
International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

19

State Merging in LR Parser under Count

based Reduction

R.D. Solomon Raju
Department of Mathematics

Hindustan University

Pawan Kumar
Department of Mathematics

I.I.T. Kharagpur

ABSTRACT

An LR parser shows error only during scanning input symbol.

Error is never shown during the reduction of a handle

(substring of stack) into nonterminal. It is because a symbol is

put into the stack only when it is guaranteed to be the correct

one. If the method of reduction of a handle is known then

errors can also be shown during reduction. Hence a wrong

symbol can be shifted on the stack and error can be detected

during reduce operation. It may permit the merging of few

states. The simplest type of reduction scheme is to remove

few symbols (the number of symbols equal to the length of

the handle) from the top of the stack and push the

corresponding nonterminal on the stack. In this paper, a state

merging scheme is proposed under this method of reduction.

General Terms

Your general terms must be any term which can be used for

general classification of the submitted material such as Pattern

Recognition, Security, Algorithms et. al.

Keywords

LR Parser, Handle, Stack, CFG (Context Free Grammar)

1. INTRODUCTION
LR parsers belong to the class of shift-reduce parsing

algorithms [Aho, Denning, and Ullman (1972)]. These are

parsers that operate by scanning their input from left-to-right,

shifting input symbols onto a pushdown stack until the handle

of the current right sentential form is on top of the stack the

handle is then reduced. This process is continued either until

all of the input has been scanned or the stack contains only the

start symbol, or until an error has been encountered. During

the 1960s a number of shift-reduce parsing algorithms were

found for various subclasses of the context-free grammars.

The operator precedence grammars [Floyd[6] (1963]), the

simple precedence grammars [Wirth and Weber (1966)], the

simple mixed strategy precedence grammars [McKeeman,

Horning, and Wortman (1970)], and the uniquely invertible

weak precedence grammars [Ichbiah and Morse (1970)] are

some of these subclasses. The definitions of these classes of

grammars and the associated parsing algorithms are discussed

in detail in [Aho and Ullman (1972a)]. In 1965 Knuth defined

a class of grammars which he called the LR (k) grammars.

These are the context-free grammars that one can naturally

parse bottom-up using a deterministic pushdown automaton

with k-symbol lookahead to determine shift- reduce parsing

actions. This class of grammars includes the other entire shift-

reduce parsable grammars and admits of a parsing procedure

that appears to be at least as efficient as the shift-reduce

parsing algorithms given for these other classes of grammars.

[Lalonde, Lee, and Homing[7] (1971)] and [Anderson, Eve,

and Homning[4] (1973)] provide some empirical comparisons

between LR and precedence parsing that support this

conclusion.

2. MAIN RESULTS
In this section the new proposed scheme is introduced and

rule are given to support with CFG production rules.

The task of LR parser is to show the derivation of a string

from a grammar or to show error. If one restricts the aim only

on derivation of correct string then two states which do not act

differently on same terminal or on nonterminal can always be

merged. However if LR parser is constructed by this method

of state merging then few of those strings, which can not be

generated by the grammar, can also be derived. To stop LR

parser from doing so merging is restricted. In construction of

LALR parser, two states are merged if they contain similar set

of items (items are different only in follow). However this

way of merging sometimes introduces conflict which was

absent in canonical LR parser e.g. S→aAp S→Bq S→baAq

A→bBp A→rs B→ars. Mover over this method fails to

capture few merging possibilities. In present research we

propose following merging scheme. Moreover

1. Two states should not be merged if their merging leads

to non determinism. i.e. Both states show different

transition (or reduction) on same symbol (terminal or

nonterminal).

2. A State which has item S’→S • $ should not be merged

with any other state.

3. A state (P) which contains item A→α•β should not be

merged with any other state (Q) whose distance from a

state R is |α| and R contains item B→γ•Aδ. Here A and

B are nonterminals and α, β, γ, δ denote string of non

terminals and terminals. This rule is relaxed in the

following three cases.

(A) On the path from state R to Q, the last transition

into Q is by a nonterminal.

(B) Follow of A in P and R is different.

(C) State Q has item A→α•β.

4. Two states can always be merged if they act exactly in

same way on all symbols. If one state shows error on

some symbol then the other state also shows error. If

one state performs transition on some symbol then same

transition is performed by the other also state. This rule

will not permit any state merging on canonical LR

parser. However if state merging on canonical LR parser

is done (using above rules) then additional merging can

be done using this rule.

5. Decision about merging pair of states should not be

taken in parallel. Moreover these rules may not be

applicable if after merging a pair of states the other pair

of states is merged.

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

20

3. RULES

3.1 Rule 1
Let us construct canonical LR parser for the grammar 1 .S→ abcde 2. S→pqd

Fig 3.1

STATES ACTION GOTO

a b c d e p q d $ S

1 S2 S8 7

2 S3

3 S4

4 S5

5 S6

6 R1

7 Acc

8 S9

9 S10

10 R2

Table 3.1

If we merge states 4 and 9 then in the merged state the action on the terminal ‘d’ becomes nondeterministic. It is because both states 4

and 9 show transition on ‘d’.

STATES ACTION GOTO

a b c d e p q d $ S

1 S2 S8 7

2 S3

3 S4

4 ,9 S5 S10

5 S6

 .S($)

 (7)

a.bcde($)

 (2)

.S($)

.abcde($)

.pqd($)

 (1)

ab.cde($)

 (3)

abc.de($)

 (4)

p.qd($)

 (8)

pq.d($)

 (9)

pqd. ($)

 (10)

 abcd.e($)

 (5)

abcde. ($)

 (6)

 $

 R2
 $

Accept

a

 $

 R1

b c

 p

p

q d

d

 e

 s

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

21

6 R1

7 Acc

8 S9

10 R2

Table 3.2

Merging of states 6 and 10 gives rise to reduce-reduce conflict. It is due to reduction on $ is permitted in both states.

STATES ACTION GOTO

a b c d e p q d $ S

1 S2 S8 7

2 S3

3 S4

4 S5

5 S6

6 ,10 R1,R2

7 Acc

8 S9

9 S10

Table 3.3

3.2 Rule 2
When we merge states 3 and 7 we get the following:

STATES ACTION GOTO

a b c d E p q d $ S

1 S2 S8 7

2 S3

3,7 S4 Acc

4 S5

5 S6

6 R1

8 S9

9 S10

10 R2

Table 3.4

 The above parser shows that string “ab” is accepted.

Stack

1

1a2

1a2b3

1S3

Input

ab$

 b$

 $

 $ accepted

Hence the state which has item S’→S•$ should not merged with any other state.

3.2.1 Count based reduction
In the parser for the grammar 1.S→ abcde 2.S→pqd, when the states 3 and 9 then neither rule 1 or 2 is violated.

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

22

STATES ACTION

GOTO

a b c d E p q d $ S

1 S2 S8 7

2 S3

3,9 S4 S10

4 S5

5 S6

6 R1

7 Acc

8 S9

10 R2

Table3.5
However it leads to the acceptance of a wrong string abd. Its parsing is as follows:

Stack

1

1a2

1a2b3

1a2b3d10

1S7

Input

 abd$

 bd$

 d$

 $

 $ accepted

Here the string abd is reduced by S→pqd. Because |pqd|=|abd|=3. Here 3 symbols are popped during reduction. Similarly string pqcde

will be accepted because |abcde|=|pqcde|=5. However if we would have done string compare during reduction error had been detected

(Dillip[2]). However comparison of handle with substring on stack would require additional time hence parsing is slowed.

However merging of states 2 and 9 does not create any problem.

STATES ACTION

GOTO

a b c d e p q d $ S

1 S2 S8 7

2,9 S3 S10

3 S4

4 S5

5 S6

6 R1

7 Acc

8 S9

10 R2

Table3.6
Let us see parsing of valid string pqd.

Stack

 1

 1p8

 1p8q2

 1p8q2d10

 1S7

Input

 pqd$

 qd$

 d$

 $

 $ accepted

On the other hand an invalid string “ad” is rejected.

Stack

1

1a2

1a2d10

Input

ad$

 d$

 $

Now attempt is made to perform reduction by the rule S→pqd. Hence |pqd|=3 symbols from the stack are popped. But it is not

possible. Hence error is reported. An important thing to note is that error will be shown during reduction. While in original LR parser

(before state merging) error will produced when d is seen in state 2 (while shifting). Hence error reporting has been delayed.

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

23

Let us see parsing of pqbcde.

Stack

1

1p8

1p8q9

1p8q9b3

1p8q9b3c4

1p8q9b3c4d5

1p8q9b3c4d5e6

1p8S

Input

pqbcde$

 qbcde$

 bcde$

 cde$

 de$

 e$

 $

 error

In state 6 reduction by S→ abcde is done by popping |abcde|=5 symbols from the stack. However in state 8 one can not go to any state

on the arrival of nonterminal S. Hence error is reported. In original LR parser (before state merging) error will produced when b is

seen in state 9 (while shifting). In the LR parser after state merging the reduction into S will be successful. The reported error in

original parser will be “d is replaced by b”. In modified parser error reporting will be misleading.

3.3 Rule 3
Following is LR parser for the grammar 1.S→hAgBkm 2.A→abcd 3. B→pq

STATES

ACTION GOTO

h g k m a B c d p q $ S A B

1 S2 14

2 S8 3

3 S4

4 S5 S12 5

5 S6

6 S7

7 R1

8 S9

9 S10

10 S11

11 R2

12 S13

13 R3

Table3.7

STATES

ACTION GOTO

h g k m a B C d p q $ S A B

1 S2 14

2 S8 3

3 S4

4 S5 S12 5

5 S6

6 S7

7 R1

8 S9

9 S10

10,12 S11 S13

11 R2

13 R3

After merging states 10 and 12 it looks as

Table3.8

In above LR parser state 2 has item S→h•AgBkm and state 12 is at a distance of |abc|=3 from state 2. Since state 10 has item

A→abc•d hence its merger with state 10 leads to acceptance of invalid string habcdgpdgpqkm.

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

24

Stack

1h2a8b9c10d11

1h2A3

1h2A3g4

1h2A3g4p10

1h2A3g4p10d11

1h2A3

1h2A3g4

1h2A3g4p10

1h2A3g4p10q13

1h2A3g4B5

1h2A3g4B5k6

1h2A3g4B5k6m7

1S14

Input
gpdgpqkm$

gpdgpqkm$

 pdgpqkm$

 dgpqkm$

 gpqkm$ (Agpd is reduced to A)

 gpqkm$

 pqkm$

 qkm$

 km$

 km$

 m$

 $

 $ accepted

Let us construct LR parser for the grammar1.S→pqAghij 2.A→abcd

STATES ACTION GOTO

p q g h i j A b c d $ S A

1 S2 9

2 S3

3 S10 4

4 S5

5 S6

6 S7

7 S8

8 R1

9 Acc

10 S11

11 S12

12 S13

13 R2

Table 3.9

After merging states 6 and 12 the parser accepts a wrong string pqabcdghdghij. It is because state 12 has item A→abc•d and state 6 has

item S→pqAgh•ij. The state 6 is at the distance |abc|=3 from state 3, which has item S→pq•Aghij.

Let us construct LR parser for the grammar 1.S→pqAghij 2.A→abcd

STATES ACTION GOTO

p q g h i j A b c d $ S A

1 S2 9

2 S3

3 S10 4

4 S5

5 S6

6 S7

7 S8

8 R1

9 Acc

10 S11

11 S12

12 S13

13 R2

Table 3.9

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

25

After merging states 6 and 12 the parser accepts a wrong string pqabcdghdghij. It is because state 12 has item A→abc•d and state 6 has

item S→pqAgh•ij. The state 6 is at the distance |abc|=3 from state 3, which has item S→pq•Aghij.

STATES ACTION GOTO

p q g h i j A b c d $ S A

1 S2 9

2 S3

3 S10 4

4 S5

5 S6

6,12 S7 S13

7 S8

8 R1

9 Acc

10 S11

11 S12

13 R2

Table3.10

A potentially wrong string is pqabcdghcdghij. But it is rejected.

Stack

1

1p2q3a10b6c12d13

1p2q3A4

1p2q3A4g5

1p2q3A4g5h6

1p2q3A4g5h6c12

1p2q3A4g5h6c12d13

1p2q3A4A

Input

 pqabcdghcdghij$

 ghcdghij$

 hcdghij$

 cdghij$

 dghij$

 ghij$

 ghij$

 error

Since in state 4 one can not go to any state on nonterminal A.

3.3.1 Rule 3 – Relaxation (A)

Let a grammar be 1.S pqAgHij 2.A abcd 3.H h. It is similar to the previous grammar.

STATES ACTION GOTO

p q g i j a b c d h $ S A H

1 S2 9

2 S3

3 S10 4

4 S5

5 S14

6 S7

7 S8

8 R1

9 Acc

10 S11

11 S12

12 S13

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

26

13 R2

14 R3

Table 3.11

Following is LR parser after merging states 6 and 12.

STATES ACTION GOTO

p q g i j a b c d h $ S A H

1 S2 9

2 S3

3 S10 4

4 S5

5 S14

6,12 S7 S13

7 S8

8 R1

9 Acc

10 S11

11 S12

13 R2

14 R3

Table3.12

Let us see parsing of the string pqabcdghdghij.

Stack
1p2q3A4

1p2q3A4g5

1p2q3A4g5h14

Input

ghdghij$

 hdghij$

 dghij$

Now error is reported. It is because in state 14 no action can be taken on the arrival of input symbol ‘d’. It is to be noted the same

string was parsed when the grammar was S pqAghij A abcd and same state merging was done. This example shows relaxation

of 3(A).

3.3.2 Rule 3 - Relaxations (B)
1.S→tabcde 2.S→tApqrs 3.S→tghijk 4.S→bApt 5.A→abcd

States Action Goto

t a b c d e p q r s g h i j k $ S A

1 S2 28

2 3

3 S4

4 S5

5 S6

6 S7

7 R2

8 S9

9 S10

10 S11

11 S12

12 R1

13 S14

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

27

14 S15

15 S23 S16

16 S17

17 R3

20 S21

21 S22

23 R5

24 S20 25

25 S26

26 S27

27 R4

28 acc

Table3.13

When state 15 and 22 are merged then invalid string tghidpqrs is accepted. It is because state 2 has item S→t•Apqrs (and S→t•ghijk)

and state 15 has item S→tghi•jk. The state 22 has item A→abc•d. The path length from state 2 to 15 is |abc|=3

Stack

1t2g13h14i15d23

1t2A3

1t2A3p4q5r6s7

1S28

Input

pqrs$

pqrs$ (ghid reduces to A)

 $ accepted

However when S→bApt is replaced by S→bAqt then the same string is not accepted. It is because fellow of A is state 2 and 22

become different (p and q). It is rule 3 relaxation (A).

The LR parser is same except in state 23 reduce action is done on ‘q’ (in place of ‘p’)

Stack

1t2g13h14i15d23
Input

pqrs$ reduce action can not be taken

3.3.3 Rule 3 - Relaxation (C)

Following is canonical LR parser for the grammar 1.S→gApt 2.S→gabc 3.S→Aq 4.A→ab

States Action Goto

g p t g a b c q $ S A

1 S9 11 12

2 S6 3

3 S4

4 S5

5 R1

6 S7

7 R4 S8

8 R2

9 S10

10 R4

11 Acc

12 S13

13 R3

Table3.14

Here state 7 and 13 can be merged using rule3-Relaxation (c).After that 6 and 12 can also be merged

(using rule 4). The merging of state 6 and 12 in a original parser will cause non determinism.

States Action Goto

g p t a b c h q $ S A

1 S9 11 12

2 S6 3

3 S4

4 S5

5 R1

6,12 S7 S13

7,13 R4 S8 R3

8 R2

9 S10

10 R4

11 Acc

Table3.15

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

28

3.4 Rule 4
Let in the LR parser for grammar 1.S→ abcde 2.S→pqd states 5 and 10 are merged.

STATES ACTION GOTO

a b c d e p q d $ S

1 S2 S8 7

2 S3

3 S4

4 S5

5,10 S6 R2

6 R1

7 Acc

8 S9

9 S10

Table4.1

Now the states 4 and 9 can also be merged using rule 4

STATES ACTION GOTO

a b c d e p q d $ S

1 S2 S8 7

2 S3

3 S4

4,9 S5 S10

5 S6

6 R1

7 Acc

8 S9

10 R2

Table4.2

It is to be noted that before merging 5 and 10 the merging of 4 and 9 will cause non determinism.

3.5 Rule 5
In the LR parser for the grammar 1.S→ abcde 2.S→pqd merging of states 2 and 9 does not cause any problem because potentially

wrong strings ad and pqbcde will be rejected during count based reduction.

STATES ACTION GOTO

a b c d e p q d $ S

1 S2 S8 7

2,9 S3 S10

3 S4

4 S5

5 S6

6 R1

7 Acc

8 S9

10 R2

Table5.1

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

29

Similarly merging of states 3 and 4 does not cause any problem because potentially wrong strings abde, abccde, abcccde, will be

rejected.

STATES ACTION GOTO

a b c d e p q d $ S

1 S2 S8 7

2 S3

3,4 S4 S5

5 S6

6 R1

7 Acc

8 S9

9 S10

10 R2

Table5.2

However merging both pair of states will cause problem. Here string pqbde is accepted. If state 2 and 9 are merged and then merging

of states 3 and 4 is prohibited because P (state 4) has item S→abc•de and Q (state 3) is at a distance of |abc|=3 form R (state 1) which

has item S’→•S. The distance is 3 via path 1p8q2b3.

If first state 3 and 4 are merged then we do not have any choice of P, Q and R to prohibit merging of 2 and 9. Hence given set of rules

may not remain applicable after merging a pair of states.

STATES ACTION GOTO

a b c d e p q d $ S

1 S2 S8 7

2 S3 S10

3 S4 S5

5 S6

6 R1

7 Acc

8 S9

10 R2

Table5.3

4. DISCUSSION
Let a state P has item A→α•β(F) and another state R has item

B→γ•Aδ. Suppose stack contains states R and Q and some

sting φ is in between them. If states P and Q are merged then

(wrong) string β can be pushed on the stack. If the next input

symbol tF and |φ| = |α| then by count based reduction φβ is

reduced to A. Now top state on the stack is R, which has item

B→γ•Aδ hence transition to a state (T) with item B→γA•δ is

made. If tFirst(δ) then no error is shown.

 (i) If tFirst(δ) then transition from state T can not be

made. Hence error is shown. It is relaxation 3(B). Here

fellow of A in P and R are different.

 (ii) Suppose on the path from R to Q transition into Q is by a

nonterminal (K) and if follow(K) in state Q and first (β)

are

(a) Disjoint: then error is shown during reduction of K.

(b) Not disjoint: then merging will be prohibited by rule

1.

In any case error is shown. It is relaxation 3(A).

 (iii) If Q has item A→α•β then φ=α hence reduction of φβ

into A is not an error. It is relaxation 3(C)

In the grammar S→abcde S→pqr. Let state P has item

S→pq•r($) and R has item S’→•S($) (so S→•abcde also). The

state Q, which has item S→ab•cde is at a distance of 2=|pq|,

from R. Hence the merging leads to acceptance of wrong

strings abr.

In grammar S→pqAghij A→abcd the state P has item

A→abc•d and state R has S→pq•Aghij. The state Q which has

item S→pqAgh•ij is at a distance of 3=|abc|. Hence merging

of states P and Q can make stack contents pqAghd. The count

based reduction scheme will make stack contents pqA.

In grammar S→pqAgHij A→abcd H→h stack pqAgh will

be modified to pqAgH only when next input is i. Hence stack

can not become pqAghd. It is relaxtion 3(A).

In grammar S→hAgBkm A→abcd B→pq the state R has

item S→h•AgBkm. Its distance from the state, which has item

S→hAg•Bkm (and B→•pq) is 2. Its distance from from state

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

30

Q (which has item B→p•q) is 1. Hence path length form R to

Q is 3. When stack has hAgp and if states with items B→p•q

and A→abc•d are merged hence next stack configuration will

be hAgpd. It can be modified to hA.

In grammar S→tabcde S→tApqrs S→tghijk S→bApt

A→abcd the state R has item S→t•Apqrs. R also has item

S→t•ghijk. Hence from R the distance of state Q which has

item S→tghi•jk is 3. Its merger with state P, which has item

A→abc•d(p) creates problem. It is because when tghid is on

stack and remaining input string is pqrs then stack is modified

as tApqrs. However when S→bApt is replaced by S→bAqt

then state P has item A→abc•d(q). Hence when tghid is on

stack and remaining input string is pqrs then stack is not

modified as tA and error is shown. It is relaxation 3(B).

In grammar S→gApt S→gabc S→Aq A→ab. The state P

has item A→ab•(q) and state R has item S→g•Apt (and

S→g•abc). The state Q which has item S→gab•c (and

A→ab•(p)) is at a distance of 2 from R. But the merging of Q

does not create problem because it has item A→ab• also. It is

relaxation 3(C).

5. CONCLUSION
The merging scheme presented in highly restrictive because

after merging a pair of states error in merging another pair of

states may not be detected. Hence it may not be possible to

reduce the number of states by more then one in a LR parser.

Another disadvantage of present scheme is that merging

process can be started only when complete LR parser is made.

In LALR state merging starts during parser construction. In

grammar SApAqg A abc states with items

Aa•bc(p) and Aa•bc(q) can not be merged because

their merging will cause non determinism (violation of rule 1).

However states with items Aabc•(p) and A abc•(q) can

be merged. After merging them states with items

Aab•c(p) and A ab•c(q) can also be merged. After that

states with items A a•bc(p) and A a•bc(q) are merged.

But the scheme has following advantages over LALR parser.

(1) All pair of states which are merged in LALR and

conflict is not created can be merged in present

scheme also. In grammar SgAp SBq

ShgAr ShBs A ab Bgab the states

with items {A ab•(p), Bgab•(q)} and

{A ab•(r), Bgab•(s)} will be merged. After

that states with items {A a•b(p), Bga•b(q)}

and {A a•b(r), Bga•b(s)} are also merged.

After that states with items {A •ab(p),

Bg•ab(q)} and {A •ab(r), Bg•ab(s)} are

merged.

(2) The state merging of LALR which causes conflict is

prohibited in present merging scheme (using rule 1).

In grammar SgAp SBq ShgAq

ShBs A ab Bgab the states with items

{A ab•(p), B gab•(q)} and {A ab•(q),

Bgab•(s)} will not be merged. Hence

subsequent state merging will not take place. In

LALR parser firstly states with items {A •ab(p),

B g•ab(q)} and {A •ab(q), Bg•ab(s)} are

merged. Hence subsequent merging takes place.

Finally the states with items {A ab•(p), B

gab•(q)} and {A ab•(q), Bgab•(s)} are

merged. It causes reduce-reduce conflict.

(3) The present scheme provides additional merging

options. In grammar S aAp SBq SAg

A rs B ars states with items {A rs•(p),

B ars•(q)} and {A rs•(g)} can be merged

(using rule3(relaxation C)). After that state with

items {A r•s(p), B ar•s(q)} and {A r•s(g)}

can also merged (using rule 4). Finally states with

items {A •rs(p), B a•rs(q)} and {A •rs(g)}

will be merged (again using rule 4). This merger is

not possible in LALR parser. Following table

shows comparison of LALR and present scheme.

LALR Present scheme

If two states have all items same but follow is different

then they are merged.

They may or may not be merged.

As soon a state is created the decision about its merging

with some existing state is taken. If a state is not merged

at creation time then it will never be merged.

State merging process starts only when complete

canonical LR parser is ready. Hence merging is backward

process.

Two states which have any item different are never

merged.

They may be merged. Even if two states with disjoint set

of items can also be merged but this merging is permitted

only once in a parser.

Power of LALR is less than that of Canonical LR parser. The power does not reduce.

LALR parser generation takes less time than that

canonical LR parser generation. It is because it has less

number of states.

In present scheme parser generation takes more time. It is

because merging process starts when canonical LR parser

is ready.

Error occurs only during input scan. Error can also be during reduction or because of failure in

goto transition on nonterminal.

No assumption about the method of reduction of a handle

into non terminal is made.

The merging scheme is applicable only when a handle is

reduced into non terminal by removing few (size of

handle) symbols from the stack.

Table 5.1

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.17, August 2014

31

6. ACKNOWLEDGMENTS
The author would like to thank the management committee of

Hindustan University for their constant encouragement and

support. The first author would like to thank Dr.Piriadarshani,

Department of mathematics Hindustan University for the

support and advice received from her.

7. REFERENCES
[1] Alfred V, Aho, Ravi Sethi, and Jeffery D.Ullaman,

Compiler: Principles, Techniques and Tools, 1986,

Addison-Wesley

[2] Dillip Kumar and Pawan Kumar, State Merging in LR

parser, ACM SIGPLAN notices, Vol 41(4), pp 24-29,

2006

[3] Anderson T, Syntactic Analysis of LR (k) languages.

PhD Thesis, University Newcastle-upon- Tyne,

Northumberland, England, 1972

[4] Anderson T, Eve J, and Horning, J J, "Efficient LR(1)

parsers." Acla Informatics 2 , pp 12-39, 1973

[5] Deremer F. L, "Simple LR(k) grammars " Comm. ACM

14,Vol 7, pp 453-460, 1971

[6] Floyd R. W, "Syntactic analysis and operator precedence

" J. ACM 10,Vol 3, pp 316-333, 1963

[7] Lalonde W R, Lee E S, and Homing J. J, "An LALR (k)

parser generator." Proc. IFIP Congress 71 TA-3, North-

Holland Publishing Co., Amsterdam, the Netherlands, pp

153-157, 1971

[8] Pager D, "On the incremental approach to left- to-right

parsing " Technical Report PE 238, Information Sciences

Program, Univ. Hawaii, Honolulu, Hawan, 1972a

[9] Pager D, "A fast left-to-right parser for context-free

grammars." Technical Report PE 240, Information

Sciences Program, Univ. Hawaii, Honolulu, Hawaii,

1972b

IJCATM : www.ijcaonline.org

