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ABSTRACT 
Signal modeling is concerned with the representation of 

signals. The modeled signal consists of   parameters, using 

which the original signal can be reconstructed or recovered. 

When  once  it  is possible to accurately model a signal, then it  

becomes  possible to perform  important  signal processing  

tasks  such as  signal compression, interpolation, prediction. 

The models used  are  AR  (Auto  Regressive) or  All-Pole  

model, MA  (Moving  Average) or  All-Zero  model,  ARMA  

(Auto Regressive  Moving  Average)  or  Pole-Zero  model. 

Various methods have been suggested for the coefficients 

determination among which are Prony, Pade, Shank, 

Autocorrelation, Covariance techniques. 

In this paper, these techniques are applied for speech signals 

and comparisons are carried out. The comparisons are entirely 

based on the value of the coefficients obtained.  

Keywords 

Pade, Prony, Shank, Auto Regressive, Moving Average, 

Autoregressive Moving Average. 

 

1. INTRODUCTION  
The use of modeling technique to predict or reconstruct a data 

sequence is concerned with the representation of data in an 

efficient technique [1]. Signal modeling have been used in 

radar application, geophysical application, Medical signal 

processing, ultrasonic tissue backscatter coefficient 

estimation, speech processing, music understanding and more 

recently in the field of Magnetic Resonance Imaging (MRI) 

reconstruction [7]. 

Signal modeling involves two steps [1], these are; 

1) Model selection: Choosing an appropriate parametric form 

for the model data  

2) Model Parameter determination: This includes model order 

and model coefficients determination. 

Despite the success reported in the use of modeling technique, 

two important problems constitutes challenges to the 

applicability of this method, these are: 

1) Estimation of Model order: There has been various efforts 

in determining a workable criteria for the determination of an 

appropriate model order. The use of a model with an order too 

high over fits the data while the use of a model with a low 

order leads to insensitivity to noise [1]. 

2) Estimation of model coefficient: The second important 

challenges mitigating against the use of modeling technique is 

the estimation of the model coefficients. Some of the existing 

methods of determining model coefficients include Prony, 

Pade, Least Square, Shank, Autocorrelation, Autocovariance 

methods [1]. 

2. SIGNAL MODELING TYPES 
A linear system's transfer function )(zH is given by                               
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Different models related to deterministic signals have three 

specific models [4]: 

1. Auto Regressive (AR) Process. 

2. Moving Average (MA) Process. 

3. Auto Regressive Moving Average (ARMA) 

Process. 

 

Auto Regressive (AR) Process: 

In this case, only poles will be present i.e. the linear 

filter )(1)( zAzH p . Hence, this process is also called as 

an all pole filter. The system function of AP process is given 

by, 
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Figure. 1: Block Diagram of AR Process. 

 

Mathematical Modeling of AR Process: 

From Figure. 1, the output )(nx  is the convolution of the 

input signal )(n  and the system function of the filter )(nh  

i.e. 
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Moving Average (MA) Process: 

In this case, only zeros will be present i.e. the linear 

filter )()( zBzH q . Hence, this process is also called as all 

zero filter[4]. The system function of MA process is given by 
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Figure. 2: Block Diagram of MA Process. 

 

Mathematical Modeling of MA Process: 

From Figure. 2, the output )(ny  is the convolution of the 

input )(nx  and the system function of the filter )(nh i.e. 
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Auto Regressive Moving Average Process: 

In this case, both poles and zeros will be present i.e. the linear 

filter 
)(

)(
)(

zA

zB
zH

p

q
 . Hence, this process is also called as 

pole zero filter[4]. The system function of ARMA process is 

given by                               
















p

k

k

p

q

k

k

q

p

q

zka

zkb

zA

zB
zH

1

0

)(1

)(

)(

)(
)(            (6) 

 

 

 

 

 

 

 

Figure. 3: Block Diagram of ARMA Process. 

 

 

 

 

Mathematical Modeling of ARMA Process: 

From Figure. 3, the output )(nx  is the convolution of the 

input )(n  and the system function of the first filter 

)(1 nh i.e.     
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where the system function is given by,  
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The output )(ny  is the convolution of the input )(nx  and 

the system function of the second filter )(2 nh  i.e. 
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3. MODELING PROCEDURE 
The goal of signal modeling is to produce a signal        which 

should be as close as possible to           with input to           the 

filter as impulse signal [1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4: Modeling Procedure 

 

Any deterministic signal can be generated by linear time 

invariant filter driven with unit impulse function )(n  [6]. 

This is shown in Figure. 4. 

 

The steps followed for modeling a signal are: 

1. Generation of analog signal. 

2. Discretization of the signal. 

3. In this step )(zH  is found out using different 

method. 

4. )(zH is driven with )(n  then the signal          

obtained approximate the signal  
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4. METHODS OF COEFFICIENTS  

     DETERMINATION 
 

Various methods have been reported in literatures for 

determining the AR/ARMA model coefficients, among which 

are [4]: 

 

4.1 Direct least square method 
The block diagram for direct method of least square solution 

is as shown in Figure. 1 the modeling error can be written as 

e(n) = x(n) − h(n) 
2
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A necessary condition for the filter coefficients to minimize 

the squared error is to calculate the partial derivative of 
LS  

with respect to each of the coefficients )(ka p

  & )(kbq

  

vanish, i.e. 
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Using Parseval’s theorem, the least squares error may be 

written in frequency domain as 
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To find the denominator coefficients ),(ka p

set the partial 

derivative of LS with respect to )(ka p

  equal to zero
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On substitution of Eq. (14), the Eq. (13) becomes
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for pk ,2,1  

Similarly, to find the numerator coefficients set the partial 

derivative of LS with respect to  )(kbq


 equal to zero  
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On substitution of Eq. (17), the Eq. (16) becomes 
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for qk ,2,1
 

But, it is clear that from the Eq. (15) and (18) that the 

optimum set of model parameters are defined implicitly in 

terms of a set of p+q+1 nonlinear equations. 

 Limitation 
The limitation with least squares method is that the 

equations results to a set of non-linear equations. Therefore, 

this approach is not mathematically tractable and not 

amenable in real-time signal processing applications. 

 

4.2 Pade Approximation 
The development of Pade method begins by expressing the 

system function as [3],
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which leads to the difference equation
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 that give an exact fit 

of the data to model over the interval [0, p+q], equate 

)(nh and )(nx  
then the Eq. (19) changes to 
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Limitation 

There is
 
no guarantee on how accurate the model will be for 

values of n outside the interval [0, p+q]. In some cases, the 

match may be very good, while in others it may be poor.

        
 

4.3 Prony method 

The block diagram of Prony’s method of signal modeling is 

shown in Figure. 5 [1]. The modeling error defined as the 

difference between the input and the output of the filter is 

given by                                                         
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Figure: 5: System interpretation of Prony’s method for 

signal modeling. 

 

Multiplying both sides of Eq. (21) with                 a new error 

is obtained as                                              
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;   n = 0, 1 …q 
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Since the partial derivative of e*(n) with respect to 

)(* kap is )(* knx   Eq. (3.31) becomes 
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into Eq. (26),
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4.4 Shank method (Modified Prony) 

Shank method is a modified Prony method in the sense 

that the moving average coefficients is obtained by finding the 

least square minimization of the model error over the entire 

data length [4]. The model can be viewed as a cascade of two 

filters, )(zBq  
and ).(zAp  

 

 

 

 

 

 

 

 

Figure. 6: System interpretation of Shank’s method for 

signal modeling. 

The cascade of two filters )(zAp  and )(zBq are shown in 

the Fig.6 and its system function is given by 
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From Figure. 6, the unit sample response )(ng  of the first 

filter )(1 zAp
 is determined with 0)( ng  for 0n  i.e.
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5. APPLICATION OF SIGNAL 

MODELING TO SPEECH SIGNALS 
Speech coding or speech compression is the field concerned 

with obtaining compact digital representations of speech 

signals for the purpose of efficient transmission or storage. 

The aim in speech coding is to represent speech by a 

minimum number of bits while maintaining its perceptual 

quality[2]. 

 

 

 

 

 

 

Figure. 7: General block diagram for application of digital 

signal processing to speech signals 

. 

The block diagram in Figure. 7 represents any system where 

time signals such as speech are processed by the techniques of 

DSP. This figure simply depicts the notion that once the 

speech signal is sampled, it can be manipulated in virtually 

limitless ways by DSP techniques.  

 

5.1 Basic Procedure of Signal Modeling 

Any deterministic signal can be generated by linear time-

invariant filter driven with impulse function. The procedure of 

signal modeling to be followed when applied to speech signals 

are as follows: 

 

1. Discretization of analog speech signal. 

2. Application of modeling methods to the speech signal 

(model parameters are obtained).  

3. The transfer function of the filter )(zH is driven with 

impulse signal )(n , and then the original speech signal is 

obtained. 
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6. SIMULATION & RESULTS 
Application of Speech Signals to Signal Modeling Methods 

Pade, Prony’s and Shank’s methods of signal modeling are 

realized for AR, MA, and ARMA models. For each of these 

models the inputs are  

:)(nx
 
The speech signal to be modeled, 

 p :Number of poles and          

 q :Number of zeros. 

(Here the number of poles and zeros represent the order of the 

model). 

and the outputs are  

a : The filter coefficients representing the denominator part of 

the system function  

b : The filter coefficients representing the numerator part of 

the system function and 

)(ne : Error in the estimated signal. 

An error is generated if p+q > = length of )(nx . So, the 

values of p and q must be selected such that their sum is less 

than the length of )(nx . 

 

6.1 Pade Approximation Method 
First, the speech signal which is in the continuous or analog 

form is considered. Then the numerator and denominator 

coefficients are calculated by applying the discrete speech 

signal to Pade approximation method algorithm. Applying the 

impulse signal as the input to the filter and using these 

coefficients, the output signal of the filter )(ny is obtained. 

The error signal is calculated as the difference between the 

input signal )(nx  and output signal )(ny . In order to get the 

signal )(ny  as close as possible to the signal )(nx , the 

number of poles and zeros in the algorithm have to be varied.   

 

6.1.1 AP Model 
The input is considered to be a speech signal with filename 

speech_10k. The number of poles is considered to be 

205p . The Figure. 8 shows the original, estimated (or 

reconstructed) speech signals and the error obtained. 

 

6.1.2 AZ Model  
The input is considered to be a speech signal with filename 

speech_10k. The   number of zeros is considered to be 

1018q . The Figure. 9 shows the original, estimated (or 

reconstructed) speech signals and the error obtained. 

 

6.1.3 PZ Model 
The input is considered to be a speech signal with filename 

speech_10k. The   number of poles and zeros are considered 

to be 200p  and 140q . The Figure. 10 shows the 

original, estimated (or reconstructed) speech signals and the 

error obtained. 
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Figure. 8: Signal modeling using Pade Approximation 

method for AP model. 
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Figure. 9: Signal modeling using Pade Approximation 

method for AZ model. 
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Figure. 10: Signal modeling using Pade Approximation 

method for PZ model. 
 

6.2 Prony’s Method 
First, the speech signal which is in the continuous or analog 

form is considered. Then the numerator and denominator 

coefficients are calculated by applying the speech signal to 

Prony’s method algorithm. Applying the impulse signal as the 

input to the filter and using these coefficients, the output 

signal of the filter )(ny is obtained. The error signal is 

calculated as the difference between the input signal )(nx  

and output signal )(ny . In order to get the signal )(ny  as 

close as possible to the signal )(nx , the number of poles and 

zeros in the algorithm have to be varied.   

 

6.2.1 AP Model 
The input is considered to be a speech signal with filename 

speech_10k. The   number of poles is considered to be 1p . 

Figure.11 shows the original, estimated (or reconstructed) 

speech signals and the error obtained. 

 

6.2.2 AZ Model 
The input is considered to be a speech signal with filename 

speech_10k. The   number of zeros is considered to 

be 1018q . Figure.12 shows the original, estimated (or 

reconstructed) speech signals and the error obtained. 

 

6.2.3 PZ Model 
The input is considered to be a speech signal with filename 

speech_10k. The   number of poles and zeros are considered 

to be 198p  and 209q . Figure.13 shows the original, 

estimated (or reconstructed) speech signals and the error  

obtained. 
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Figure. 11: Signal modeling using Prony’s method for AP 

model. 
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Figure. 12 Signal modeling using Prony’s method for AZ 

model. 
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Figure. 13: Signal modeling using Prony’s method for PZ 

model. 

 

6.3 Shank’s Method 
First, the speech signal which is in the continuous or analog 

form is considered. Then the numerator and denominator 

coefficients are calculated by applying the speech signal to 

Shank’s method algorithm. Applying the impulse signal as the 

input to the filter and using these coefficients, the output 

signal of the filter )(ny is obtained. The error signal is 

calculated as the difference between the input signal )(nx  

and output signal )(ny . In order to get the signal )(ny  as 

close as possible to the signal )(nx , the number of poles and 

zeros in the algorithm have to be varied.   

 

6.3.1 AP Model 
The input is considered to be a speech signal with filename 

speech_10k. The   number of poles is considered to be 

205p . Figure.14 shows the original, estimated (or 

reconstructed) speech signals and the error obtained. 

 

6.3.2 AZ Model 
The input is considered to be a speech signal with filename 

speech_10k. The   number of zeros is considered to 

be 1018z . Figure.15 shows the original, estimated (or 

reconstructed) speech signals and the error obtained. 
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Figure. 14: Signal modeling using Shank’s method for AP 

model. 
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Figure. 15: Signal modeling using Shank’s method for 

AZ model. 
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6.3.3 PZ Model: 
The input is considered to be a speech signal with filename 

speech_10k. The number of poles and zeros are considered to 

be 200p  and 220z .Figure. 16 shows the original, 

estimated (or reconstructed) speech signals and the error 

obtained. 
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Fi

gure. 16: Signal modeling using Shank’s method for PZ 

model. 
 

The Table. 1 shows the simulated results of deterministic 

speech signals when applied to different methods of signal 

modeling. From the tabulated results, we can observe that 

Shank’s method of signal modeling produces accurate 

reconstructed signal i.e. error produced is minimum. 

 

 

Method 
Error 

AP Model 

Error 

AZ 

Model 

Error 

PZ Model 

Pade 

Approximation 

Method 

16.9985 0.009 0.0399 

Prony’s Method 17.0006 0.005 0.0351  

Shank’s Method 16.6528 0.003 0.0260  

 

Table. 1: Simulated Results of signal modeling methods 

when applied to speech signals. 

 

 

 

 

7. CONCLUSION 
The project work has commenced with the development of 

different methods of signal modeling. The Least Squares 

method requires solving a set of non linear equations; 

therefore it is not mathematically tractable and not amenable 

to real time signal processing. So, here some indirect methods 

of signal modeling like Pade approximation, Prony’s and 

Shank’s methods have been developed. The Pade 

approximation method will always produce an exact fit to the 

data for the input values equal to the sum of poles and zeros. 

But, the limitation of this method is that there is no guarantee 

on how accurate the model will be for the values outside the 

interval. This limitation is overcome in Prony’s method, 

which matches the signal exactly for the input values equal to 

zeros of the system. Shank’s method is a modification to 

Prony’s method in finding the zeros of the system. 

The speech signals are implemented using deterministic signal 

modeling methods. The purpose of all these methods is to find 

the model parameters and again reconstruct the original signal 

using those parameters. The simulated results proved that the 

Shank’s method has the ability to estimate accurately as 

compared to other methods. 

All the algorithms have been implemented in MATLAB, a 

language of technical computing, widely used in Research, 

Engineering and Scientific computations. 
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