
International Journal of Computer Applications (0975 8887)
Volume 100 - No. 16, August 2014

Quick Goal Seeking Algorithm for Frontier based
Robotic Navigation

Vaisakh V P
Department of Computer Science & Engineering

Amrita School of Engineering
Amrita Vishwa Vidyapeetham, Coimbatore-641 112

ABSTRACT
There arises situations where an autonomous robot needs to nav-
igate to a target location and no information is available about
the terrain. Frontier based navigation is one of the most effi-
cient methods of exploration and navigation for such situations.
In a frontier based strategy, the robot navigates to the target lo-
cation by detecting intermediate frontier regions, which are points
lying on the boundary separating the explored region from the
unexplored. In this paper, a new frontier based robotic naviga-
tion algorithm called the Quick Goal Seeking (QGS) algorithm
is proposed. The QGS algorithm is tested in a real-time environ-
ment and its performance is compared with two major frontier
based navigation algorithms; Modified Goal Seeking (MGS) and
Fast Frontier Detector (FFD). The QGS algorithm uses heuris-
tic informed search for path planning. It consists of a highly
optimized and efficient scanning function which minimizes the
search space. The performance of these three algorithms is com-
pared based on the total time taken to reach the destination.
It has been found out that the QGS algorithm performs bet-
ter than the MGS and FFD algorithms in almost all the cases.

General Terms:
Frontier based navigation, heuristic path planning, occupancy grid

Keywords:
Frontier cells, path planning, robotics, navigation, IR range sensors

1. INTRODUCTION
A variety of frontier based algorithms have been designed and de-
veloped since the year 1988. But not much work has been done in
comparing the performance of these algorithms among each other
in a real-time environment. In most of the research works, the de-
veloped algorithms have been tested only under a simulated envi-
ronment. Practical implementation of these algorithms has always
been tedious as a wide range of problems must be addressed while
interfacing the hardware. For example, the sensor output data must
be calibrated and averaged to reduce the inaccuracies and errors in
the readings. The communication delays and inaccuracies in sen-
sor readings considerably reduced the performance of these algo-
rithms. Unlike in a virtual simulation, the practical implementa-

tion of the frontier based navigation algorithms exhibits a variety
of problems which require in-depth study and testing.

1.1 Motivation
The development and implementation of the modified goal seek-
ing (MGS) algorithm and fast frontier detector (FFD) algorithm
provided means to understand the drawbacks and faults associated
with it. The motive behind designing and developing a new frontier
based algorithm is to overcome these drawbacks and to provide a
faster navigation strategy. The algorithm incorporates an innovative
alignment function and a modified environment scanning technique
to increases the overall efficiency of the frontier based search.

1.2 Problem Definition
The problem currently defined is to design and implement a new
frontier based navigation algorithm in a real-time environment and
to compare its performance with the MGS and FFD algorithms,
based on the time taken to reach the target location. Given a mobile
robot, it must be able to generate a path between two specified loca-
tions, the start node and the target node. The path should be free of
collision and must satisfy certain optimization criteria (least time
consuming path). The only information available to the robot is its
current position and the location of the target in the grid map [4].
The robot has to continuously move from the current position un-
til it reaches the target by avoiding the obstacles detected on route.
Occupancy grids [4] are used for the representation of the environ-
ment.
Here each cell in the grid contains information about its state,
which is calculated depending on the probability of occupancy [4]
of that particular cell. Hence a cell which is occupied by an obsta-
cle will have a very high probability of occupancy value returned
by the sensor, which makes it unavailable for the robot to traverse.
Frontier based heuristic search algorithm is the main domain of the
problem. It is useful in situations where no prior planning is feasi-
ble and all decisions are taken at real-time.

1.3 Organization of the paper
This paper is organized into five sections. Section-2 briefly explains
the various frontier based navigation algorithms developed so far.
The problem scenario, the proposed system architecture and the
implementation details are explained in Section-3. Results of the

1



International Journal of Computer Applications (0975 8887)
Volume 100 - No. 16, August 2014

comparative study are discussed in Section-4. Section-5 concludes
the findings and spreads light on the scope for future work.

2. RELATED WORKS
A variety of work has been done so far in the field of frontier
based navigation. The concept was proposed by Brian Yamauchi
in Frontier Based Exploration Using Multiple Robots [1]. Later
V.R Jisha [2] proposed two frontier based navigation algorithms
namely Basic Goal Seeking (BGS) algorithm and a better version
of it called the Modified Goal Seeking (MGS) algorithm [2]. All
the frontier based navigation algorithms made use of proximity
sensors to detect and identify the frontier regions during the ex-
ploration. These algorithms were time consuming and had to pro-
cess enormous amounts of data from various cells in the grid map.
Later Matan Keidar and Gal A Kaminka [3] proposed four different
sets of frontier based navigation algorithms; namely Fast Frontier
Detector (FFD), Wave front Frontier Detector (WFD), Incremental
Wave front Frontier Detector (WFD-INC) and Incremental Paral-
lel Wave front Frontier Detector (WFD-IP) which were more effi-
cient and faster than the state-of-the-art frontier based navigation
strategies [3]. A brief description of these algorithms is given in the
following section.

2.1 Basic Goal Seeking Algorithm
There are two goal seeking algorithms as proposed in Frontier
Based Goal Seeking for Robots in Unknown Environment [2]. The
first one is known as Basic Goal Seeking algorithms or BGS and the
other one, which is a modified version of the former, is known as
the Modified Goal Seeking algorithm or MGS [2]. During each ex-
ecution cycle of the BGS algorithm, the robot performs a full round
scan of its environment and updates the occupancy value (Po) of its
four adjacent cells, one in each direction: top, right, bottom and left.
These four cells detected on every scan are termed as the cells in
the current sensing region [2]. As explained before, a frontier cell
is a cell explored by the robot which is having at least one unex-
plored cell as its neighbouring cell. After each scanning operation,
the newly detected frontier cells are assigned heuristic cost value
known as Goal Seeking Index (GSI) [2]. The cost of moving to a
cell (x, y) is found as the product of its occupancy value Po and the
distance of the cell (x, y) from the current position of the robot [5].
Calculating the cost based on occupancy value is explained well in
[5] . The GSI for each frontier cell is found out with the help of the
equation given below.

GSIxy = ((Dmax −Dxy,target)− Cxy,current) (1)

Dmax - largest distance possible between any cell in the grid and
the target location

Dxy,target - distance between the given frontier cell (x,y) and the
target cell

Cxy,current - product of the occupancy value (Po) of the frontier
cell (x,y) and its distance from the current location of the robot.

As the distance between the frontier cell and the target cell de-
creases, the GSI value keeps increasing. Hence after every loop
execution, the algorithm chooses a FC with the greatest value of
GSI. However it was found out that the performance of the BGS
algorithm deteriorated when wall like obstacles were introduced in
the grid. In order to overcome this problem, a new algorithm called
the MGS algorithm was introduced.

2.2 Modified Goal Seeking Algorithm
The MGS algorithm is a modified and more efficient form of the
BGS algorithm. The efficiency lies in the way in which frontier
cells are chosen during the execution. In a grid filled with wall
like obstacles, it was found out that the BGS algorithm was unreli-
able. The robot tends to get trapped in locations similar to a closed
room with a narrow exit. In such situations the robot wasted large
amount of time in exploring cells which were previously explored
and hence efficient ways to get out of a trap situation was highly
essential. This lead to the development of a more efficient MGS
algorithm.
The MGS algorithm resolved this problem by defining the trap
[2] situation clearly. After a complete scan of the environment, if
no FC are detected in the current sensing region, the situation is
called a trap or a local maximum. Once a trap situation is detected,
the algorithm checks for the availability of previously detected FC
which lie outside the current sensing region. If no such cells are
available then it fails to reach the target cell and quits. But if such
FC are available, then a best one among them is chosen based on
certain strategies. Frontier cells which lie next to an obstacle, a
FC which is closer to the target cell or a FC which is close to the
current robot position are given more preference over the rest of
the frontier cells. If multiple such cells are available, any one FC is
chosen and the robot moves towards it trying to escape from the
trap. The pseudo code of the MGS algorithm is given below.

WHILE the goal is not reached
Identify the FC within the current sensing region
IF FC present inside the current sensing region THEN

Determine the Goal Seeking index of all the current FC and
choose the one with the largest value

ELSE IF FC present outside the current sensing region THEN
Choose a FC which is near to an obstacle, closer to the target
or closer from the current robot position

ELSE
All area has been covered and the goal is not present in the
area. STOP.

END IF
Move towards the best FC chosen

END WHILE
Algorithm 1: Modified Goal Seeking algorithm pseudo code [2].

2.3 Wave front Frontier Detector
WFD is a graph-search-based method which uses breadth-first
search (BFS) for frontier detection. The main feature of the WFD
algorithm is that it does not search the entire map data during its
each execution. Instead it only processes those locations which
have already been scanned by the robot and its sensor and hence
unknown cells are removed from the search space [3]. Initially
the current robot position is pushed into a queue which deter-
mines the search order and in order to prevent the re-detection of
the same frontiers, four special lists are used. Map-Open-List and
Map-Close-List are used to contain cells that have already been en-
queued and de-queued respectively by the outermost BFS where as
Frontier-Open-List and Frontier-Close-List contains cells that have
already been en-queued and de-queued respectively by the frontier
extraction BFS [3].

2.4 Fast Frontier Detector
The FFD method has a faster and much more efficient frontier de-
tection strategy compared to the WFD algorithm. A novel approach

2



International Journal of Computer Applications (0975 8887)
Volume 100 - No. 16, August 2014

to the problem of frontier detection was presented by the FFD strat-
egy [3]. The FFD exhibits high efficiency in detecting frontiers be-
cause it only processes raw sensors data obtained in real time. It
does not search all the cells lying in the explored area or unexplored
area. But in order to prevent re-detection of frontier cells and other
inconsistencies, the FFD must perform maintenance of the frontier
cells frequently. After every scanning operation, FFD must perform
four operations namely; Sorting, Contour Generation, Frontier De-
tection and Frontier Maintenance.
In the sorting step, all the points obtained after each scan is ordered
according to their location from the current position of the robot.
The occupancy value Po for each cell is also stored in the same or-
der. The complexity of this step could vary depending on the sensor
used. As IR sensors are used as proximity sensors, a full round scan
generates occupancy values (Po) for the adjacent cells in a linear or-
der and hence no further processing is required for sorting. During
the second step called contour generation, all these sorted points
are connected and a contour or a boundary line is generated which
represents the frontier regions generated so far.
In the next step, all new frontier cells are detected and identified
by comparing every adjacent pair of cells lying in the contour gen-
erated in the previous step. During comparison of each pair, if the
new current cell and the previous cell are both frontier cells, the
current cell is incorporated into the same frontier region else a new
frontier region is created and the current cell marks its beginning.
The final step performs the most important task of maintaining all
the frontier cells detected so far. The goal of the final step is to
avoid detection of new frontier cells in the already scanned area
and also to eliminate the cells which are no longer considered as
frontier cells.
The work done in [3] only describes how the frontier cells are
detected and maintained. No information is provided on how the
best frontier cell is chosen among all the detected frontier regions.
Hence we assume that frontier cells are selected in the same way as
in the case of BGS and MGS algorithms. Once all the frontier cells
are processed by the FFD; we choose a best frontier cell based
on the heuristic cost value. Once such a frontier cell is chosen,
the robot moves to the best frontier cell location and repeats these
four steps until the target is reached. The pseudo code of the FFD
algorithm is given below.

WHILE the goal is not reached
Scan the cells in the current sensing region
SORT the sensor readings
GENERATE CONTOUR from the sensor readings
EXTRACT new frontier cells from the generated contour
MAINTAIN the new FC detected and remove the old FC
Choose the best frontier cell based on the cost values and
move to the location

END WHILE

Algorithm 2: Fast Frontier Detector algorithm pseudo code [3].

2.5 Incremental Wave Front Detector
The WFD-INC combines the features of both WFD and FFD algo-
rithms. In this modified version of the WFD algorithm, instead of
searching the whole map for all the frontier cells, it searches only
those cells inside the current active area or sensing region [3]. If the
orientation of the grid map does not change, then the location of
all the frontier cells remain unchanged. The WFD-INC algorithms
takes advantage of this fact by processing only the region which
is under the current scanning area and thereby reduces the search
space drastically [3]. Since this modified algorithm does not search

the whole map; continuous maintenance of the frontier cells de-
tected is highly essential. WFD-INC is supposed to perform better
compared to the state-of-the-art frontier detection algorithms but
when compared to FFD, it is still limited.
These are the major algorithms that utilize frontier based strategy
for robotic navigation and it has already been studied and proved
that the MGS algorithm performs better than the BGS in the pa-
per titled Frontier Based Navigation for Multiple Robots [1]. Simi-
larly it has also been found that the FFD performs better compared
to the WFD, WFD-INC and FFD algorithms. But no comparison
has been done between these two leading frontier based navigation
techniques namely the MGS and the FFD algorithm. In this the-
sis; the two algorithms namely the MGS and FFD are implemented
in real world for comparing their performance with the QGS algo-
rithm.

3. PROPOSED SYSTEM
The proposed system consists of an autonomous robot loaded with
the QGS algorithm in an environment as shown in Fig.1. The sys-
tem senses the environment to detect the presence of obstacles with
the help of the IR range sensors. The computer which runs the al-
gorithm is connected and mounted onto the robot. The algorithm
issues navigational instructions to the robot wheels based on the
path planning strategy. The wall clock time taken by the robot to
reach the destination is measured for various combinations of start
and target cell locations. For the frontier based algorithms, the only
information available to the robot is its current location and loca-
tion of the its destination. The whole environment is considered as
an occupancy grid [4] of size 10x10 where each cell is a square cell
with a side of length 0.4m.
In the occupancy grid, initially every cell is considered as an
unexplored cell and it is assigned the respective state value
(cell[x][y].state). As the scanning function generates information
about the cell scanned by the sensor, its state value is updated dy-
namically. A cell which is occupied by an obstacle is assigned a
very high state value or Po. Frontier cells are assigned the least
value where as free cells are assigned values in between frontier
cells and unknown cells. Hence every cell in the 10x10 grid is rep-
resented with a user defined structure variable which contains data
about its x-coordinate, y-coordinate and state value. As the robots
explores the terrain, the state value is updated from that of an un-
known cell to either a free cell, an obstacle filled cell or a frontier
cell. Hence all the region which has been covered by the robots
sensor is considered as explored region and the rest as unexplored
region. Once a cell has been found free of obstacle, it is considered
as a free cell and all those free cells which have at least one unex-
plored cell as its neighbour are considered as frontier cells (FC).
The cells that lie within the sensor sweep range of the last scanned
region are known as cells in the current sensing region [2]. The
QGS incorporates the same heuristic cost value known as the Goal
Seeking Index [2] (GSI) used in the BGS algorithm explained in
section 2.1. The GSI value is assigned to all the frontier cells de-
pending on three factors i.e. the distance of the detected FC to the
destination cell, distance of the FC from the current robot position
and the state value of the FC. The cost of traversal to a cell occupied
by an obstacle is very high where as the cost to travel to a free cell
or a frontier cell is comparatively low. In the proposed QGS algo-
rithm, similar to all other frontier based navigation algorithms, the
strategy used is to maintain a list of all the frontier cells detected
so far. Once a FC with maximum GSI is chosen from the sorted FC
list, the algorithm issues instruction to move the robot to the chosen
FC. The robot now scans the new location in order to identify bet-

3



International Journal of Computer Applications (0975 8887)
Volume 100 - No. 16, August 2014

ter frontier cells which are more closer to the target. This process
repeats until the target is reached or until there are no more frontier
cells left to be explored.

3.1 Features
Implementation and analysis of the MGS algorithm and the FFD al-
gorithm exposed its flaws and drawbacks. As both these algorithms
were performing a full round scan of the environment, most of the
frontier cells detected were not explored at all. This was mainly be-
cause the frontier cells lying away from the target were assigned
lower GSI value compared to the ones lying closer to the target.
These frontier cells with very low GSI value gets pushed towards
the bottom of the sorted list and rarely gets explored by the robot.
This shows that a large portion of the total exploration time is be-
ing wasted on scanning cells which are rarely explored. In order to
reduce this unwanted scanning, a new strategy was required which
would optimize scanning in such a way that almost all the cells that
are scanned, gets explored eventually. The QGS algorithm uses two
intelligent approaches; aligning the robot frequently towards the
target and developing a new scanning strategy. These two new fea-
tures are explained in detail below.

3.1.1 Align Function. The main innovative feature of the QGS
algorithm is the align function. This function is executed initially
and also every time the robot moves or changes its orientation. The
whole grid map is divided into four quadrants by assuming the cur-
rent robot position as the origin. Once the quadrant where the target
cell is located is identified, the align function changes the orienta-
tion of the robot in such a way that the target is located in the lower
right quadrant. Once the robot is aligned in the best possible ori-
entation, it sweeps and scans the adjacent three cells using its IR
sensor. Hence the time wasted in order to perform an unwanted full
round scan of the environment is extremely reduced. For example,
if the robot is facing north and the target was found to be in the
south east region of the current robot position, the robot is turned
to face east and a clock wise scan is performed towards the south.
Hence all the cells lying in the south east region, i.e. the cell to the
east or right of the robot, to its south east diagonal and to the bot-
tom, will be scanned and explored. All the cells lying outside the
scanned quadrant are excluded, thereby reducing the search space
and scan time to a great extent.

3.1.2 Scan Function. The modified scanning function as men-
tioned above consists of a single 90 degree sweep in a clock-wise
direction. Depending on the orientation of the robot, the cell in front
of the robot, the cell lying in its diagonal right side and the cell ly-
ing to right hand side of the robot will be scanned by the robots
sensor. The new scanning function has reduced the search space
and the total time required to scan the environment to one-fourth.
During each scan, the obstacles detected are updated in the occu-
pancy grid and the once frontier cells are detected, it is pushed to a
list called the ”activeArea”. The frontier cells in the activeArea list
are sorted in decreasing order of its goal seeking index or GSI. If
the best FC detected inside the current sensing region is having a
GSI value greater than the previously found best frontier cell, the
robot is moved to the selected frontier cell. And if no frontier cells
are found inside the current sensing region, the situation is called
as a ”TRAP” [2] situation. Once a trap is detected, the robot must
select a frontier cell outside the current sensing which is having the
largest value of gsi. If no such frontier cells are available even out-
side the current sensing region, then the robot has failed to reach
the destination. The pseudo code of the QGS algorithm is given
below.

WHILE the goal is not reached
Align the robots orientation to scan the best quadrant
Scan the three adjascent cells in clock-wise direction
Update grid map and if new FC detected, push to activeArea list
IF FC are available in the activeArea

Choose the FC with the largest GSI as the BEST FC
Move the newly detected FC in activeArea to old FC list

ELSE IF frontier cells are present outside the activeArea THEN
Choose the FC with largest GSI from old FC list
which is adjacent to an obstacle as the BEST FC

ELSE
All accessible area has been explored and robot failed to
reach target. STOP.

END IF
Remove the cells from old FC list which are no longer FC
Move robot to the BEST FC chosen

END WHILE

Algorithm 3: Quick Goal Seeking algorithm pseudo code

3.2 Problem Scenario
The problem scenario is represented in Fig.1. Here the starting lo-
cation of the robot is set to the top left corner of the grid and is
marked as ’S’. The target location is represented as ’T’ and as the
robot moves, its current position is updated and represented as ’C’.
Initially all the cells are considered unexplored and represented in
light grey shade. As a new cell is scanned, it is considered as an
explored cell and its state value is updated in the occupancy grid.
Explored cells are shown in white and a cell which is occupied with
an obstacle is shown in dark grey. The free cells which are having
atleast one adjacent unexplored cell are considered as frontier cells
and it is shown in light brown with a cross in the middle. The di-
rection towards the right hand side of the origin is considered as
positive X-axis and the direction towards the bottom of the origin
is considered as the positive Y-axis. The functions named addx,
addy, subx and suby gives command to the robot to move one
grid cell either to the right, bottom, left or top respectively.
Initially, the only information available to the robot is its current
location and the location of the target in the grid map. As the robot
detects new frontier cells, it moves towards the best one among
them in order to get more information about the terrain. The robot
has to reach the target location as fast as possible and if obstacles
are detected on route to the target, it must be avoided and updated
on the map. The path covered by the robot is represented as dotted
lines in the Fig.1. At the end of the program execution, a map is
generated in a user understandable form. The map must display
the location of the free cells, frontier cells (represented as ’*’) and
obstacles detected (represented as ’O’). The goal of the robot is to
reach the target location through the shortest path by avoiding the
obstacles detected in real-time. The problem defined in this thesis
is to implement a new frontier based navigation algorithm in a real-
time environment, which is better than the two currently leading
frontier based algorithms namely, MGS and FFD, and to reach the
target location in the shortest possible time.

3.3 System Architecture
The system architecture is shown in the Fig.2. The input given to
the robot is the location of target cell in the grid map. The localiza-
tion block identifies the location of the robot and quadrant in which
the target is located using the align function as explained in section
3.1.1. Once localization is completed, the robot is automatically
aligned towards quadrant containing the target. The next block in

4



International Journal of Computer Applications (0975 8887)
Volume 100 - No. 16, August 2014

Fig. 1. Problem Scenario

Fig. 2. System Architecture

the system architecture represents the scanning function. The IR
sensors are used to scan the environment and identify the FC, free
cells and the cells occupied with obstacles around the robot. The
state values of the scanned cells are updated in the grid map. After
the identification block, all the FC lying within and outside the cur-
rent sensing region are identified and sorted in the decreasing order
of its GSI. The middle block represents the three frontier based al-
gorithms out of which one algorithms is used to choose the BEST
FC. The BEST FC is chosen depending on the strategy proposed
by the corresponding algorithm. The next block is used to issue
commands to the actuators of the robot in order to move to the
BEST FC chosen in the previous step. The algorithm keeps execut-
ing from the beginning until the robot reaches the target location,
else it terminates.

3.4 Implementation
The robot chosen for the chassis is the iRobot Create and an IR
range sensor is used to detect obstacles. Sharp IR sensor model
GP2Y0A21YK is used as the range sensor and it is connected to an

Fig. 3. Map Generated

analogue input pin of the Arduino UNO board. The arduino board
contains program to calibrate, smooth-en and average the raw volt-
age values coming from the IR sensor to a distance value for bet-
ter accuracy. This distance value can be accessed from the arduino
board by the net book using a regular serial communication pro-
tocol. The iRobot and the arduino (along with the IR sensor) can
be connected to a net book using a USB-Serial converter cable and
normal USB cable respectively. Hence the robot used for naviga-
tion consists of an iRobot mounted with a net book, an arduino
board and an IR range sensor.
Since we are concerned only about scanning the adjacent cells from
the robots current position, we limit the IR sensors capability by re-
ducing its detection range from (0-1.5m) to (0-0.4m). Hence during
each scan, the arduino board returns a number which represents the
presence or absence of an obstacle in the probed cell. Once an ob-
stacle is detected by the robot, its location is saved and proceeds
towards the goal by avoiding it.
Both the algorithms are implemented in C language and Linux
based GCC compiler is used for compilations. Ubuntu 11.04 is used
as the operating system and all the code and hardware peripherals
used are open source. A special open source library called the COIL
is included which simplifies the control of the iRobot through USB-
serial port communication. The arduino 1.0.5 drivers are installed
to interface the arduino serial communication. Once the target is
reached, a map of the traversed environment is generated and dis-
played to the user in the same command window as shown in Fig.3.

3.5 Technical Details

—The operating system used is Linux Ubuntu 11.04.
—C Language is used for coding the main program and it is com-

piled in the normal gcc compiler available in Ubuntu 11.04
—The robot used is iRobot-Create (Fig.4). It has a three-wheel dif-

ferential drive chassis with two driving wheels that contain in-
cremental encoder and one supporting swing wheel. The netbook
controls the iRobot by connecting it to its serial port through a
USB-Serial converter cable.

—COIL is used as the external library to control the iRobot. COIL
stands for Create Open Interface Library and is an open-source
library which makes it much easier to start controlling the iRobot

5



International Journal of Computer Applications (0975 8887)
Volume 100 - No. 16, August 2014

Fig. 4. iRobot

as well as reading data from it by using C functions. Small size of
COIL library makes it easier to run on a net-book. But the draw-
back of using COIL is that, it does not work on Windows OS.
Linux and Mac-OS are the only operating systems that support
the use of COIL library.

—SHARP IR range finder-GP2D120 is used for obstacle detection.
—Arduino UNO is used to connect the Sharp IR sensor onto the

computer. The IR sensor is connected to an analogue pin which
sends voltage readings to the arduino board. But these voltage
readings are raw values and needs to be processes for accuracy.
The code required to calibrate and smooth-en the raw IR sensor
readings are burned onto the arduino board.

4. RESULTS AND ANALYSIS
The frontier based navigation algorithms; QGS, MGS and FFD
have been successfully implemented and tested in real-time envi-
ronment. The robot explored ten map cases with obstacles placed
at varying locations as shown in Table 1. All the three algorithms
were executed for each map case. The wall clock time taken by
the algorithms to complete the exploration is the parameter used to
compare performance.
In order to compare the time complexities of the algorithms, a graph
is plotted between the obstacle density of the environment and the
time taken to explore it. Obstacle density gives a measure of how
densely the obstacles are placed in the environment. In order to cal-
culate the obstacle density we consider a rectangle with the starting
cell located at one corner and the target cell at the diagonally op-
posite corner. Obstacle density is calculated by finding the ratio of
number of cells occupied with obstacles to the total number of cells
in the rectangle. The Table 2 contains data about obstacle density
of the map case and the time taken in seconds by the algorithms to
explore it. It is evident from the Table 2 that as the obstacle density
increased, the time taken by the algorithms to explore the environ-
ment also increased proportionally. The graph plotted from the data
in Table 2 is shown in Fig.5.

5. CONCLUSION AND FUTURE
ENHANCEMENTS

A new frontier based navigation algorithm, quick goal seeking al-
gorithms was successfully designed and implemented. Two lead-
ing frontier based navigation algorithms; modified goal seeking

and fast frontier detector algorithm has also been implemented and
tested under similar environments. It is clearly evident from the
results that the QGS algorithms outperfomrs the remaining two al-
gorithms with respect to the total time taken and the total number
of cells traversed to reach the target node. The new innovative align
function and scanning strategy has proved to be highly efficient and
time saving.
The future works include improving the newly developed QGS
frontier based navigation algorithm by incorporating high perfor-
mance sensors like laser range finders better robot for indoor as
well as outdoor navigation. The improved QGS algorithm would
be able to navigate highly complex and challenging environments
and hope to revolutionize the frontier based navigation strategy.

6. REFERENCES
[1] Yamauchi, Brian.: Frontier based exploration using multiple

robots. In: Proceedings of the Second International Conference
on Autonomous Agents, pp. 4753. Minneapolis, Minnesota
(1998).

[2] Jisha, V.R., Ghose, D.: Frontier Based Goal Seeking for Robots
in Unknown Environments. In Journal of Intelligent Robotic
Systems, 0921-0296, Springer Netherlands (2012-09-01).

[3] Keidar, Matan, Eran Sadeh-Or, and Gal A. Kaminka.: Fast
frontier detection for robot exploration. In Advanced Agent
Technology, Springer Berlin Heidelberg (2012) 281-294.

[4] Elfes, A.: Using occupancy grids for mobile robot perception
and navigation. IEEE Computation 22(6), 4657 (1989).

[5] Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.:
Coordinated multi-robot exploration. IEEE Transaction on
Robotics. 21(3), 376386 (2005).

[6] Moravec, H., Elfes, A.: High resolution maps from wide angle
sonar. In: Proceedings of the IEEE International Conference
on Robotics and Automation, pp.116121. St. Louis, MO, USA
(1985).

[7] Murphy, R.R.: Introduction to AI Robotics. Prentice Hall, India
(2005).

[8] Keidar, Matan and Gal A. Kaminka.: Efficient Frontier Detec-
tion for Robot Exploration. In: The International Journal of
Robotics Research, Published on 22nd October (2013).

6



International Journal of Computer Applications (0975 8887)
Volume 100 - No. 16, August 2014

Table 1. Performance Analysis
Start Target Location of Obstacles QGS Time MGS Time FFD Time
(5,5) (7,7) (5,6)-(6,6) 0:23 0:36 0:37
(5,5) (7,7) (6,6)-(7,6) 0:45 0:54 0:55
(5,5) (7,7) (6,6)-(7,6)-(8,6) 0:44 1:11 1:14
(5,5) (7,8) (6,6)-(6,7)-(6,8) 0:42 0:45 1:04
(5,8) (7,9) (6,8)-(6,9) F 1:43 1:34
(4,4) (6,6) (5,5)-(6,5)-(7,5)-(5,6)-(7,6) 1:02 1:29 1:20
(4,4) (6,6) (5,5)-(5,6)-(5,7)-(6,5)-(7,5) 1:10 1:11 1:12
(4,4) (9,6) (5,5)-(6,5)-(7,5)-(8,5)-(9,5) 0:42 1:02 4:20
(4,4) (7,8) (6,5)-(6,6)-(6,7) 0:44 1:02 1:04
(7,7) (4,4) (4,5)-(5,5)-(6,5)-(7,5) 1:15 1:16 1:36

Table 2. Obstacle Density-Exploration Time Analysis
Map Case Obstacle Density QGS Time MGS Time FFD Time

1 0.22 23 36 37
2 0.22 45 54 55
3 0.33 44 71 74
4 0.25 42 45 64
5 0.22 F 103 94
6 0.41 62 89 80
7 0.31 70 71 72
8 0.27 42 62 260
9 0.15 44 62 64
10 0.25 75 76 96

Fig. 5. Graph showing variation of exploration time with obstacle density for QGS, MGS and FFD algorithms

7


	Introduction
	Motivation
	Problem Definition
	Organization of the paper

	Related Works
	Basic Goal Seeking Algorithm
	Modified Goal Seeking Algorithm
	Wave front Frontier Detector
	Fast Frontier Detector
	Incremental Wave Front Detector

	Proposed System
	Features
	Align Function
	Scan Function

	Problem Scenario
	System Architecture
	Implementation
	Technical Details

	Results and Analysis
	Conclusion and Future Enhancements
	References

