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ABSTRACT

The purpose of this paper is to present some fixed point
theorems for non self maps in dy-complete topological spaces
which extend the results of Linda Marie Saliga.
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1. INTRODUCTION

Troy L. Hicks [5] has introduced d-complete topological
spaces, attributing the basic ideas of these spaces to Kasahara
([8], [9]) and Iseki [7] as follows:

1.1 Definition: A topological space (X, t) is said to be d-
complete if there is a mapping d : X x X —[0,%0) such that

(i) d(x,y)=0<x=y and (ii) <X, > is a sequence in X

o0
such that > d(X,.,X,,1) is convergent implies that
n=1

< Xn > converges in (X, t).

n
In this paper we introduce d,- complete topological spaces as
a generalization of d-complete topological spaces for any

integer p > 2 . For a non-empty set X, let X P be its p-fold
cartesian product.

1.2 Definition: A topological space (X, t) is said to
bedpcomplete if there is a mapping dp : X P -0, ) such

that (i) dp(X,Xp,.. ., Xp)=0&X =X =...=X, and
(i) <x,> is a sequence in X with
lim dp(Xn, Xne1 Xne2s - -+ Xngp-1) =0 implies  that
N—0

< Xp > converges to some point in (X, t). A
d , - complete topological space is denoted by (X, t, d )

1.3 Remark: The function d in the Definition 1.1 and the
function d, (the case p = 2) in Definition 1.2 are both

defined on X x X and satisfy condition (i) of the definitions
which are identical. Since the convergence of an infinite series

o0

Zan of real numbers implies that lim e, =0, but not
nN—o0

n=1

conversely; it follows that every d-complete topological space
is d,- complete, but not conversely. Therefore the class of
d, - complete topological spaces is wider than the class of d-
complete spaces and hence a separate study of fixed point

theorems of self-maps on d, - complete topological spaces is

meaningful.
The purpose of this paper is to establish certain fixed point
theorems of non self-maps of d, - complete topological

spaces for p>2.

2. PRELIMINARIES
Let X be a non-empty set. A mapping d,, : X ® —[0, ) is

called a p-non-negative on X provided
dp(X, X2, .., Xp)=0X =Xy =. . . =Xp.

2.1 Definition: suppose (X, t) is a topological space and
d is a p-non negative on X. A sequence <X, > in X is said
to be a dp- Cauchy sequence if
dp(Xns Xnats ++ -+ Xnpp1) >0 @ N—>o00.

In view of Definition 2.1, a topological space (X, t) is d-
complete if there is a p-non- negative dpon X such that
every d p - Cauchy sequence in X converges to some point in
(X, t).

If T is a self map of a non-empty set X and X € X', then the
orbit of x, Og (x) is given by O (X) = {x,Tx,sz, . } IfT

is a self map of a topological space X, then a mapping
G:X —[0,0) is said to be T-orbitally lower semi-

continuous (resp. T-orbitally continuous) at x*e X if
<X,> is a sequence in Of(x)for some xeX

with X, = X* as n—o then G(x*)<liminfG(x,) ( resp.
n—o0

G(x*)= limG(x,) ). A self map T of topological space X is
N—o0

said to be w-continuous at xe X if X, >X as n—owo

implies TX, > Tx as n—>o.

If dp is a p-non-negative on a non-empty set X, and

T: X — X then we write, for simplicity of notation, that

(22) Gp(0):= dp(x,Tx,sz, TP for xe X

Clearly we have

(2.3) Gp(x)=0 ifand only if x is a fixed point of T .

3. MAIN RESULTS

3.1 Theorem: Suppose (Xtd,) is a d,
completeHausdorff topological space, C is a closed subset of
Xand T:C — X isan open mapping with CcT(C). Suppose
dy (X Xppeeoy Xp) < K(Op(TXq, TXy,...,Txp)) for all
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X1,Xa,...,Xp€C, where k: [0,00) — [0,0) is a non-decreasing
function with k(0) = 0. Then T has a fixed point iff there
exists an xoeC with K" (dy(TP"Xo, "Xy, ..., TX0,Xg)) —> 0 as n
— o0,

Proof : i x,ye C are such that Tx = Ty, then the inequality
of the theorem gives dy(x,y,y,...,y) < K(dy(Tx,Ty,Ty,...., Ty))
= k(0) = 0 which gives x = y. Hence T is one-one. Thus T :
C—T(C) is a bijective map and hence T™ : T(C)—C exists.
Since T is open (by hypothesis), it follows that T is a
continuous function and hence T is a w-continuous function.
Now first suppose that T has a fixed point zeC.

Then Tz = z so that k" (d,(T"'z, T"?z,...., Tz, z)) = 0 giving
that lim k" (dy(T*'z, T"?z,...., Tz, 2)) = 0.

n—o0

Let T, denote the restriction of T to C, so that T, : C—C and
(3.2) dp(Tixy, TiXp,..., TiXp) < K(dp(X1,Xz,..., Xp)) for all
X1,X,...., Xp€C, since TTy(x) = x for all xeC . Let x;C be
al’bitrary and Xo = T]_Xl, X3 = T12X1,.. - Xp = Tlp-lxl.
Then (3.2) gives
do(T1Xs, TiX4, ., T1PX1) < K (dp(Xg, TiXe, Ti X4, T1PXp))
for all x,e C which gives, in particular, that
do(T1Xo, T1Xos- - T1"Xo) < K(dp(X0, T1Xos- - -, T1"X0))
<K3(dp(TXo, TT1Xp,- .., TT1P'%g))
= kz(dp(TXO, Xoy T1X0,. ca Tlp-Z Xo)).
Now by induction, we get
do(T1"P %0, T1"P X0, ..., T1 o) <K (A (TP X0, TP Xo- .., TX0, 0))-
Hence dy(T1""*!%q, T1"P*Xq,...., T1"X) — 0 as n—oo which
gives that (T,"xo) is a d,— Cauchy sequence in X.
Since X is dy- complete, the sequence (T;"Xo) converges to
some point z. That is, T,"Xg — Z as N—>co.
Note that z € C since C is closed.
Now T4(T;"Xo) = T1z as n — oo since T is w-continuous.
But T1”+1x0 — z as n — oo and since limits are unique in X,
we get that T,z = z.
Now T(T1z) = Tz gives z = Tz since T(T;z) =z and hence T
has a fixed point.

3.3 Remark: It may be noted that in view of Remark
1.3, the result proved by Linda Marie Saliga ([10], Theorem
1,pp.103,104) is a particular case of Theorem 3.1 .

3.4 Corollary: suppose T : C—X where C is a closed
subset of a dy—complete Hausdorff p-symmetrizable
topological space with CcT(C). Suppose dy(X1,Xp,..., Xp) <
[do(TX1, TXa,..., Txp)]® where s >1 for all Xy,X,,...x,eC. If
there exists XoeC such that d, (T"*xo, T°?Xy, ..., TXgXo) < 1,
then T has a fixed point.

Proof Let x,ybe in Cwith x#y.

Then 0<d, (x.y.¥..... ¥) < [ds(TX,Ty,..., Ty)]°* which gives
Tx=Ty.

Thus, T is one — one and hence T* : T(C) — C exists.

Now the inequality of the theorem gives

Ao(T%, T Xy ooy TXp) < [dp(X1,Xa,.., Xp)]° Which implies
that T is continuous. Hence T must be an open map.

Let xoeC be such that d, (TP"Xo, T"*X,..., T, Xo) <1.

If do(T* X, T*?X,..., TXo, Xo) = 0, then X, is a fixed point

of T.

Suppose 0<d,, (T*"xo, T"?Xq,..., Txq, Xo) <1.

Let k() = tand t = dy (T""Xq, "Xy, .., TXq, Xo).

Note that (at)’<at® if O<a<l. Since t° < t, there is an
Be(0,1)such that t* = pt.

We claim that

(3.5)  t™ <"t for all natural numbers n.

Forn=1,(3.5) holds. Now assume that (3.5) holds for

International Journal of Computer Applications (0975 — 8887)
Volume 100- No.7, August 2014

n=k. That is, t < p*t.
Then tk*Ds = ¢ ¢ < Xt Bt, since t° = Bt
k+1l 42

Bt

B¥*it, since0<t<1.

Hence, by induction, we get (3.5).

Therefore, K"(dy(T* %o, TP *Xq,.., TXq, Xo))
= [d, (T"Xo, T Xp,..., TX0,X)]™
=t"<B"t—>0asn—oo,since0<P<land

hence the theorem follows from Theorem 3.1.

IAN 1A

It may be noted that the existence of a fixed point for T on a
closed subset of a d,-complete Hausdorff topological space
(X,t,dy) is not ensured, if the inequality of the Theorem 3.1 is
replaced by any one of the following :

Ao(TX1, TXo,...., Txp) = K(dp(X.Xo,...., Xp)) for all xp,%,
. XpeC.

or

Ap(X1, X0, ..., Xp) = K(Ap(TX, TXo,...., Txp)) for all x3,%,,....,
Xp,eC.

or

K(dp(X1. X2, .., Xp)) = dp(TXq, TXo,...., Txp) for all xy,x%,,...,
Xp,eC.

L.M. Saliga has provided counter examples in the case p=2
([10], Examples 2,3,4, p.105,106).

3.6 Theorem: Let (X.t,d,) be a d, - complete Hausdorff
topological space, C be a closed subset of X and T: C —» X
with CcT(C). Suppose there exists a function k : [0, ©) — [0,
o) such that K(dy(TX1, TXy,...., TXp)) = dp(X1,Xo,..., Xp) for all
X1, Xa,...Xxp€C, Where Kk is a non-decreasing function with k(0)
=0 and there exists an x,eC such that k" (dp(T"Xo, T*?Xo,...,
TXoXp))—0 as n—oo. If dy(TP'x, T"?x,..., Tx,x) is lower
semi-continuous on C, then T has a fixed point.

Proof: If xand y are in C with x=y. Then 0<dy(X,y,;..., )
<k (dy(Tx,Ty,...., Ty)) gives that Tx # Ty. Hence T is one —
one and T exists.Let T; be the restriction of T to C. That is
,T:=T*|C. NowT;:C— Cand forx e C, we have
dp (X TaX, To2X, ..o ToPMX) <K (dy (TXX, Tix,.., T17X))

< K(Ap(TX, TX,X, T1x,..., T173)).
Hence, by induction, we get
(3.7) dy(T"P"x, T,"P*2x,..., Ty"%) < K" (dp(T*'X, T7%,....,
TX)).
If there exists xoe C such that k" (dy(T""Xo, T"?Xq, ..., TXq))
— 0 as n—oo, then dy(T,""Xo, T1"?Xy, ..., T1"Xp) = 0 as n
— oo, by (3.7),which gives that (T;"xo) is d,-Cauchy. Since X
is d,—complete, there exists zex such that T;"x, — z asn — .
Note that zeC since T,"x,eC for all n and C is closed.
Now dy(T?'x, TP%,...., Tx,x) is lower semi-continuous on C
gives dy(T"'z, T"?z,..., Tz,2)<liminf dy(T,""" %0, T, ?x,,...,
T1"Xg) = 0 as n — oo giving that Tz = z.

3.7 Remark: Note that the result proved by Linda Marie
Saliga ([10], Theorem 2, pp.105) is a particular case of
Theorem 3.6 .

3.8 Theorem: Let C be a compact subset of a Hausdorff
topological space (X,t) and d, be a p-non-negative on X.
Suppose T : C—X with CcT(C), T and Gy(x) are both
continuous, and G,(Tx) > G,(x) for all xeT™(C) with x = Tx.
Then T has a fixed point in C.

Proof: since C is a compact subset of a Hausdorff
topological space, we get that C is closed and since T : C — X
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is continous, so T*(C) is closed. Hence T}(C) is compact
since T}(C) =C.Also, Gy(X) is continuous so it attains its
minimum on TY(C), say at z. That i,

(3.9) Gp(2) < Gy(x) for all xe T*(C)

Now zeC < T(C) so there exists ye T(C) such that Ty = z.

If y = z, then G(z) = G,(Ty) > G,(y) which is a contradiction
to (3.9).

Thusy =z =Ty is a fixed point of T.

3.9 Remark: Note that the result proved by Linda Marie
Saliga ([10], Theorem 3, pp.106) is a particular case of
Theorem 3.8 .

3.10 Theorem : Let C be a compact subset of a
Hausdorff topological space (X,t) and d, be a p-non-negative
on X. Suppose T : C->X with CcT(C), T and Gy(x) are both
continuous, f : [0,00) = [0,00) is continuous and f(t) > 0 for t =
0. If we know that Gy(Tx) < A f(Gy(x)) where 0<i<1, for all
xeT*(C) implies T has a fixed point then G,(Tx)<f(G,(x)) for
all xe T"Y(C) such that f(Gp(x)) = 0 gives a fixed point.

Proof:since C is a compact subset of a Hausdorff space, it
is closed and since T is continuous, T(C) is closed and
hence is compact since T(C) =C.
Suppose G,(x)=0 for all xeT*(C). Then G,(x) > 0 so that
f(Gy(x)) >0 for all xeT™(C).
Now define p(x) on TX(C) by

G, (™)
f(Gp(x)
are continuous. Therefore p attains its maximum on T(C),
say at z. That is, p(x) < p(2) for all xeT*(C).
Now p(x) < p(z) < 1 s0 Gp(TX) < p(z) f(Gy(x)) and T must
have a fixed point.

p(x) = . Then p is continuous since T, f and G(x)

3.11 Remark: Note that the result proved by Linda
Marie Saliga ([10], Theorem 4, pp.106) is a particular case of
Theorem 3.10 .

3.12 Theorem: Let C be a compact subset of a
Hausdorff toplogical space (X,t) and d, be a p-non-negative
on X. Suppose T : C — X with CcT(C), T and Gy(x) are both
continuous, f: [0, o) — [0, «) is continuous and f(t) >0 for
t=0. If we know that Gy(Tx) > A f(Gy(x)) where A > 1, for all
xeTC) implies T has a fixed point, then
Gy(Tx) > f(Gy(x)) for all xeT™(C) such that f(Gy(x)) = 0
gives a fixed point.

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 100- No.7, August 2014

Proof : Since Cisa compact subset of a Hausdorff space,
we get that C is closed and since T is continuous, T™(C) is
closed. Hence T}(C) is compact, since T"(C) =C.
Suppose Gp(x) = 0 for all xeTYC). Then Gy(x) > 0 and
f(Gp(x)) >0.

Gp(TX)

f(Gp(x)
Then p is continuous, since T, f and Gy(x) are continuous and
hence p attains its minimum on T(C), say at z. That is, p(z) <
p(x) for all xeT(C).
Now p(x) = p(z) >1 so Gy(TX) = p(z) f(Gy(x)) and T must
have a fixed point.

Now, define p(x) =

3.13 Remark: Note that the result proved by Linda
Marie Saliga ([10], Theorem 5, pp.106,107) is a particular
case of Theorem 3.12.
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