
International Journal of Computer Applications (0975 – 8887) 

Volume 100 – No.17, August 2014 

48 

Ants Optimization for Minimal Test Case 

Selection and Prioritization as to Reduce the 

Cost of Regression Testing 

 
Neha Sethi 

M.TECH, Student  
GZSCET, PTU Campus 

Bathinda, India 

 

Shaveta Rani, PhD 
Assistant Professor 

GZSCET, PTU Campus 
Bathinda, India 

 

Paramjeet Singh, PhD 
Assistant Professor 

GZSCET, PTU Campus 
Bathinda, India 

 

 

ABSTRACT                                                                
Software testing is the major process in software development 

life cycle. Regression testing is very costly and inevitable 

activity that is to be performed in a restricted environment to 

ensure the validity of modified software. It is inefficient to re-

run every test case from test suite when some kind of 

modification is done in the software. Test case selection and 

prioritization techniques select and organize the test cases in a 

test suite based on some criteria such that the faults are 

covered quickly with minimum execution time. This task can 

be done on basis of the Ant Colony Optimization technique 

(ACO) of Swarm Intelligence as it is not deeply studied yet. 

The main objective of this thesis is to solve the path problem: 

Means to find the shortest path and Resolve the time problem: 

Means to minimize the time of finding shortest path. Because 

of time and cost constraint, it is not possible to perform 

extensive regression testing. Techniques such as test case 

selection and prioritization are used to solve the problem of 

time and cost constraints. In this paper we are modifying the 

previous technique to get better results in case of execution 

time and then the Effectiveness of techniques is checked with 

the help of APFD metric.  

General Terms 

Algorithms, Test Case, Software Testing, Prioritization, 

APFD 

Keywords 

ACO, Pheromone, Regression Testing, Test Case Selection, 

Test Case Prioritization. 

 

1. INTRODUCTION 
When the software is designed then the software development 

life cycle is used to develop the complete software. For the 

software development, different phases are followed. After 

the designing phase testing phase is used to test the whole 

design code. There are different types of testing that are used 

to test the code. The regression testing is one of the types of 

the testing that is used to test the software code. 

 

The maintenance phase of a software product needs to go 

through the inevitable regression testing process. It is required 

to retest the presented test suite whenever any accumulation, 

removal or modification is made to the software [3]. During 

the testing process, different test cases are generated. 

Regression test selection is a process of reducing the test suite 

by selecting a subset from the original test matching set. 

Although this is a extremely cost efficient method for 

regression testing but it can leave out certain important test 

cases from the selected subset of test cases. Regression test 

prioritization means arrangement of the test cases in an 

increasing or decreasing order to meet some performance 

goal. Various prioritization criteria may be applied to the 

regression test suite with the objective of meeting those 

criteria [17]. 

 

In the test case selection and prioritization, different 

techniques are used to generate the test cases. There are BCO 

and ACO two techniques that are used to generate the test 

cases selection and prioritization [7]. ACO is the Ant colony 

optimization technique that is a set of commands, based on 

look for algorithms of artificial intelligence for optimal 

solutions; here the iconic member is ANT System. Ants are 

unsighted and small in size and still are able to find the 

shortest route to their food resource. They make the use of 

antennas and pheromone liquid to be in contact with each 

other. ACO deals with two significant processes, namely: 

Pheromone deposition and trail pheromone disappearance. 

Pheromone deposition is the phenomenon of ants adding the 

pheromone on all paths they follow. Pheromone trail 

evaporation means diminishing the amount of pheromone 

deposited on every path with respect to time. ACO motivated 

from the behavior of live ants, are capable of bringing 

together with searching solutions for local problem by 

maintaining array list to maintaining previous information 

gathered by each ant [1]. 

  

2. RELATED WORK 
A handful of researchers have been presented in the literature 

for the prioritization of test cases. A brief review of some 

researchers is presented below: 

Minjie Yi proposed an algorithm for path oriented testing by 

combining two algorithms namely: ant colony system 

algorithm and genetic algorithm (ACSGA) and the proposed 

algorithm are used to generate path oriented test data. The 

problem used is Triangle discrimination problem. The result 

of the proposed algorithm is then compared with the Genetic 

Algorithm and it is found that the proposed algorithm is more 

efficient than genetic algorithm [23]. 

Nirmal Kumar Gupta, Mukesh Kumar Rohil, in their work, 

they have proposed a strategy that uses genetic algorithm to 

reduce the number of unfeasible test cases and  establishing 

genetic algorithm to generate suitable test cases and hence 

improving the  genetic algorithm .The genetic algorithm is 

used to generate the test cases for Object Oriented Software 

,that is for java programs. But practically to use genetic 



International Journal of Computer Applications (0975 – 8887) 

Volume 100 – No.17, August 2014 

49 

algorithm there is a problem as there is local convergence 

problem [24]. 

K. Karnavel et.al used the Bee Colony Optimization (BCO) 

algorithm and performed regression testing and prioritization. 

The fault coverage is incorporated with the BCO algorithm 

for fault revealing within less execution time. Using this 

approach to test the software application, it is found that the 

testing cost and the execution time have been reduced [7]. 

Daniel Di Nardo et.al discussed an industrial case study on the 

Coverage-Based Test Case Prioritization with real regression 

faults. Because of the time or resource constraints Retest-All’ 

strategy to perform the regression testing is time consuming 

and not efficient with the growing number of test. Therefore, 

strategies for regression testing such as test suite 

minimization, test case selection and test case prioritization 

will block and decision are better than the other mentioned 

coverage-based prioritization techniques. It has provided 

answers to many research questions such as: How granularity 

of coverage criteria when used in the analysis for test case 

prioritization affects the rate of fault detection? Etc. Four 

different prioritization techniques are evaluated .The 

coverage-based prioritization techniques are namely: Total 

Coverage, Additional Coverage, Total Coverage of Modified 

Code, and Additional Coverage of Modified Code. The result 

is that the additional coverage with finer grained coverage 

criteria such as block, fundamental [8]. 

Chengying Mao et.al have reformed the basic Ant Colony 

Optimization to generate better quality test data for the 

purpose of earlier fault- revealing .Four rules have been re-

defined to achieve the objective namely: the local transfer 

rule, the global transfer rule and pheromone update rule. The 

criterion used is the branch coverage. And a comparison 

analysis has been made among GA, SA and ACO .To validate 

the method, experimental analysis is carried out by taking five 

programs. The result of the reformed Ant Colony 

Optimization outperforms the algorithms namely: Simulated 

Annealing and genetic algorithm [4]. 

Praveen Ranjan Srivastava presents a new test case 

prioritization algorithm, which calculates average faults found 

per minute and effectiveness of algorithm can be found with 

the help of APFD metric. Analysis is done for both prioritized 

and non-prioritized cases with the help of APFD (Average 

Percentage Fault Detection) metric and results prove that 

prioritized case is more effective [15]. 

Ruchika Malhotra et al. proposed a technique based on the 

version specific test case prioritization where information 

about changes in the program is known. The technique 

identifies those test cases that execute the modifies lines of 

source code at least once and execute the lines of source code 

after deletion of deleted lines from the execution history of the 

test case and that are not redundant. The proposed technique 

uses two algorithms modification and deletion. Software 

testers can use this technique and reduce the cost of regression 

testing significantly [16]. 

Suri Bharti et al. ACO is a promising technique for solving 

test case selection and prioritization problem. In this study a 

tool ACO_TCSP for the same has been developed and applied 

on an example. Though in these tests the best solution was not 

found for all cases still the results obtained are in close 

proximity to the optimal results. The reduction in test suite 

size is achieved to be 62.5% in all the 4 test runs. This 

encourages the use of the developed tool by testers. In future 

we plan to apply the tool on many more examples to prove the 

usability and effectiveness of the proposed technique [3]. 

A.Pravin et al. proposed that priority is given to the test cases 

based on the code coverage and improve the testing process 

by finding the faults earlier. For each test case a value is 

generated depending upon certain factors then comparison of 

test cases is done and priority is assigned to the test cases 

based on their values. Algorithm was compared with the 

random prioritization technique on two application projects 

and describes the effectiveness [13]. 

Gurinder Singh et al. have proposed test case selection 

approach from a large test suite using hybrid technique based 

on genetic algorithms and Ant colony optimizations. The 

technique developed using this approach identifies and 

reduces the test data. The approach provides better results in 

the initial iteration of the whole process. It provides positive 

feedback and hence it can lead to better solutions in optimum 

time [17].       

Pradipta Kumar Mishra et al. proposed a new test case 

prioritization technique using genetic algorithm. The proposed 

technique separate the test case detected as severe by 

customer and among the rest test case prioritizes 

subsequences of the original test suite so that the new suite, 

which is to run within a time-constrained execution 

environment. It will have a superior rate of fault detection 

when compared to rates of randomly prioritized test suites. 

This experiment analyzes the genetic algorithm with regard to 

effectiveness and time overhead by utilizing structurally-

based criterion to prioritize test cases [18]. 

3. RESEARCH METHODOLOGY 

3.1 Strategy 
On deciding the broad area, literature survey on various 

websites and latest papers of software testing and algorithms 

have been done. In accordance with the information gathered 

from the survey, the algorithm ACO is chosen for test case 

selection and prioritization. With the following reasons ACO 

has been chosen: 

1. In real time the ACO can adapt to changes and it is 

better than Simulated Annealing and Genetic 

Algorithm for problems    like Travelling Salesman 

Problem where the graph changes dynamically [22]. 

2. ACO outperforms simulated annealing and genetic 

algorithm for the metrics namely average coverage 

(AC), successful rate   (SR) and average 

convergence generation (AG) [22]. 

3. The limitation of Bee Colony Optimization is that it 

is complicated to map the waggle dance to the 

solution, it requires deep knowledge of mathematics 

and one must have the knowledge of factors such as 

waggle dance, food source quality etc. Premature 

convergence is the limitation of Particle Swarm 

Optimization (PSO) and GA [22]. 

4. ACO algorithms, has been largely applied  in the 

field of management and industrial to obtain the 

optimal solution .But its application  in  the field of 

software testing  for generating test data has not 

been deeply studied until today[22]. 

3.2 Steps for implementation 
Ant Colony Optimization (ACO) algorithm will work as   

follows:  



International Journal of Computer Applications (0975 – 8887) 

Volume 100 – No.17, August 2014 

50 

 Input details about the Test Suite.  

 Run ACO algorithm for all ants. 

 The best path will be chosen from each iteration based 

on: 

 Maximum fault coverage 

 Minimum Execution Time 

 Formula to make pheromone  is as follow: 

   
          

       
 

 

           Where, 

             
  

 Is the capacity of pheromone to be deposit for a    

state transition xy 

             Is the pheromone disappearance rate or pheromone 

decay  

              and 

             
 

 is the total amount of pheromone deposit. 

 Update the Pheromone 

 Deposit Pheromone on the best path(add)  

 Reduce Pheromone on the other     

edges.(evaporate) 

 Terminate the search/iteration process when all Faults 

are Covered. 

 Check whether all the test cases are considered or not. 

 Determine the final path based on: 

 Minimum execution time with Maximum 

Fault detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                

Fig 1: Input-Output of the ACO 

4. FORMULATION USED 
Consider the test case i and we have to find probability of 

test case j then previous formula for probability [1]: 

 

            
                 

                       
 

                                             
   

  

 

where                                
 

Now modified formula used by us is: 

 

            

 
              

              
                         

 

   
              

              
  

 

                         
   

  

 

where                                
 

In order to select next test case above modified formula is 

used. A new prioritization technique is make based on the 

above formula, test case which has the highest probability 

according to the modified formula is chosen. Now, both the 

number of faults covered as well execution time of each test 

case is considered and the results obtained shown that the total 

execution time of all selected test cases from the prioritized 

test suite is less as compared to result obtained from the 

previous formula. 

 

5. FLOWCHART 
Figure 2 shows the process chart of ACO algorithm. Initially 

read the information from the input file that describes the 

number of iterations used, number of test cases used, their 

execution time and faults covered by them.  

After this, ants select test cases randomly because initially 

each test case has the same probability. Once a test case is 

selected, check if it covers all faults if yes, read the execution 

time of that test case otherwise, if all faults are not covered, 

then select another test case that has the highest probability by 

using the above described modified formula and update the 

pheromone amount at each edge in the pheromone table and 

stores the execution time of selected test cases. Then the same 

procedure is repeated for all iterations. 

Explore all the paths in each iteration and then the best path 

from all the explored paths is selected. The best path is that 

one which covers all the faults with minimum execution time. 

Various test cases in the test suite are selected and prioritized 

according to the modified probability formula and thus the 

cost of regression testing will be reduced.  

 

 

 

 

Test Case Selection and Prioritization using ACO 

T
est C

a
ses 

F
a

u
lts C

o
v

ered
 b

y
 th

e T
est C

a
ses 

E
x

ecu
tio

n
 tim

e o
f th

e T
est C

a
ses 

P
a

th
 d

eta
ils fo

r ea
ch

 itera
tio

n
 

E
lim

in
a

te R
ed

u
n

d
a

n
t T

est C
a

ses 

P
h

ero
m

o
n

e T
a

b
le

 

B
est p

a
th

 w
ith

 ex
ecu

tio
n

 tim
e 

S
elected

 &
 P

rio
ritized

 T
est S

u
ite

 



International Journal of Computer Applications (0975 – 8887) 

Volume 100 – No.17, August 2014 

51 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Yes                                    

                                                  No 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Flowchart for the modified algorithm 

6. RESULTS AND DISCUSSION 
While Running:   

At first we will initialize the parameters as given below:- 

 Number of Ants                                                                        

 Number of test cases used 

 Total errors to find                                                                       

  Number of iterations 

 Pheromone deposition factor                                                        

 Pheromone evaporation factor 

 Constant alpha                                                                            

   Constant beta 

Table 1: Input table used for 8 test cases and 10 faults 

Test 

case

s/Fa

ults 

F

1 

F

2 

F

3 

F

4 

F

5 

F

6 

F

7 

F

8 

F

9 

F

1

0 

Numb

er of 

faults 

cover

ed 

Exec

ution 

time 

T1  *  *   *  *  4 7 

T2 *  *        2 4 

T3 *    *  * *   4 5 

T4  *  *     *  3 4 

T5   *   *    * 3 4 

T6 *      *    2 4 

T7   *   *  *   3 4 

T8  *        * 2 2 

 

 

Fig. 3: Output screen of previous technique 

Start ACO 

Display the parameters used 

Read Map information from file 

 

 
 Add the test cases into 

the test case table 

 Add errors that are 

covered by the test 

cases in the test case 

table 

Max 

Iteration 

reached? 

All faults 

covered? 

For each ant move ( ) 

The ant moves to 

choose the next test 

case 

 

Update result 

Store the execution 

time 

Find the best path of the 

iteration 
Update 

Pheromone 

Get the best 

tour with 

minimum 

execution 

time and all 

faults 

covered 



International Journal of Computer Applications (0975 – 8887) 

Volume 100 – No.17, August 2014 

52 

It can be clearly seen from Figure 3 that execution time of 

selected test cases using previous technique is 22. 

 

Fig. 4 Output screen of proposed technique 

Above figure shows that execution time of selected test cases 

using modified technique is 15. 

 Here test cases 8, 3, 4 and 5 needs to be executed on 

the basis of their corresponding priority. 

 Total out of 8 test cases, we need to run only 4 test 

cases that will cover all the faults with minimum 

execution time. Thus, there will be 50% reduction 

of test cases in the given test suite.  

The proposed method is compared with the equivalent 

traditional ACO for test case selection and prioritization 

approach. Putting the same parameters into the algorithm and 

changing the formula to calculate the probability for visiting 

the unvisited test cases and also to update the length of tour 

according to the approach. It can be seen that the execution 

time of selected test cases by the modified probability formula 

is less as compared to previous one. 

 

The graphical representation of comparison of both 

techniques is shown in figure below: 

 

Fig. 5: Graphical comparison of both techniques 

7. DETERMINING EFFECTIVENESS 

OF PROPOSED TECHNIQUE 
There are many of the possible goals for prioritization. Our 

main focus is on increasing the likelihood of revealing faults 

as earlier as possible in the testing process. By this goal one 

can informally improve the test suite's rate of fault detection. 

And to quantify this goal, we will use a metric: 

APFD (Average Percentage Faults Detection), introduced by 

Rothermel et.al. [10] 

APFD helps to measures the weighted average of the 

percentage of faults detected over the life of the suite. The 

APFD values range from 0 to 100; the higher the number, the 

faster (better) is the fault detection rates. 

The APFD for test suite T is given by the equation: 

Let T - The test suite under evaluation program under test P.  

n - Total number of test cases and m- total number of faults 

covered by test suite. 

TFi - The position of the first test in T that exposes fault i. 

 

APFD = 1-(TF1+TF2+……………+TFm)/nm + 1/2*n 

 

As the formula for APFD shows that calculating APFD is 

only possible when prior knowledge of faults is available.  

 

APFD value for previous technique is calculated below: 

Above table 1 is used as input table. Figure 3.shows that the 

selected test cases are T8, T1, T3, T4, and T5. 

 

Table 2. After the selection of test cases by using previous 

technique 

 

 T8 T1 T3 T4 T5 

F1   *   

F2 * *  *  

F3     * 

F4  *  *  

F5   *   

F6     * 

F7  * *   

F8   *   

F9  *  *  

F10 *    * 

 

      APFD= 1- (24/80) + (1/16) 

                = 0.76                                                               

 

Table 3. After the selection of test cases by using modified 

technique 

 

 T8 T3 T4 T5 

F1  *   

F2 *  *  

F3    * 

F4   *  

F5  *   

F6    * 

F7  *   

F8  *   

F9   *  

F10 *   * 

 

      APFD= 1- (12/80) + (1/16) 

                = 0.91                                                                                 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Previous 
technique 

Modified 
technique 

E
x
e

c
u

ti
o

n
 T

im
e

 

Comparison of both Techniques 

Execution 
Time 



International Journal of Computer Applications (0975 – 8887) 

Volume 100 – No.17, August 2014 

53 

It can be clearly seen from the above calculations that the 

valve of APFD metric for the proposed technique is greater as 

compared to previous one. So, the proposed technique is more 

effective. 

 

 
 

Fig. 6: Comparative analysis of both techniques 

 

7. CONCLUSION AND FUTURE WORK 
In this paper we have worked on Ant Colony optimization. 

This approach of test case selection and prioritization uses 

fault coverage and execution time allowing tester to prioritize 

the test case without considering number of lines covered by 

test case which may contain extra comment line. We have 

modified the existing technique and as we can see screen 

shots and comparison graph, it is very clear that modified 

technique gives better results and more effective than previous 

technique. In future more work can be done on other 

applications of Ant colony optimization. Moreover, further 

modifications can be done in existing techniques so as to get 

better results. 

 

8. ACKNOWLEDGEMENTS 
From the enormous of my heart, I thank my mentors for their 

continuous support and for their patience, motivation, 

enthusiasm, and for their immense knowledge. Without their 

valuable suggestions, it is not possible for me to carry out 

with the study. 

 

9. REFERENCES 
[1] M. Dorigo and C. Blum (2005), "Ant colony optimization 

theory: A survey", Theoretical Computer Science, vol. 

344, no. 2-3, pp. 243-278. 

[2] Osman Gokalp and Aybars Ugur (2012), “Improving 

Performance of ACO Algorithms Using Crossover 

Mechanism Based on Mean of Pheromone Tables”, 2012 

International Symposium on Innovations in Intelligent 

Systems and Applications (INISTA), Trabzon, pp. 1-4 

[3] Bharti Suri and  Shweta Singhal (2012), “Literature 

Survey of Ant Colony Optimization in Software Testing” 

, 2012 CSI Sixth International Conference on Software 

Engineering(CONSEG),Indore,pp1-7 

[4] Chengying Mao, YuXinxin, Chen Jifu (2012)"Generating 

Test Data for Structural Testing Based on Ant Colony 

Optimization "12th International Conference on Quality 

Software, Xi'an, Shaanxi, pp. 98 – 101.  

[5] Priyanka Bansal (2013), “A Critical Review on Test Case 

Prioritization and Optimization using Soft Computing 

Techniques”, 2nd International Conference on Role of 

Technology in Nation Building (ICRTNB-2013), pp74-

77. 

[6] M.Dorigo, V.Maniezzo, and A.Colorni (1996), “Ant 

System: Optimization by a colony of cooperating 

agents”, IEEE Transactions on Systems, Man and 

Cybernetics, vol. B (26), pp. 29-41.  

[7] K.Karnavel, J. (2013),”Automated Software Testing for 

Application Maintenance by using Bee Colony 

Optimization algorithms (BCO)” Information 

Communication and Embedded Systems, Chennai pp. 

327-330.  

[8] Daniel Di Nardo, N. A. (2013),” Coverage-Based Test 

Case Prioritization: An Industrial Case Study”, IEEE 

Sixth International Conference on Software Testing, 

Verification and Validation, Luembourg. pp. 302-311. 

 [9] Luciano S. de Souza, P. B. (2011),”A Multi-Objective 

Particle Swarm Optimization for Test Case Selection 

Based on Functional Requirements Coverage and 

Execution Effort”, 23rd IEEE International Conference 

on Tools with Artificial Intelligence, Boca Raton, FL ,pp. 

245 - 252. 

[10] Rothermal, Roland H. Untch, Chengyun Chu and Mary 

Jean Harrold (2001): “Prioritizing Test Case for 

Regression Testing”, IEEE Transactions on Software 

Engineering. 

[11] Rui Ding, X. F (2012),” Automatic Generation of 

Software Test Data Based on Hybrid Particle Swarm 

Genetic Algorithm”, IEEE Symposium on Electrical & 

Electronics Engineering, Kuala Lumpur, pp. 670-673. 

[12] Wang Jun, Z. Y. (2011),” Test Case Prioritization 

Technique based on Genetic Algorithm”, International 

Conference on Internet Computing and Information 

Services, Hong Kong, pp. 173 - 175 

[13] A.Pravin and Dr. S.Srinivasan(2013): “ An Efficient 

Algorithm for reducing the test cases which is used for 

performing regression testing”, 2nd International 

Conference on Computational Techniques and Artificial 

Intelligence, Dubai (UAE), pp. 194-197. 

[14]Ashima Singh (2012): “Prioritizing Test Cases in 

Regression Testing using Fault Based Analysis”, 

International Journal of Computer Science, vol. 9, Issue 

6, pp. 414-420. 

[15] Praveen Ranjan Srivastava (2008): “Test Case 

Prioritization”, Journal of Theoretical & Applied 

Information Technology, pp. 178-181.  

[16] Ruchika Malhotra, Arvinder Kaur and Yogesh Singh 

(2010): “A Regression Test Selection and Prioritization 

Technique”, Journal of Information Processing Systems, 

vol.6, pp. 235-252.  

 

 

0.76 

0.91 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

Previous 
Technique 

Modified Technique 

Analysis of Techniques Using 
APFD metric 



International Journal of Computer Applications (0975 – 8887) 

Volume 100 – No.17, August 2014 

54 

[17] Gurinder Singh and Dinesh Gupta (2013). : “An 

Integrated approach to Test Suite Selection using ACO 

and Genetic algorithm”, International Journal of 

Advanced Research in Computer Science & Software 

Engineering, vol.3, Issue 6, pp. 1770-1778. 

[18] Pradipta Kumar Mishra and B.K.S.S Pattanaik (2013), 

“Analysis of Test Case Prioritization in Regression 

Testing using Genetic Algorithm”, International Journal 

of Computer Applications, vol. 75, pp.1-10. 

[19] A.Pravin and S.Srinivasan (2013), “Effective Test Case 

Selection and Prioritization in Regression Testing”, 

Journal of Computer Science, pp. 654-659. 

[20] K.K.Aggarwal and Yogesh Singh (2005), “Software 

Engineering Programs Documentation, Operating 

Procedures”, New Age International Publishers, Revised 

Second Edition. 

[21] Shaveta Malik (2010), “Performance Comparison 

between Ant Algorithm and Modified Ant Algorithm”, 

International Journal of Computer Science and 

Applications, vol. 1, No. 4, pp. 42-45. 

[22] Kevilienuo Kire and Neha Malhotra (2014),”Study of test 

case selection and prioritization”, International journal of 

computer applications vol. 85-No. 5, pp.28-30. 

[23] Yi Minjie (2012),"The Research of path-oriented test 

data generation based on a mixed ant colony system 

algorithm and genetic algorithm", International 

Conference on Wireless Communications, Networking 

and Mobile Computing (WiCOM), Shanghai, pp.1-4.  

[24] Gupta Nirmal Kumar and Rohil Mukesh Kumar (2013) 

"Improving GA based Automated Test Data Generation 

Technique for Object Oriented Software", IEEE 

International Advance Computing Conference (IACC), 

Ghaziabad, pp.249 - 253.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IJCATM : www.ijcaonline.org 


