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ABSTRACT
In applications such as speech and audio denoising, music tran-
scription, music and audio based forensics, it is desirable to de-
compose a single-channel recording into its respective sources,
commonly referred to as blind source separation (BSS). One of
the techniques used in BSS is non-negative matrix factorization
(NMF). In NMF both supervised and unsupervised mode of op-
erations is used. Among them supervised mode outperforms well
due to the use of pre-learned basis vectors corresponding to each
underlying sources. In this paper NMF algorithms such as Lee Se-
ung algorithms (Regularized Expectation Minimization Maximum
Likelihood Algorithm (EMML) and Regularized Image Space Re-
construction Algorithm (ISRA)), Bregman Divergence algorithm
(Itakura Saito NMF algorithm (IS-NMF)) and an extension to
NMF, by incorporating sparsity, Sparse Non-Negative Matrix Fac-
torization(SNMF) algorithm are used to evaluate the performance
of BSS in which supervised mode is used. Here signal to distor-
tion ratio (SDR), signal to interference ratio (SIR) and signal to
artifact ratio (SAR) are measured for different speech and/or mu-
sic mixtures and performance is evaluated for each combination.

General Terms:
Source Separation, Blind Source Separation, BSS Evaluation

Keywords:
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1. INTRODUCTION
Separation of mixed signals has long been considered as an im-
portant and fundamental issue in signal processing, with a wide
variety of applications in telecommunications, audio and speech
signal processing, and biomedical signal processing etc. Audio and
speech separation systems find a variety of potential applications
including automatic speech recognition (ASR) under adverse noise
conditions, and multimedia or music analysis where signals are
mixed purposefully from multiple sources.
Source separation methods can usually be classified as blind and
non-blind methods based on the characteristics of underlying mix-

tures. In blind source separation (BSS), the completely unknown
sources are separated without the use of any other information be-
sides the mixture. These methods typically rely on the assumption
that the sources are non-redundant, and the methods are based on,
decorrelation, statistical independence, or the minimum description
length principle. In Non-blind methods, the separation is based on
the availability of further information such as prior distribution,
about the mixture. The NMF based algorithms are used here for
blind source separation scenario [1].
Like NMF the most commonly used method in BSS is Indepen-
dent Component Analysis (ICA). In ICA, the linear representation
of nongaussian data is calculated so as to make the components
statistically independent, or as independent as possible. Such a rep-
resentation seems to capture the essential structure of the data in
many applications, including feature extraction and signal separa-
tion etc. But when both sources and mixing matrices are unknown;
ICA cannot determine the variances (energies) of the independent
components as well as the order of the independents sources be-
cause of the basis functions are ranked by non-gaussianities [2].
Lee and Seung [3] have suggested a solution for BSS problem with
non negativity constraints. In NMF, the non negativity constraint
leads to the parts based representation of the input mixture which
helps to develop structural constraints on the source signals. NMF
does not require the independence assumption, and is not restricted
to data lengths. It yields more importants to the basis vectors for
reconstructing the underlying signal than the activation vectors. In
NMF the basis functions are not ranked; the order of the underly-
ing sources does not change in ICA. As from [1], [2], it is found
that NMF is attractive and it out performs ICA in BSS environ-
ment. The spatial and temporal correlations between variables are
more accurately taken into account by NMF which helps to makes
NMF a useful tool for decomposition of multivariate data. This pa-
per focused on BSS using NMF with decorrelation as a method for
updating the activation vectors.
Most NMF algorithms focus on minimizing the cost function
such as Kullback-Leibler divergence or squared Frobenius norm
or Itakura Saito Divergence etc using multiplicative or additive up-
dates. This paper compares the performances of four multiplicative
algorithms Regularized EMML and Regularized ISRA proposed
by Lee and Seung [3], [4], IS-NMF proposed by Bregman [5], and
SNMF proposed by Hoyer [6] for NMF.
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2. BSS USING NMF
BSS is a method to separate the independent sources from mixed
observations, where mixing process is unknown. It may lead to de-
termined (no: of sensors = no: of sources), overdetermined (no: of
sensors> no: of sources) or underdetermined (no: of sensors< no:
of sources) cases when number of sources and number of sensors
varies. When single-channel source separation problem is taken as
underdetermined one, it cannot in general be solved without the
prior knowledge of underlying sources within the mixture. Due to
this, the problem of estimating several overlapping sources from
one input mixture is ill-defined and complex in BSS environment.
But NMF gives a solution to this single channel source separation
problem by utilizing its non negativity constraint as well as super-
vised mode of operation for source separation [7].
NMF is defined as

V ≈WH (1)

Where V ∈ RF×T+ is the speech spectrogram, W ∈ RF×K+ is the
matrix of basis vectors (columns) and H ∈ RK×T+ is the matrix of
activations (rows) of the input mixture.
In NMF when the spectrogram of mixture V is given, the matrices
W and H can be computed via an optimization problem by

Min
W,H≥0

D(V ‖W,H) (2)

where D denotes the divergence.
The complex sound needs more than one basis vector for separation
in unsupervised mode of operation, it is difficult to control which
basis vector explains which source within the mixture. The ’right’
value of K avoids the factorization errors makes BSS accurate. One
way to control the factorization problem is by modifying F, T and
K values which defines dimensionality of factorized matrices. But
operation in supervised mode is much simpler than modifying di-
mensionalities, uses an isolated training data of each source within
a mixture to pre-learn individual models of underlying source [8].
The speech and/or music data base for source separation are taken
from [9] and is used as input to evaluate the performance of Regu-
larized EMML, Regularized ISRA, IS-NMF and SNMF algorithms
by varying K from 5 to 100 with constant number of iteration 100.
The performance evaluation measures of SDR, SIR and SAR de-
termines the quality of the underlying algorithms [10].

3. NMF ALGORITHMS
EMML and ISRA algorithms are two among the Regularized Lee-
Seung algorithms group, usually uses an alternating minimization
of a cost function D(V ‖WH) which subject to the non nega-
tivity constraints (W,H ≥ 0). In Regularized EMML algorithm
Kullback-Leibler cost function is minimized where as in Regular-
ized ISRA algorithm it minimizes the squared Frobenius norm. In
NMF algorithms any suitably designed cost function has two sets
of parameters (W and H), it usually employ constrained alternat-
ing minimization, i.e., in one step W is estimated and H fixed, and
in the other step fix H and estimate W .

3.1 Regularized EMML Algorithm
Kullback-Leibler cost function is given by

D(V ‖V̂ ) =
∑
i,j

(Vij log
Vij

V̂ij
− Vij + V̂ij) (3)

To minimize

D(V ‖W,H) =
∑
i,j

(Vij log
Vij

(WH)ij
− Vij + (WH)ij) (4)

block coordinate descent technique is used.

D(V ‖W,H) =
∑
i,j

−Vij log
∑
k

WikHkj

+
∑
i,j

∑
k

WikHkj (5)

Since both W and H are not convex together, closed form opti-
mization is not possible. So to minimize divergence, the auxiliary
function taken in Expectation-Maximization algorithm [4] is also
used here. To maximize the function, a useful tool is Jensen’s in-
equality, which says that for convex functions f : f (average) ≤ av-
erage of f .
To apply Jensen’s inequality, weights introduced as

∑
k πijk = 1

D(V ‖W,H) ≤
∑
i,j

(−Vij log
∑
k

πijk
WikHkj
πijk

+
∑
i,j

∑
k

WikHkj) (6)

So the function can be minimized exactly as

H∗kj =

∑
i Vijπijk∑
iWik

(7)

where πijk =
WikH

(l)
kj∑

kWikH
(l)
kj

so

H
(l+1)
kj ← H

(l)
kj .

∑
i (

V

WH(l) )ijWik∑
iWik

(8)

In matrix form it can be represented as

H(l+1) ← H(l).
WT V

WH(l)

WT 1
(9)

In similar manner W can be calculated.

Algorithm 1 Regularized EMML Algorithm

Using D(V ‖WH) = D(V T ‖WTHT ), it obtain a similar update
for W
Now just iterate between

(1) Updating W .
(2) Updating H .
(3) Checking D(V ‖WH). If the change since the last itera-

tion is small, then declare convergence.

1: Initialize W,H
2: repeat

H ← H ·
WT V

WH

WT 1
W ←W ·

V
WH

HT

1HT

3: until convergence return W,H .
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3.2 Regularized ISRA Algorithm
The squared Euclidean distance (squared Frobenius norm) cost
function is given by,

DF (V ‖WH) =
1

2
‖V −WH‖2F (10)

Applying the standard gradient descent technique to the cost func-
tion, it get

Wij ←Wij
[V HT ]ij

[WHHT ]ij
(11)

Hjk ← Hkj
[WTV ]jk

[WTWH]jk
(12)

In matrix notation, the Lee-Seung Euclidean multiplicative updates
become

W ←W � V HT

WHHT
H ← H � WTV

WTWH
(13)

Algorithm 2 Regularized ISRA Algorithm

Using DF (V ‖WH) = DF (V
T ‖WTHT ), it obtain a similar up-

date for W
Now just iterate between.

(1) Updating W .
(2) Updating H .
(3) Checking ‖V −WH‖. If the change since the last iteration

is small, then declare convergence.

1: Initialize W,H
2: repeat

H ← H · WTV

WHHT
W ←W · V HT

WTWH

3: until convergence return W,H .

3.3 Itakura Saito Divergence Algorithm
Itakura Saito NMF is belongs to the class of Bregmans divergence
where the underlying function is strictly considered as convex in
real space. NMF with Itakura Saito Divergence is given by

dIS(
V

WH
) =

V

WH
− log V

WH
− 1 (14)

It is obtained from the maximum likelihood (ML) estimation[4]
of short-time speech spectra under autoregressive modeling. The
IS divergence belongs to the class of Bregman divergences and
is a limit case of the β− divergence. Thus, the gradient descent
multiplicative rules are applied here. The gradients of criterion
Dβ(V |WH) wrt W and H is represented as

∇HDβ(V |WH) =WT ((WH)·β−2 · (WH − V )) (15)

∇WDβ(V |WH) = ((WH)·β−2 · (WH − V ))HT (16)

where · denotes Hadamard entry wise product and An denotes the
matrix with entries [A]nij . The multiplicative gradient descent ap-
proach taken is equivalent to updating each parameter by multi-
plying its value at previous iteration by the ratio of the negative

and positive parts of the derivative of the criterion wrt this pa-
rameter, namelyθ ← θ · [∇f(θ)]−/[∇f(θ)]+, where ∇f(θ) =
[∇f(θ)]+ − [∇f(θ)]− and the summands are both non negative.
This ensures non negativity of the parameter updates, provided ini-
tialization with a nonnegative value. A fixed point θ∗ of the algo-
rithm implies either ∇f(θ∗) = 0 or θ∗ = 0. This leads to the
updates for W and H,

H ← H · W
T ((WH)·β−2V )

WT (WH ·β−1)
(17)

W ←W · ((WH)·β−2V )HT

(WH ·β−1)HT
(18)

where β=0.

Algorithm 3 Itakura Saito NMF Algorithm

Using DF (V ‖WH) = DF (V
T ‖WTHT ), it obtain a similar up-

date for W
Now just iterate between.

(1) Updating W .
(2) Updating H .
(3) Checking ‖V −WH‖. If the change since the last iteration

is small, then declare convergence.

1: Initialize W,H
2: repeat

H ← H ·
WT V

(WH)2

WT 1
WH

W ←W ·
V

(WH)2
HT

1
WH

HT

3: until convergence return W,H .

3.4 SNMF Algorithm
One of the most useful properties of NMF is that it usually produces
a sparse representation of the data. Such a representation encodes
much of the data using few active components, which makes the
encoding easy to interpret. So Sparse NMF is an extension of NMF,
in which an additional sparsity constraint is enforced on either the
matrix H or W, i.e., a solution is sought where only a few basis
vectors are active simultaneously. The sparse NMF problem can be
formulated as

Min
W,H≥0

D(V,WH) + β(H) (19)

where β is a penalty term that enforces the sparsity. This penalty
could be selected as the 0-norm, i.e., the count of non-zero ele-
ments in H, but this leads to a very rough cost function that is hard
to minimize because of its many local minima. A penalty function
that leads to a smoother regularization while still inducing sparsity
is the the 1-norm, which, in Bayesian terms, corresponds to assum-
ing an exponential prior over H. In practice β(H = λ

∑
i,j Hi,j)

, where λ is a parameter which controls the tradeoff between spar-
sity and accuracy of the approximation. To use this penalty function
a normalization constraint on either W or H is introduced, since
trivial solutions minimizing β can be found by letting H decrease
and W increase accordingly. With the sparseness penalty, the data
is modeled not only as a non-negative linear combination of a set
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of basis vectors, but as linear combinations using only a few ba-
sis vectors at a time. This allows us to compute an over complete
factorization, i.e., a factorization with more basis vectors than the
dimensionality of the data. Without the sparsity constraint, any ba-
sis spanning the entire positive orthant would be a solution.
Patrik O. Hoyer [6] has developed a projected gradient descent
algorithm for NMF with sparseness constraints. This algorithm
essentially takes a step in the direction of the negative gradient,
and subsequently projects onto the constraint space, making sure
that the taken step is small enough that the objective function
E(W,H) = ‖V −WH‖2 is reduced at every step. The projec-
tion operator, which enforces the desired degree of sparseness in
the algorithm.

Algorithm 4 NMF with Sparseness Constraint on W
(1) Initialize W and H to random positive matrices
(2) If sparseness constraints on W apply, then project each

column of W to be non-negative, have unchanged L2

norm, but L1 norm set to achieve desired sparseness

1: Iterate
2: if Sparseness constraints on W apply then
3: Set W :=W − µW (WH − V )HT

4: Project each column of W to be non-negative, have un-
changedL2 norm, butL1 norm set to achieve desired sparse-
ness

5: else {Take standard multiplicative step W :=W ⊗ (V HT )�
(WHHT ).}

6: until convergence return W,H .

Algorithm 5 NMF with Sparseness Constraint on H
(1) Initialize W and H to random positive matrices
(2) If sparseness constraints on H apply, then project each row of

H to be non-negative, have unit L2 norm, and L1 norm set to
achieve desired sparseness

1: Iterate
2: if Sparseness constraints on H apply, then
3: Set H := H − µHWT (WH − V )
4: Project each row of H to be non-negative, have unit L2

norm, and L1 norm set to achieve desired sparseness
5: else {Take standard multiplicative step H := H ⊗ (WTV )�

(WTWH).}
6: until convergence return W,H .

where, ⊗ and � denote element wise multiplication and division,
respectively. Moreover, µW and µH are small positive constants
(step sizes) which must be set appropriately for the algorithm to
work. Many of the steps in the Algorithm 5 and Algorithm 6 re-
quire a projection operator which enforces sparseness by explicitly
setting both L1 and L2 norms (and enforcing non-negativity). This
operator is defined as, for any vector x, the closest non-negative
vector s with a given L1 norm and a given L2 norm can be ob-
tained as

Algorithm 6 Projection Operaror Calculation
1: Set si := xi + (L1

∑
xi)/dim(x),∀i

2: Set Z := {}
3: Iterate

4: Set mi :=

{
L1/(dim(x)size(Z)) if i 6 ∈Z

0 if i ∈ Z
5: Set s := m + α(s − m), where a ≥ 0 is selected such that

the resulting s satisfies the L2 norm constraint. This requires
solving a quadratic equation.

6: if all components of s are non-negative then
7: return s
8: else {Set Z := Z ∪ i; si < 0}
9: Set si := 0,∀i ∈ Z

10: Calculate c := (
∑
si − L1)/(dim(x)− size(Z))

11: Set si := si − c, ∀i 6 ∈Z
12: go to (4)
13: until s become non-negative.

3.5 Procedure for Complete Supervised Process
In this paper the supervised procedure found in [8] is incorporated
in NMF algorithms to make the reconstruction effective in BSS
methods. The complete procedure for supervised source separation
process is as follows

Algorithm 7 Procedure for Complete Supervised Process
1: Use isolated training data to learn a factorization (WsHs) for

each source s
2: Throw away activationsHs for each source s.
3: Concatenate basis vectors of each source (W1;W2, ...) for

complete dictionary W
4: Hold W fixed, and factorize unknown mixture of sources V

(only estimate H)
5: Once complete, use W and H as before to filter and separate

each source.

4. PERFORMANCE EVALUATION OF NMF
ALGORITHMS

The principle of the performance measures, SDR, SIR, SAR de-
scribed in [10] is to decompose a given estimate ŝ(t) of a source
si(t) as a sum

ŝ(t) = starget(t) + einterf (t) + enoise(t) + eartif (t). (20)

where starget(t) is an allowed deformation of the target source
si(t), einterf (t) is an allowed deformation of the sources which
accounts for the interferences of the unwanted sources, enoise(t) is
an allowed deformation of the perturbating noise , and eartif (t) is
correspond to artifacts of the separation algorithm used in sepration
process etc. SDR, SIR, SAR can be computed as

(1) Source to Distortion Ratio

SDR = 10log10
‖starget‖2

‖+ einterf + enoise + eartif‖2
(21)

(2) Source to Interference Ratio

SIR = 10log10
‖starget‖2

‖einterf‖2
(22)
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Fig. 1. Basic Source Separation Pipeline

Table 1. Maximum Time Elapsed for Speech+Speech Mixture in sec
K 5 25 50 75 100

REMML 29.8897 38.3651 55.7259 68.1227 87.6488
RISRA 11.2503 17.4523 28.6843 36.9398 56.7109
IS NMF 75.6281 107.2751 112.0757 139.0591 163.2998
SNMF 8.0893 8.9456 9.5673 11.7803 12.1244

(3) Source to Artifact Ratio

SAR = 10log10
‖starget + einterf + enoise‖2

‖eartif‖2
(23)

5. EXPERIMENTAL RESULTS
In basic source separation pipeline for a complex input mixture the
Short Time Fourier Transformed of input mixture is taken place
first and then magnitude and phase components are evaluated. Af-
ter that, NMF decomposition is performed in magnitude spectro-
gram of the input mixture to split the mixture into its basis and ac-
tivation vectors. At source synthesis, filtering followed by Inverse
Short Time Fourier Transform is performed and the mixture is sep-
arated into its individual sources by multiplying the complete basis
with each column of activation matrix. Figure 1 shows the general
source separation pipeline [7].
From the performance evaluation of each source, it is found that
when mixture contain speech or music as underlying source, the
SDR, SIR and SAR values are obtained high for K = 25. But
if the number of underlying sources increases from 2 to 5, the
maximum separation is obtained for K = 50. Figure1, Figure
2 and Figure 3 gives the performance evaluation values obtained
for Speech+Speech, Music+Music and Speech+Music mixture, by
varyingK from 5 to100, maximum number of iteration=100 . In all
cases, as K value varies from 5 to 100, from 5 to 50 an increasing
behavior in performance evaluation is obtained and after K = 50
the SDR, SIR, SAR values get saturated and then decreased accord-
ingly.
From the evaluation it is found that for mixture containing only
two underlying sources, Regularized EMML algorithm performs
well for Speech+Speech as well as Music+Speech mixtures. But
for Music+Music mixture IS-NMF algorithm is the best. The max-
imum time elapsed for each of the NMF algorithm can be repre-
sented in Table 1, Table II and Table III for Speech+Speech, Mu-
sic+Music and Music+Speech mixture respectively. From that eval-
uation SNMF algorithm outperforms the other three algorithms.
Table II and Table III shows the performance evaluation of mixture
containing 3 and 5 underlying sources respectively for K = 50,
maximum number of iteration = 100. When number of underlying
sources in the mixture increases from 3 to 5, minimum K value
required for accurate source separation in ISRA algorithm (i.e.

Fig. 2. Speech+Speech mixture

Fig. 3. Music+Music mixture

Table 2. Maximum Time Elapsed for Music+Music Mixture in sec
K 5 25 50 75 100

REMML 30.4729 39.5176 50.3255 65.8112 78.9805
RISRA 11.2231 17.4465 25.5172 40.3055 47.4318
IS NMF 77.8978 73.8568 111.0574 114.1779 157.3814
SNMF 6.5647 7.8456 9.1256 10.1263 12.1123

without the loss of any underlying source from the mixture) is 25
and for Regularized EMML algorithm, is 10. IS-NMF and SNMF
can’t perform BSS when the mixture contain more than 2 underly-
ing sources. As K value decreases, computation time also get de-
creases and SNMF algorithm gives more accurate output within the
minimum computation time and also with source separation from
minimum number of active components. But Regularized EMML
algorithm gives more accurate outputs than the other three when
number of underlying sources increases in the mixture. So Reg-
ularized EMML algorithm is much suitable for BSS in complex
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Fig. 4. Music+Speech mixture

Table 3. Maximum Time Elapsed for Music+Speech Mixture in sec
K 5 25 50 75 100

REMML 30.2477 39.3374 46.8076 66.5748 81.5750
RISRA 11.3183 17.0710 36.0914 47.1217 50.7862
IS NMF 75.1075 83.5273 106.4168 144.5353 157.5029
SNMF 5.0895 8.1237 8.9893 10.0456 12.1235

Table 4. Mixture with 3 underlying sources
K = 50 EMML ISRA

Iter = 100 SDR SIR SAR SDR SIR SAR
(dB) (dB) (dB) (dB) (dB) (dB)

Music− 5.1747 9.9017 7.8322 5.7434 12.0216 7.1746
Herbalizer

hypno− 4.3267 8.0095 7.3924 4.5321 8.4603 7.3639
male

Music− 7.8322 16.3467 8.5907 7.7669 13.9651 9.1296
Mandolin

mixtures with more than 2 underlying sources than ISRA,IS-NMF
and SNMF algorithms. But when number of underlying sources in
the mixture increases rapidly there is the possibility of complete
loss of underlying sources due to high distortion and high interfer-
ence from other underlying signals within the mixture, make source
separation inaccurate.

6. CONCLUSION
Separation of underdetermined mixtures is an important problem
in signal processing that has attracted a great deal of attention over
the years. Prior knowledge required to solve such problems is ob-
tained by incorporating complete supervised procedure for source
separation using NMF algorithms. From the performance evalua-
tion it is found that as number of underlying sources in the mixture
increases possibility of accurate reconstruction get decreases due to
the occurrence of traces of underlying sources in separated signal.
Even though Regularized EMML algorithm has found higher pri-
ority to separate complex mixture than Regularized ISRA, IS-NMF
and SNMF algorithms by considering the case of mixture contain-
ing 5 underlying sources. When K = 50 maximum separation of
sources in the mixture take place and minimum value ofK required

Table 5. Mixture with 5 underlying sources
K = 50 EMML ISRA

Iter = 100 SDR SIR SAR SDR SIR SAR
(dB) (dB) (dB) (dB) (dB) (dB)

Music− 2.2659 8.9479 3.8364 2.2554 7.1214 4.7398
Vivaldi

numbers− 2.0547 7.1645 4.4189 2.0151 6.9829 4.4738
male

Music− 0.3497 12.1247 0.9067 0.1768 10.7054 0.9338
trumpet
Music− 6.1852 14.8634 6.9573 6.8925 18.7273 7.2447
loopbass
hypno− 1.4836 5.4004 4.8448 1.4562 5.3789 4.8181

male

for source separation is found as 2. From these experiments it was
shown that Regularized EMML algorithm outperforms the Regu-
larized ISRA,IS-NMF and SNMF algorithms for NMF-based sin-
gle channel speech and music separation when complexity of the
mixture increases. But the computation time of the algorithm is
comparatively smaller for SNMF, so mixture with only two under-
lying sources SNMF outperforms the other three algorithms. Even
though all the NMF algorithms are itself easy to implement and
compute, makes NMF good for BSS method.
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