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ABSTRACT 
When an earthquake happens, the image-based techniques are 

influential tools for detection and classification of damaged 

buildings. Obtaining precise and exhaustive information about 

the condition and state of damaged buildings after an 

earthquake is basis of disaster management. Today’s using 

satellite imageries has been becoming more significant data 

for disaster management. In this paper, an approach for 

detecting and classifying of damaged buildings using satellite 

imageries and digital map is proposed. In this approach after 

extracting buildings position from digital map, they are 

located in the pre- and post-event images. After generating 

features, genetic algorithm applied for obtaining optimal 

features. For classification, adaptive boosting and neural 

networks are utilized and compared with each other. These 

machine learning algorithms divided the damage levels into 

three classes of high, moderate and low levels. Experimental 

results which have been obtained from Bam earthquake 

images show that total accuracy of adaptive boosting for 

detecting and classifying of collapsed through uncollapsed 

buildings is about 79 percent while total accuracy of neural 

networks is about 65 percent.      

General Terms 
Classification, Image Processing, Adaptive Boosting, Neural 

Networks. 

Keywords 
Earthquake; Collapese Detection; Classification; Adaptive 

Boosting. 

1. INTRODUCTION  
Todays, a large number of massive earthquakes strike urban 

areas and huge number of fatalities and economic losses are 

reported. For instance, a strong earthquake of magnitude 6.5 

struck the southeastern of Iran on December 26, 2003. The 

epicenter was located very close to the city of Bam. About 

26000 people were killed and more than 30000 people were 

injured. When an earthquake happens, debris of buildings 

should be recorded for producing the damage map. In such 

destructive situation an accurate damage map from human 

settlements is very prominent and priceless for rescue team 

and disaster management and subsequently, arranges 

restoration activities [1]. Disaster management involves four 

phases: mitigation, preparedness, response and recovery. 

Mitigation phase takes place before or between disasters to 

decrease the influence of the events. This phase can be 

perceived as a part of recovery procedure if utilized after a 

disaster. Preparedness concentrates on improvement of 

community training, preparation for rescue forces and public 

knowledge. Response is the serious and critical phase 

happening after the disaster. This phase is described as the 

actions for saving human lives and preventing more damage 

in a disaster situation. Damage assessment, search and rescue 

are some actions that must be performed in response phase. 

Recovery phase consists of actions that are performed to 

restore the affected area to its pervious situation before 

disaster [2]. As it mentioned before, response phase is more 

prominent and critical in comparison the other phases. To 

better control of disaster management activities in this phase, 

reaching to an accurate damage map is important.  

There are several strategies for calculating the damage map 

using remote sensing data. Selecting appropriate strategy 

according to the special situation can help disaster 

management to make significant decisions for saving people 

lives. Methodology of building damage assessment using 

remote sensing data can be divided into three categories. The 

first category belongs to the strategy that utilizes both pre- and 

post-event images. The main idea of this method is 

comparison between pre and post event images to determine 

the extent of earthquake damages. Some algorithms such as 

pixel-based and texture-based use this strategy [3]. Second 

category uses images that are taken after earthquake event 

because pre-earthquake images are not available always. 

Therefore, introducing a method that just uses only after 

image of earthquake for detecting the damages is valuable. 

But this method increases probability of error for finding the 

location of buildings and some buildings may not be 

evaluated [4]. The last category utilizes pre-, post-earthquake 

images and digital maps. This strategy extracts exact location 

of buildings. Buildings situation is inspected by computing 

spectral and textural features. Digital map provides 

information about the position of each building and this is the 

main advantage of this strategy and in comparison to the other 

previous strategies, it is more accurate and exhaustive [5]. Our 

approach belongs to this strategy. 

After choosing appropriate strategy, selecting well-built 

classifier suited to classification application for obtaining an 

accurate damage map is noteworthy. The main challenging 

reasons to select neural networks versus adaptive boosting are 

the followings: first, many researchers have utilized neural 

networks for classification of earthquake damage [6-11]. 

Second, in compare to other classifications, neural networks 

have higher accuracy. Third, neural networks are nonlinear 

models, which makes them flexible in classifying real world 

such as earthquake damages [11].  

Adaptive boosting is used here because it produces highly 

accurate classification rules by combining a number of weak 

hypothesis, each of them is only moderately accurate. The 

main benefit of adaptive boosting is that arbitrary classifier 

suitable for classification application can be chosen. Many 

researchers were used adaptive boosting for classifying 

applications such as change detection of buildings, roads and 

vegetation [12-13]. For realization of this purpose, remote 

sensing data and digital map are also used. In this approach, 
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texture and color of roofs play an important role in 

classification because the roofs of damaged buildings have 

rougher texture in comparison with undamaged roofs. Our 

results show that the accuracy of adaptive boosting is about 79 

percent while the accuracy of neural network is about 65 

percent. This paper is an extension version of [14]. 

Compared to other related works, our main contributions 

are the followings: 

 Calculating damage maps using pre- and post-

earthquake imagery of Quickbird satellite and vector 

maps in the ARC GIS and Matlab environment. 

 In order to remove noise, some pre-processing 

techniques such as median filter are applied. 

 Two type of classifier have been performed, adaptive 

boosting and neural network and then their accuracy 

is compared. 

 Experimental results show that color and texture 

features play an important role compared to other 

features. 

The reminder of this paper is organized as follows: 

In the second section, some primary definitions and related 

works are described. In the third section, the proposed 

technique is expressed and experimental results are explained 

in the fourth section. The fifth part of this paper includes 

conclusions. 

2. BACKGROUND INFORMATION AND 

RELATED WORKS 
In this section, first the European micro seismic scale is 

described and then the steps of calculating damage map of 

earthquake are briefly explained. At the end, utilized 

classifiers and related works are investigated. 

2.1.  European Micro Seismic Scale 

According to European micro seismic scale, earthquake 

damage can be divided into five classes that are shown in 

Table 1 [15]. 

In gardes of 1 and 2 only some cracks in walls, base and 

columns can be seen without any changing in texture of roofs. 

Table 1. Classification of earthquake damage [15]. 
Classification of damage to building of reinforced concrete 

Grade 1: Negligible to slight damage  

Fine cracks in plaster over frame members or in walls at the 

base. 

Fine cracks in partitions and infill. 

Grade 2: Moderate damage  

Cracks in columns and beams of frames and in structural 

walls. 

Cracks in partition and infill walls; fall of brittle cladding 

and plaster. Falling mortar from the joints of wall panels. 

Grade 3: Substantial to heavy  

Cracks in columns and beam column joints of frames at the 

base and at joints of coupled walls. Spalling of concrete 

cover, buckling of reinforced rods. 

Large cracks in partition and infill walls, failure of 

individual infill panels. 

Grade 4: Very heavy damage  

Large cracks in structural elements with compression 

failure of concrete and fracture of rebar; bond failure of 

beam reinforced bars; tilting of columns. Collapse of a few 

columns or of a single upper floor. 

Grade 5:  destruction 

 Collapse of ground floor or parts (e. g. wings) of buildings. 

 
This paper focuses on grades 3, 4 and 5. This is because 

textural changes of roofs are important and this kind of 

changes exists in these grades.  

2.2.  Calculating Damage Map 
In order to detect vital changes in earthquake images, digital 

image processing techniques are applied in pre- and post-

event images. The most common system that is used for 

calculating damage maps is shown in figure 1 [5-16-17]. The 

remote sensing technology plays an important role for 

detection of damaged levels. Satellite imageries like 

Quickbird imagery which it spatial resolution is about 2.4 

meters in multispectral mode and 0.61 meters in panchromatic 

mode, acquire dependable data for producing damage maps. 

Therefore, for earthquake damage assessment, photo 

interpretation can be irreplaceable method that it depends on 

the resolution of the images. Eliminating the noise and      

geo-referencing of the images (is the process of placing an 

image into two dimensional spaces. In essence,                  

geo-referencing pins a scanned map to particular geographical 

coordinates) are some of actions that are performed in the 

preprocessing step. In the next step the term of engine is used. 

Indeed generating features, optimizing (genetic algorithm) and 

classification are performed in this step and the last step 

shows the output of system that is buildings damage map.  

Fig. 1.  The steps of calculating damage map of earthquake [5-16-17]. 
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2.3.   Classification 
The texture of roofs changes, when an earthquake ruins a 

building. Building pixels can be classified by calculating 

texture features. Here, adaptive boosting and neural networks 

is used to divide pixels into three classes and total accuracy of 

them, is calculated. In the following, classifiers are described.  

Adaptive boosting: Adaboost short for Adaptive boosting, is a 

meta-algorithm, and can be used in conjunction with many 

other learning algorithms to improve their performance [18]. 

Generally learning algorithms are either strong classifiers or 

weak classifiers. Strong classification algorithms use the 

techniques such as artificial neural network, support vector 

machine. Weak classification algorithms use the techniques 

such as decision trees, bayesian networks and random forests. 

The key idea of boosting is to create an accurate strong 

classifier by combining a set of weak classifiers. A weak 

classifier is only required to be better than chance, and thus 

can be very simple and computationally inexpensive.  

Adaptive boosting is adaptive because the instances 

misclassified by previous classifier are reorganized into the 

subsequent classifier. Ada-Boost is sensitive to noisy data and 

outliers. The boosting algorithm begins by assigning equal 

weight to all instances in the training data. It then calls the 

learning algorithm to form a classifier for this data, and 

reweighs each instance according to the classifier's output. 

The weight of correctly classified instances is decreased, and 

weight of misclassified instances is increased. This produces a 

set of easy instances with low weight, and a set of hard ones 

with high weight. In the next iteration, a classifier is built for 

the reweighed data, which consequently focuses on 

classifying the hard instances. Then the instances weights are 

increased or decreased according to the output of this new 

classifier. After all weights have been updated, they are 

renormalized so that their sum remains the same as it was 

before. After all iterations, the final hypothesis value is 

calculated. 

The pseudo code for adaptive boosting algorithm is given as 

below: 

 Input: a set S, of ‘m’ labeled examples: S= ((  ,  ), i= 

(1,2,…,m)), with labels in Y. 

 Learn (a learning algorithm) 

 A constant L. 

1. Initialize for all i:    (i)=1/m // initialize the weights 

2. for j=1 to L do 

3. for all i:                     // compute normalized weights 

(i)=
    

      
 

     

4.   := CART (S,   )     // call weak Learn with 

Normalized weights 

5. Calculate the error of    

  =                 

6. If   > 
 

 
 then 

7. L= j-1 

8. Go to 12 

9.    
  

    
 

10. for all i:                             // compute new weights 

  

           
               

11. end for 

12. output: 

               
 

  

 
   )[        ] 

It is important to consider that the complexity of the strong 

classifier depends only on the weak classifiers. As weak 

classifier in this paper, a Classification And Regression Tree 

(CART) was used. The CART method produces binary 

decision trees distinguished by two branches for each decision 

node. CART recursively partitions the training data set into 

subsets with similar values for the target features. The CART 

algorithm grows the tree by conducting for each decision 

node, an exhaustive search of all available features and all 

possible splitting values; the optimal split is determined by 

applying well-defined criteria as Gini index or others ones 

[12]. 

Neural networks: This classification method is used 

extensively for classifying satellite imageries because they can 

be a calculation system instead of the non-linear functions. 

This system consists of many connected elements (neurons) 

that act together coordinately for solving a problem. A neural 

network for performing specific tasks, are set such as pattern 

recognition and information classification during the learning 

process. It is utilized extensively for detecting earthquake 

damage and produce damage map with high accuracy. Here, 

perceptron neural networks with two hidden layers by 

iteration of 1024 are utilized. Figure (3) shows the damage 

map created by neural networks that its accuracy is about 65 

percent. 

2.4 Related Works 
For calculating earthquake map, lots of researches have been 

performed. Some of them have used different features such as 

shadow, edges and texture [19-23] and in some of them also 

have been applied machine learning approaches like neural 

networks, expert systems, support vector machine, K-nearest 

neighbors and baysian classification [3-16-24-25]. In 2010, a 

research has been performed using two categories of images, 

related to Bam and Kobe earthquakes. In this research machine 

learning approaches such as support vector machine, K-nearest 

neighbours and baysian classifier are utilized for calculating 

damage maps. The overall accuracy for each of classifiers was 

about 78%, 76% and 73% respectively [16]. In another 

research that was performed in 2011, the earthquake that 

happened in Italy was investigated. A kind of data fusion 

approach between SAR (Synthetic Aperture Radar) and optical 

data was presented. It has been shown that optical data are 

more suitable to distinguish between damage and non-damage 

classes, while SAR texture features allow to better 

distinguishing different classes of damages at block scale such 

as low and heavy damage [26]. Some researchers in 2008 

investigated Bam earthquake. In this research, integration of 

high resolution satellite imageries and vector map has been 

proposed. In this method after extracting building positions 

from vector map and locating them to the both images of 

earthquake, different textural features measured and the 

building conditions are evaluated through a fuzzy interface 

system. Overall classification accuracy was about 74% [5].  

3. PROPOSED APPROACH 
An approach is proposed for damage map generation using 

satellite imageries and digital map. Figure 2 depicts the 

proposed approach. As shown in the figure 2, digital map, both 

pre and post-event images of damaged area are utilized. This 

approach also uses adaptive boosting and neural networks as 

principal classifiers. Main steps of the proposed algorithm are 

described in figure 2.  

3.1 Rational Equations 
At first, by utilizing rational equations can map the polygons 

on the post-event image for specifying the exact location of 
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buildings because after an earthquake, the boundaries between 

the buildings are destroyed. The rational equations are shown 

in equation (1) and (2) [27]. 

x=    
         

         
  

                    
   

 
   

 
   

                    
   

 
   

 
   

               (1) 

 

y=  
         

         
  

                    
   

 
   

 
   

                    
   

 
   

 
   

                 (2) 

In equations (1) and (2), X, Y and Z are coordinate of ground 

map. Also x and y are coordinates in the image.   ،   and 

   are known as rational coefficients. In fact, by using 

rational equations can transfer the building polygons from 3D 

space (ground) to 2D space (image). 

3.2 Texture Analysis 
In this research, extracted buildings are evaluated using 

textural features. Textural features are calculated by applying 

filtering operation. A kernel with arbitrary size is moved on 

the image and a specific feature like mean is calculated and 

the value of feature is allocated to the central pixel. Here, 

textural features such as “1st Order Statistical”, “Haralick”, 

“Fractal” and “Variogram” have been selected. In the 

followings some of them are described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  2.   The proposed algorithm. 

First Statistical Features: In texture analysis, features such as 

mean, median, entropy, variance of gray value are utilized as 

1st statistical textural feature. These features are generated 

from first order histogram P(I). In equation (3) I is the random 

variable which represents the grey levels. 

P(I) = 
                                  

                      
                                      (3) 

Second statistical features (Haralick Features): Grey Level Co-

occorrence Matrices (GLCM) is one of the earliest methods for 

texture feature extraction [25]. Since then it has been widely 

used in many texture analysis applications and remained to be 

an important feature extraction method in the domain of 

texture analysis. Fourteen features were extracted by Haralick 

from the GLCM to characterize texture of image. Equation (4) 

shows the GLCM matrix [28-29]. 

     
  

 
 

 

 
 
 
 
 
 

 
                                              

                                               
                                                               
                                                                  
                                                      

 

       
 
 
 

             
 
 
 
 

                                

      : The number of pixels with grey level i, j in direction of  

  and with distance of d 

  : Number of grey levels 

R: Total number of possible pairs 

In this research, Haralick features on pre- and post images are 

calculated. The formulas of Haralick features are depicted in 

table 2. 

Semi-variogram Features: in this paper, semi-variogram 

features are also used. Table 3 shows the formula of these 

features.  

Table 2.  Some texture feature extracted from grey level 

co-occurance matrices [28]. 

Formulate Features 

                  

 

   

 

   

 Entropy 

         

 

 

 

 

 Energy 

        

 

   

 

   

       Contrast 

 

 
                 

 

 

 

 

 Mean 

 

 
                           

 

 

 

 

 Variance 

  
                  

     

    

   

    

   

 Correlation 

             

    

   

    

   

 Dissimilarity 

   
   

         Maximum 

probability 

Table 3.       Some texture features extracted from 

variogram [29]. 

Feature Formula 

Sample 

variogram 
      

 

   
                     

    

   

 

Madogram       
 

   
                     

    

   

 

Radogram       
 

   
                     

    

   

 

Select the appropriate polygons by vector data 

Matching the polygons on the pre and post-event image by 

rational equations 

Feature generation 

Optimum feature selection (GA) 

Classification: 

Adaptive boosting and Neural networks 

Low 

Damage<30 

Moderate 

(70>Damage>30) 

High 

(Damage>70) 
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Cross 

variogram 

      
 

   
                     

    

   

 

                    

Pseudo-cross 

variogram 

      
 

   
                     

    

   

 

                    

Fractal Features: fractal geometry proposed by mandelbort in 

1983. These features give a measure of the surface roughness. 

It means that when the fractal dimension is larger, then the 

texture is rougher. The mean and standard deviation of fractal 

dimension are calculated as textural features.  

After generating the features, the genetic algorithm are used for 

optimum feature selection therefore the features that have less 

noise and dependency can be remained.  

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig.  3. Damage map created by neural networks. 

 

4. EXPERIMENTAL RESULT 
In this section our dataset, obtained results and discussion are 

proposed. 

4.1.  Data Set 
In this paper, the proposed method is evaluated using pre- and 

post-event images of Bam earthquake. Figure 4 shows the 

data set that were utilized in this paper. Post-event image was 

taken approximately one week after earthquake and the pre-

event image was taken three months before earthquake.  

 

 
(a) 

 

 
 (b) 

Fig. 4.  Dataset. (a) pre-event image. (b) post-event image 

[30] 

4.2.   Accuracy Assessment 
Mentioned classifiers (adaptive boosting and neural networks) 

are either right or wrong. Accuracy assessment tries to 

calculate how a classifier works the classification job well. 

These techniques are described as follows:  

Overall accuracy: it is the total number of correctly classified 

samples divided by total number of samples. It measures the 

accuracy of the whole data without any indication of the 

accuracy of individual categories [16].  

Producer's accuracy: it is the number of correctly classified 

samples of a specific category divided by the total number of 

reference sample for that class. It is an estimate of how many 

of buildings in each category are classified correctly [16]. 

User's accuracy: it is the number of correctly classified 

samples of a specific category divided by the total number of 

samples being classified as that category. It means, a user 

might wishes to know what proportion of buildings assigned 

to specific class, were correctly assigned [11]. 

4.3.   Results 
After performing the classification, it is important to evaluate 

the quality of the results. Overall accuracy, Producer's 

accuracy and User's accuracy are described in previous 

section.  

Table 5 depicts the confusion matrices that are obtained by 

two classifiers adaptive boosting and neural networks. As are 

comprehended from this table, adaptive boosting is more 

accurate than neural networks in classifying of three levels of 

high, moderate and low. The number of buildings that are 

classified correctly by adaptive boosting are 132, 64 and 48 

respectively. The numbers of correct classified buildings by 

neural networks are 109, 46 and 44 out of 309. For example 

total number of misclassified buildings in high level damage 

for adaptive boosting is 32 while for neural network is 55 

buildings. It means that 132 buildings were labeled correctly 

obtaining producer's and user's accuracy of 80.4 percent and 

87.4 percent while by applying neural networks 109 buildings 

were labeled correctly and reaching to 66.4 percent and 83.2 

percent producer's and user's accuracies. The overall accuracy 

is reached in this paper for adaptive boosting is about 79 

percent and for neural networks about 65 percent.  

The resulted damage map by applying adaptive boosting is 

shown in figure 5. As can be seen in this figure, red, orange 

and yellow colors depict high, moderate and low level of 

damage respectively. 
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5. CONCLUSIONS  
After geo-referencing the map and the pre- and post-event 

images, the exact location of buildings are extracted. Textural 

features have been calculated such as statistical,                

semi-variogram and fractal features. For the purpose of 

optimum feature selection, the genetic algorithm is applied. 

Adaptive boosting and neural networks have been utilized to 

divide damage into three classes of high, moderate and low 

level. Pre- and post-Quickbird satellite imageries of Bam 

earthquake were used to detect changes and to provide 

buildings damage map. Confusion matrix and accuracy 

assessment techniques that are obtained from mentioned 

classifiers showed stimulating difference in their performance. 

In the other words, implementation of adaptive boosting is 

more complex than neural networks and in addition, adaptive 

boosting is more computationally intensive than neural 

networks. Overall accuracy of adaptive boosting was about 79 

percent that is more accurate than neural networks which its 

accuracy was about 65 percent in same condition.  
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