
International Journal of Computer Applications (0975 – 8887)

Volume 100– No.7, August 2014

6

Elastic Rapid Provisioning, Multiple Source Monitoring

Framework Architecture

Akshay Potnis
Dept. of Computer

and Information
Technology, PVG’s

COET,
University of Pune,

India

Rohan Khadilkar
Dept. of Computer

and Information
Technology, PVG’s

COET,
University of Pune,

India

Sarang Rakhecha
Dept. of Computer

and Information
Technology, PVG’s

COET,
University of Pune,

India

Vallabh Naik
Dept. of Computer

and Information
Technology, PVG’s

COET,
University of Pune,

India

ABSTRACT

In this paper, elastic, multiple sources monitoring framework

architecture which can be rapidly provisioned with respect to

the monitoring requirements is being proposed. The need of

system performance monitoring is of prime concern along

with a tool to monitor user related performance i.e. in case of

a product firm; they might need to monitor the sales regularly

to predict some future trends. The system metrics combined

with logs need to be plotted side by side to extract the

similarity between them to predict efficiency of system

resource usage. Moreover, each user might be using a

different database as data source .Bearing this multi-faceted

heterogeneity in mind, framework architecture for multiple-

source, multipurpose monitoring is being proposed which can

give the user a fully satisfying monitoring experience. A new

concept of “MVC as an algorithm” can be an accurate

measure for an efficient cloud based monitoring service

(SAAS) and can also be incorporated with the framework

architecture.

General Terms

Cloud Computing, Resource Monitoring

Keywords

Software as a Service (SAAS), Graphing-mechanism,

JavaScript Object Notation (JSON), Monitoring, Parsing,

Time-series database, Web services

1. INTRODUCTION
Trending is the practice of collecting information and

attempting to spot a pattern, or trend, in the information.

Monitoring is the process of collecting the data combined

with trending. This is a very crucial part of every testing as

well as management team of a company. While the testing

team defines monitoring in terms of system resources, the

management does the same in terms of returns or sales or

profits. In either case, a clear graph of all the requirements

seems to fulfill the tasks. But these requirements are subject to

change with respect to data storage as well as terms of

monitoring. Considering these requirements there is a dire

need of a system that can be elastic in terms of any user

requirements, be it heterogeneous data sources or be it

multiple graphing mechanisms. Hence, an architecture that

can provide elasticity in terms of all the factors from User

Interface to Data Source is necessary. This can cater to all

requirements from a single place, with the client just needing

to choose his monitoring requirements and use the service.

Furthermore, this architecture can be a perfect model for

Software as a Service (SAAS)[1] that can serve any kind of

monitoring requirements.

2. ARCHITECTURE AND DESIGN
The architecture is comprised of five layers namely Client

Layer, UI management Layer, Routing layer, Web Services

Layer and Data Source Layer. The first and the last

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.7, August 2014

7

Fig.1 Proposed Architecture Design (Layer-wise)

layer may or may not be in one place i.e. may be a part of a

distributed system or a part of a virtual private network. So

this favors the mapping between client computers to data

sources to be an n to n mapping. Each layer is designed to

perform its own functions.

2.1 Client layer
This layer shall be responsible for maintaining the different

user interfaces in terms of Monitoring dashboards[2] that the

client creates. It shall also hold a copy of Sources. JSON file

that shall be a list of all the sources that the current client is

monitoring along with the parameters related to those sources.

Each client shall have a copy of both these, namely, a folder

storing all client dashboards and a sources file. The

dashboards folder shall also contain separate JSON files for

each dashboard that the user creates. When the client browser

requests for the main dashboard, a common dashboard.html

file shall be served but with the structure derived from parsing

his Dashboard and Sources JSON files. The detailed structure

of both these files is explained in the next section. Use of

JSON files makes it very easy and efficient in terms of

maintenance and efficiency of data exchange and thus makes

the front end structure light weight.

2.2 UI management layer
This is the layer that is the most important layer in terms of

bringing in the UI based dynamic facilities as well as handling

all the business logic related to the manipulation of data and

the rendering sequence of the dashboard. This layer shall

contain all the common logic needed by all the ‘n’ clients that

shall be using this service. To be specific, it shall contain the

dashboard renderer, request query parser, response handler,

and data formatter, dashboard saving and loading mechanism

and graphing mechanism [3][4]. From this layer starts the

centralized part of the architecture. Grouping these facilities

together as one common layer reduces the need of

maintaining separate copies of these on the client side, which

is the case for all the monitoring tools as of now. Moreover,

since they have to perform the same function in case of all

data sources, keeping them as a common part makes this

single layer perform all the tasks that are currently being

implemented by four different tools on a single client.

2.3 Routing layer
As the name suggests, this layer shall handle the routing of

requests made by the clients. Since the client may be

requesting for data from any number of sources, each request

from the client must be routed to the specific web service for

the requested source. This is a very important task. This layer

shall maintain a file named Routes. JSON which shall contain

entries of the format:

[

{ “source” : “path” },

{ “ source” : “path” },.

];

Whenever there is a request from the client this file shall be

searched for the specific source and the entry for its

corresponding path shall be popped out. The request shall then

be made to the service located on that path. When a new web

service is added to the system, all that needs to be done is to

add an entry to the routes file. This layer shall thus contain a

routes file and a Route Finder script which finds the path from

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.7, August 2014

8

this file. Also, a client specified routes file will be provided,

whose significance shall be made clear in the next layer. This

structure makes routing very easy to maintain and update

according to the changes in the system.

2.4 Web services layer
This layer shall be the most open ended layer in the system

structure. It shall perform the task of requesting data from

heterogeneous data sources and send the obtained data back to

the UI management layer. Each web service shall be a

REST[5] like service destined to get data from a specific

source e.g. WS1 gets data from a Time Series database[6],

WS2 gets data from a No SQL database[7] etc. The mapping

of WS to source shall be done in routing layer. This can also

contain web services for getting data from time series

databases that are specially designed for handling data

associated with system monitoring. Each web service shall

also be following an ordered set of steps in terms of their

working mechanism. These steps should be strictly followed

by the client to create a personalized web service in case of a

specific data source requirement. The next part comprises of

addition of an entry to this file, mentioning the data source

name and the path to the web service. A corresponding entry

also needs to be added to Sources. JSON file in the client

layer for making this service available. Moreover, there is no

restriction on programming language as long as the steps are

followed and data is returned in the specified format. Thus,

this structure shall favor serving multiple sources as well as

addition of client specific sources when the need arises.

2.5 Data sources layer
Each client data source might be in different places and in

different formats. It is the job of the web service to request

data and provide it to the UI management layer to do the

further execution. The security related specifics for each data

source needs to be mentioned by the client in the params

section of the Sources. JSON file. Thus, this layer is a

distributed physical layer that shall be representing the source

of raw data.

In this architecture, the process of data collection has not been

added. Data collection is the foremost step which occurs prior

to the actual monitoring. The reason being, data collection is a

part of the activities that the client might be doing irrespective

of monitoring. It is only in case of system based monitoring

that the collection doesn’t come as part of the daily data

collection activity. For this purpose, the collection has not

been considered as a part of this architecture. But in the future

scope & extensions section, a note as to how collection can

be incorporated as a parallel working activity to this

architecture has been made.

3. DATA FORMAT
In this section, the formats, structure of the dashboard as well

as sources files which shall help in making clear how these

files shall contribute to the dynamic working of the system

has been described in detail..

3.1 Sources. JSON

Fig.2 Sources. JSON file format

This file shall be created by default for every client. It shall

contain a list of all the sources with params parameter empty.

Source name shall point to the value of the actual name of the

sources. The params parameter needs to be filled by the client

according to his/her db specification. At the end of the file

there shall be default source pointing to demo specification.

Initially all the sources shall be commented. As per the

requirements the user shall uncomment the source he/she

wants and fill in the parameters for it. Only those that are

uncommented shall be made available to the user as options of

data sources for monitoring on the dashboard. Due to this, the

user can be made available sources as per his need by just

commenting out the part not required or vice-versa.

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.7, August 2014

9

Fig.3 Dashboards.JSON detailed format

3.2 Dashboards. JSON:
This format shall be common for all the client dashboards.

The values of the respective parameters may vary from

dashboard to dashboard. The name dashboards. JSON is just a

type header for explanation. In actual sense this shall be the

name by which the dashboard shall be saved. E.g. if you store

this dashboard by the name myDash, then the file shall be

myDash. JSON. But to keep things generic we shall refer to

this file as dashboards. JSON in the rest of the paper.

Fig.4 Dashboards.JSON file format

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.7, August 2014

10

This is the default format. These parameters shall be for the

dashboard as a whole. Since the dashboard needs to be

refreshed when new data arrives, a parameter called refresh

rate is added. The metrics section shall contain all the graph

related information. To relieve the parsing of sources.JSON

once a dashboard is saved, the data source parameters related

to that dashboard get saved in dbparams. A special provision

for queries is kept if the user wants to retrieve data using his

specific query e.g. instead of a single value, an average of the

values is needed. But again the query should be according to

the required format. An example format for timeseries related

values can be:

"select @yourTimestampColName as Date,

@yourMetricColumnName as Name , @yourValue as Value

from @yourTableName where @yourconditions and

@yourTimestampCol between @starttime and @endtime"

Where all parameters with @ are user defined and start time

and end time are retrieved from the time resolution chosen by

the user for the dashboard.

These queries can be made available to the user along with

default query when the user adds targets for graphing to a

graph. The detailed format is given in Fig 3.

4. DATA BINDING
Before the actual explanation of the working model, a primary

part needs to be mentioned which is ‘the dynamic quality of

dashboards’. The most important thing in case of monitoring

is that requirements always change. Due to this, the dashboard

itself needs to be dynamically changeable at any point of time.

The dashboards object parsed from the dashboards.JSON file

proves to be the basis of this change. When the

dashboards.JSON is first parsed, the object can be maintained

as a JavaScript object. Since, it is this object that determines

the properties of the dashboard structure after rendering, the

dashboard can be dynamically changed by just changing the

property values of this object and rendering the dashboard

again. The diagram Fig 5 may help explain this in a better

way.

Fig.5 Model View Controller Working diagram

The diagram in Fig 5 represents a general way in which MVC

framework [8] actually gets its work done. Also, “MVC as an

algorithm” can be incorporated in dashboard parsing. This can

be explained with respect to the above diagram. The View

represents the dashboard on the browser; the view model

represents the UI based functions while Model is the

dashboards object. Thus, if the Model is changed, then due to

the logical data binding between model, View Model and

View, the changes get propagated to the view too. This

concept shall be actively responsible for dynamically

changing the view at any point of time. E.g. deletion of a

graph shall require manipulating the dashboards object and

deleting the data of the current graph from the object and

rendering the dashboard again.

5. WORKING
This section serves as an explanation for the working of this

prototype architecture in the form of an algorithm that shall

define the procedural flow of data, requests and responses

from one layer to another. When the user opens his dashboard

on the browser, the following algorithm shall be applied:

Algorithm:

1. Parse the dashboards JSON file.

2. For every graph i in the metrics section

 Create the graph template from the pre compiled

template.

 Find the source mapping for the graph source from the

dbparams section. if not mentioned then find mapping

from sources.JSON.

 Using the parameters received create a request for

getting the data for the graph

 Find the route for the web service using routes.JSON.

 Send this asynchronous request to corresponding web

service.

 After response is received, pass on the response data

to the data formatter which shall format the data in a

specific format required by graphing library.

 Send data to graphing library and create the graph.

 Add graph to the template created in the first step.

 Repeat for each graph.

3. Render the dashboard.

In case the dashboard is already open, then addition and

deletion of graphs, saving and retrieving dashboards are some

of the activities that need to be elaborated upon. The addition

of graphs can be done by manipulating the dashboards object

by creating a new graph object according to the properties

input by user and appending it to the metrics section of the

dashboard object and rendering the page again. Saving of

dashboards can be done by just saving the current state of the

object into a file with the extension .JSON in the Saved folder

with the name input by the user. Loading a dashboard shall be

getting a file from the users’ Saved folder and replacing the

current state of dashboard object by the object formed by

parsing the newly acquired JSON file. Due to the concept of

MVC applied as an algorithm, anything related to the

dashboard dynamics can be done by manipulating the

dashboards object. In this way, working becomes both,

simplified and easy to understand. It can be extended by

anyone as per their requirements.

6. ARCHITECTURE AS CLOUD BASED

SERVICE (SAAS)
Monitoring in its purest form is a very dynamic and

fluctuating process. It changes with time. Also, at a given

time, the needs might be both; systems oriented monitoring of

resource usage as well as all other types of monitoring.. In

addition, choices of graphing libraries also vary according to

personal use. Currently there are many tools serving this

purpose, but as the requirements change, the tool needs to

change. Buying a new tool with the change in requirements or

keeping multiple tools to serve multiple purposes is a very

inefficient process. All these problems can be catered to if this

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.7, August 2014

11

service could be made a cloud based service implemented as

SAAS. The architecture perfectly fits this requirement. It can

be delivered to users as per their need in the form of Service

Level Agreements (SLA’s)[9]. Moreover, due to the flow and

data exchange efficiency, this architecture also proves a more

useful solution than most of the current monitoring tools taken

as a whole.

7. FUTURE AND EXTENSION
The most important future scope can be implementing this

architecture as a SAAS that can provide the users with a

variety of options to serve all monitoring needs. We have also

mentioned in the paper about data collection not being a part

of this architecture. Another future extension can be data

collection mechanism incorporated on the same level as Client

layer connected to the Data source layer through the routing

layer. This can be a separate protocol stack working side by

side with our current architecture. The Collection mechanism

can be made a fully functional framework in terms of

monitoring requirements. Last but not the least another

addition to it can be an data mining system that can help find

trends on its own depending upon the data and prompt the

results to the user as and when the dashboard is opened. This

can prove as a very efficient addition to help finding relation

between factors that are least related. This can go a long way

in prediction of any kind of future system behavior.

8. CONCLUSION
Although the architecture seems complicated, it’s quite easy

to be incorporated as a service due to its loosely coupled

components and use of data objects as sources of exchange.

Furthermore, implementation on the scale of a cloud based

service which can prove to be a unique exclusive service that

can go a long way in satisfying user requirements at any point

of time is very much plausible. Monitoring trends can be

focused on more efficiently rather than the time being spent in

setting up a new monitoring tool each time a new requirement

arises. This service can surely prove a useful means of

guessing future trends in the behavior thus minimizing risks,

breakdowns as well as costs.

9. REFERENCES
[1] Software as a Service http://www.ibm.com/cloud-

computing/in/en/saas.html

[2] Kibana3 Dashboard http://logstash.openstack.org/

[3] JavaScript Graphing Mechanisms or Libraries

http://techslides.com/50-javascript-charting-and-

graphics-libraries/

[4] Graphing Libraries on Gists Lists

https://gist.github.com/eabait/9916975

[5] Representational State Transfer http://rest.elkstein.org/

[6] Time Series Databses

https://code.google.com/p/kairosdb/

[7] NoSql Databses http://nosql-database.org/

[8] Model View Controller http://msdn.microsoft.com/en-

us/library/ff649643.aspx

[9] Zulkernine, F.H.; Martin, P. "An Adaptive and Intelligent

SLA Negotiation System for Web Services", Services

Computing, IEEE Transactions on, On page(s): 31 - 43

Volume: 4, Issue: 1, Jan.-March 2011

IJCATM : www.ijcaonline.org

