(T_1^n x_0)$ converges to

some point z. That is, $T_1^n x_0 \rightarrow z$ as $n \rightarrow \infty$. Note that $z \in C$ since C is closed.

Now $T_1(T_1^n x_0) \rightarrow T_1 z$ as $n \rightarrow \infty$ since T_1 is w-continuous. But $T_1{}^{n+1}x_0 \rightarrow z$ as $n \rightarrow \infty$ and since limits are unique in X, we get that $T_1z = z$.

Now $T(T_1z) = Tz$ gives z = Tz since $T(T_1z) = z$ and hence T has a fixed point.

3.3 Remark: It may be noted that in view of Remark 1.3, the result proved by Linda Marie Saliga ([10], Theorem 1,pp.103,104) is a particular case of Theorem 3.1.

3.4 Corollary: Suppose $T : C \rightarrow X$ where C is a closed subset of a d_p-complete Hausdorff p-symmetrizable topological space with C \subset T(C). Suppose d_p(x₁,x₂,..., x_p) \leq $[d_p(Tx_1,Tx_2,...,Tx_p)]^s$ where s > 1 for all $x_1,x_2,...,x_p \in C$. If there exists $x_0 \in C$ such that $d_p (T^{p-1}x_0, T^{p-2}x_0, ..., Tx_0, x_0) < 1$, then T has a fixed point.

Proof Let x, y be in C with $x \neq y$.

Then $0 < d_p(x,y,y,...,y) \le [d_p(Tx,Ty,...,Ty)]^s$ which gives $Tx \neq Ty$.

Thus, T is one – one and hence T^{-1} : $T(C) \rightarrow C$ exists.

Now the inequality of the theorem gives

 $d_p(T^{-1}x_1, T^{-1}x_2, ..., T^{-1}x_p) \leq [d_p(x_1, x_2, ..., x_p)]^s$ which implies that T^{-1} is continuous. Hence \hat{T} must be an open map. Let $x_0 \in C$ be such that $d_p (T^{p-1}x_0, T^{p-2}x_0, ..., Tx_0, x_0) < 1$. If $d_p(T^{p-1}x_0, T^{p-2}x_0, ..., Tx_0, x_0) = 0$, then x_0 is a fixed point of T.

Suppose $0 < d_p (T^{p-1}x_0, T^{p-2}x_0, ..., Tx_0, x_0) < 1$. Let $k(t) = t^s$ and $t = d_p (T^{p-1}x_0, T^{p-2}x_0, ..., Tx_0, x_0)$.

Note that $(\alpha t)^{s} < \alpha t^{s^{-1}}$ if $0 < \alpha < 1$. Since $t^{s} < t$, there is an $\beta \in (0,1)$ such that $t^s = \beta t$.

We claim that

(3.5) $t^{ns} \leq \beta^n t$ for all natural numbers n.

For n = 1, (3.5) holds. Now assume that (3.5) holds for

n = k. That is, $t^{ks} \le \beta^k t$. Then $t^{(k+1)s} = t^{ks} t^s \le \beta^k t \beta t$, since $t^s = \beta t$ $= \beta^{k+1} t^2$ $\leq \beta^{k+1}$ t, since 0 < t < 1. Hence, by induction, we get (3.5). Therefore, $k^{n}(d_{p}(T^{p-1}x_{0}, T^{p-2}x_{0}, ..., Tx_{0}, x_{0}))$ $= [d_{p} (T^{p-1}x_{0}, T^{p-2}x_{0}, \dots, Tx_{0}, x_{0})]^{ns}$ $= t^{ns} \leq \beta^n t \rightarrow 0$ as $n \rightarrow \infty$, since $0 < \beta < 1$ and hence the theorem follows from Theorem 3.1.

It may be noted that the existence of a fixed point for T on a closed subset of a d_p-complete Hausdorff topological space (X,t,d_p) is not ensured, if the inequality of the Theorem 3.1 is replaced by any one of the following :

 $d_p(Tx_1, Tx_2, ..., Tx_p) \ge k(d_p(x_1, x_2, ..., x_p))$ for all $x_1, x_2, ..., x_p$,x_p∈C.

or

or

 $d_p(x_1, x_2, ..., x_p) \ge k(d_p(Tx_1, Tx_2, ..., Tx_p))$ for all $x_1, x_2, ...,$ $x_n \in C$.

 $k(d_p(x_1, x_2, ..., x_p)) \ge d_p(Tx_1, Tx_2, ..., Tx_p)$ for all $x_1, x_2, ..., x_p$ $x_p \in C$

L.M. Saliga has provided counter examples in the case p=2 ([10], Examples 2,3,4, p.105,106).

3.6 Theorem: Let (X,t,d_p) be a d_p - complete Hausdorff topological space, C be a closed subset of X and $T: C \rightarrow X$ with C \subset T(C). Suppose there exists a function k : $[0, \infty) \rightarrow [0, \infty)$ ∞) such that $k(d_p(Tx_1, Tx_2, \dots, Tx_p)) \ge d_p(x_1, x_2, \dots, x_p)$ for all $x_1, x_2, \dots, x_p \in C$, where k is a non-decreasing function with k(0) =0 and there exists an $x_0 \in C$ such that $k^n (d_p(T^{p-1}x_0, T^{p-2}x_0, ...,$ Tx_0, x_0) $\rightarrow 0$ as $n \rightarrow \infty$. If $d_p(T^{p-1}x, T^{p-2}x, \dots, Tx, x)$ is lower semi-continuous on C, then T has a fixed point.

Proof: If x and y are in C with $x \neq y$. Then $0 < d_n(x, y, y, \dots, y)$ $\leq k$ (d_p(Tx,Ty,...,Ty)) gives that Tx \neq Ty. Hence T is one – one and T^{-1} exists.Let T_1 be the restriction of T^{-1} to C. That is , $T_1 = T^{-1} | C$. Now $T_1 : C \rightarrow C$ and for $x \in C$, we have $d_p(x,T_1x,T_1^2x,...,T_1^{p-1}x) \le k(d_p(Tx,x,T_1x,...,T_1^{p-2}x))$ $\leq k^{2}(d_{p}(T^{2}x,Tx,x,T_{1}x,...,T_{1}^{p-3}x)).$

Hence, by induction, we get

(3.7) $d_p(T_1^{n-p+1}x, T_1^{n-p+2}x, ..., T_1^nx) \le k^n (d_p(T_1^{p-1}x, T_1^{p-2}x, ...,$ Tx)).

If there exists $x_0 \in C$ such that $k^n (d_p(T^{p-1}x_0, T^{p-2}x_0, ..., Tx_0))$ $\rightarrow 0$ as $n \rightarrow \infty$, then $d_p(T_1^{n-p+1}x_0, T_1^{n-p+2}x_0, \dots, T_1^nx_0) \rightarrow 0$ as n $\rightarrow \infty$, by (3.7), which gives that $(T_1^n x_0)$ is d_p-Cauchy. Since X is d_p -complete, there exists $z \in x$ such that $T_1^n x_0 \to z$ as $n \to \infty$. Note that $z \in C$ since $T_1^n x_0 \in C$ for all n and C is closed.

Now $d_p(T^{p-1}x, T^{p-2}x, ..., Tx, x)$ is lower semi-continuous on C gives $d_p(T^{p-1}z, T^{p-2}z, ..., Tz, z) \le \liminf d_p(T_1^{n-p+1}x_0, T_1^{n-p+2}x_0, ..., Tz, z) \le \lim d_p(T_1^{n-p+1}x_0, Tz, z) \le \lim d_p(T_1^{n-p+1}x_0, Tz, z) \le \lim d_p(T_1^{n-p+1}x_0, Tz, z)$ $T_1^n x_0 \to 0$ as $n \to \infty$ giving that Tz = z.

3.7 Remark: Note that the result proved by Linda Marie Saliga ([10], Theorem 2, pp.105) is a particular case of Theorem 3.6.

3.8 Theorem: Let C be a compact subset of a Hausdorff topological space (X,t) and d_p be a p-non-negative on X. Suppose T : C \rightarrow X with C \subset T(C), T and G_p(x) are both continuous, and $G_n(Tx) > G_n(x)$ for all $x \in T^{-1}(C)$ with $x \neq Tx$. Then T has a fixed point in C.

Proof: Since C is a compact subset of a Hausdorff topological space, we get that C is closed and since $T: C \rightarrow X$

is continuous, so $T^{-1}(C)$ is closed. Hence $T^{-1}(C)$ is compact since $T^{-1}(C) \subset C$. Also, $G_p(x)$ is continuous so it attains its minimum on $T^{-1}(C)$, say at z. That is,

(3.9) $G_p(z) \le G_p(x)$ for all $x \in T^{-1}(C)$

Now $z \in C \subset T(C)$ so there exists $y \in T^{-1}(C)$ such that Ty = z. If $y \neq z$, then $G_p(z) = G_p(Ty) > G_p(y)$ which is a contradiction to (3.9). Thus y = z = Ty is a fixed point of T.

Thus y = z = Ty is a fixed point of T.

3.9 Remark: Note that the result proved by Linda Marie Saliga ([10], Theorem 3, pp.106) is a particular case of Theorem 3.8.

3.10 Theorem : Let C be a compact subset of a Hausdorff topological space (X,t) and d_p be a p-non-negative on X. Suppose $T : C \rightarrow X$ with $C \subset T(C)$, T and $G_p(x)$ are both continuous, $f : [0,\infty) \rightarrow [0,\infty)$ is continuous and f(t) > 0 for $t \neq 0$. If we know that $G_p(Tx) \leq \lambda$ $f(G_p(x))$ where $0 < \lambda < 1$, for all $x \in T^{-1}(C)$ implies T has a fixed point then $G_p(Tx) < f(G_p(x))$ for all $x \in T^{-1}(C)$ such that $f(G_p(x)) \neq 0$ gives a fixed point.

Proof:Since C is a compact subset of a Hausdorff space, it is closed and since T is continuous, $T^{-1}(C)$ is closed and hence is compact since $T^{-1}(C) \subset C$.

Suppose $G_p(x)\neq 0$ for all $x\in T^{-1}(C)$. Then $G_p(x) > 0$ so that $f(G_p(x)) > 0$ for all $x\in T^{-1}(C)$.

Now define p(x) on $T^{-1}(C)$ by

 $p(x) = \frac{G_p(Tx)}{f(G_p(x))}$. Then p is continuous since T, f and $G_p(x)$

are continuous. Therefore p attains its maximum on $T^{-1}(C)$, say at z. That is, $p(x) \le p(z)$ for all $x \in T^{-1}(C)$.

Now $p(x) \le p(z) < 1$ so $G_p(Tx) \le p(z)$ $f(G_p(x))$ and T must have a fixed point.

3.11 Remark: Note that the result proved by Linda Marie Saliga ([10], Theorem 4, pp.106) is a particular case of Theorem 3.10.

3.12 Theorem: Let C be a compact subset of a Hausdorff toplogical space (X,t) and d_p be a p-non-negative on X. Suppose $T: C \to X$ with $C \subset T(C)$, T and $G_p(x)$ are both continuous, $f: [0, \infty) \to [0, \infty)$ is continuous and f(t) > 0 for $t \neq 0$. If we know that $G_p(Tx) \ge \lambda f(G_p(x))$ where $\lambda > 1$, for all $x \in T^{-1}(C)$ implies T has a fixed point, then $G_p(Tx) > f(G_p(x))$ for all $x \in T^{-1}(C)$ such that $f(G_p(x)) \neq 0$ gives a fixed point.

Proof: Since C is a compact subset of a Hausdorff space, we get that C is closed and since T is continuous, $T^{-1}(C)$ is closed. Hence $T^{-1}(C)$ is compact, since $T^{-1}(C) \subset C$.

Suppose $G_p(x) \neq 0$ for all $x \in T^{-1}(C)$. Then $G_p(x) > 0$ and $f(G_p(x)) > 0$.

Now, define
$$p(x) = \frac{G_p(Tx)}{f(G_p(x))}$$
.

Then p is continuous, since T, f and $G_p(x)$ are continuous and hence p attains its minimum on $T^{-1}(C)$, say at z. That is, $p(z) \le p(x)$ for all $x \in T^{-1}(C)$.

Now $p(x) \ge p(z) >1$ so $G_p(Tx) \ge p(z)$ $f(G_p(x))$ and T must have a fixed point.

3.13 Remark: Note that the result proved by Linda Marie Saliga ([10], Theorem 5, pp.106,107) is a particular case of Theorem 3.12.

4. **REFERENCES**

- [1] J. Achari, *Results on fixed point theorems*, Maths. Vesnik 2 (15) (30) (1978), 219-221.
- [2] Ciric, B. Ljubomir, A certain class of maps and fixed point theorems, Publ. L'Inst. Math. (Beograd) 20 (1976), 73-77.
- [3] B. Fisher, *Fixed point and constant mappings on metric spaces*, Rend. Accad. Lincei 61(1976), 329 332.
- [4] K.M. Ghosh, An extension of contractive mappings, JASSY 23(1977), 39-42.
- [5] Troy. L. Hicks, Fixed point theorems for d-complete topological spaces I, Internet. J. Math & Math. Sci. 15 (1992), 435-440.
- [6] Troy. L. Hicks and B.E. Rhoades, *Fixed point theorems for d-complete topological spaces II*, Math. Japonica 37, No. 5(1992), 847-853.
- [7] K. Iseki, *An approach to fixed point theorems*, Math. Seminar Notes, 3(1975), 193-202.
- [8] S. Kasahara, On some generalizations of the Banach contraction theorem, Math. Seminar Notes, 3(1975), 161-169.
- [9] S. Kasahara, *Some fixed point and coincidence theorems in L-Spaces*, Math. Seminar Notes, 3(1975), 181-187.
- [10] Linda Marie Saliga, Fixed point theorems for nonselfmaps in d-complete topological spaces, Intenat. J. Math & Maths. Sci. 19.1 (1996), 103-110.