
International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.15, August 2014

47

Energy Efficient Scheduling Algorithm for

Applying Dynamic Voltage and Frequency Scaling

to Mixed Task Set

Sarla Mehariya1*, Dalpat Songara3

Department of Computer Engineering,

Government Women Engineering College, Ajmer,
India

ABSTRACT

Power consumption is one of the most important factors that

affect the designing of battery operated real-time system or an

embedded system. Various strategies have been made to

improve the power dissipation. Dynamic voltage and

frequency scaling (DVFS), is one of the most popular

technique for reducing power dissipation and a well

researched area. This paper presents DVFSMTS, Dynamic

Voltage and Frequency Scaling for Mixed Task Set, which

gives the working of an Earliest Deadline First (EDF), based

priority exchange server. Experimental results show that

DVFSMTS reduces power dissipation without compromising

on the deadlines of the periodic task. The results of

DVFSMTS are compared with a non-DVFS EDF based

priority exchange server and an approximate 50% reduction in

energy is obtained.

Keywords– Dynamic Voltage and Frequency Scaling,

Real Time Scheduling, Earliest Deadline First, Priority

exchange server, Mixed task set.

1. INTRODUCTION
Power consumption has always been an important design

constraint in the development of real-time and embedded

systems as technology is moving rapidly towards mobile and

portable battery operated devices e.g. smart phone, laptop etc.

Power consumption problem can be addressed at different

abstraction levels – from architectural to operating systems

level. At operating systems level, many real-time scheduling

algorithms have been proposed in literature [1], [2] to reduce

the power consumption. For CMOS based processors, the

power consumption is given by the relation-

 (1)

where, P is the power consumption, Ceff is the effective

capacitance of the transistor gates, Vdd is the supplied voltage

and f is the operating frequency. It is clear from the above

equation that a slight decrement in the voltage and frequency

may lead to a considerable amount of reduction in power

consumption. This method of reducing the power

consumption by varying the voltage and frequency is termed

as Dynamic Voltage and Frequency Scaling (DVFS).

In section 2, various DVFS scheduling techniques are

discussed. In section 3, the proposed algorithm with the help

Ved Mitra2 , Mahesh C. Govil4

Department of Computer Science & Engineering,

Malaviya National Institute of Technology, Jaipur,
India

of an example is explained. In section 4, comparative analysis

of DVFSMTS, an EDF version of Priority exchange server

with non-DVFS EDF based priority exchange server is done.

Section 5 concludes our work.

2. RELATED WORK
The application of DVFS algorithm to periodic task set is a

well known research area [1], [2], [3], [4]. However, some

work in literature focuses on DVFS application to mixed task

set comprising of periodic and aperiodic tasks, [5], [6]. The

DVFS algorithm focuses on the usage and distribution of

available slack time. The total time required by a task to run

completely i.e. the actual execution time (aet) is always less

than its worst case execution time (wcet). The difference that

exists is the slack and it in turn, is utilized for reducing the

voltage and frequency dynamically.

There are two different approaches of DVFS techniques [7]

based on the usage of slack time, Intra-DVFS and Inter-

DVFS. In Intra-DVFS, the slack time is calculated between

jobs within a task boundary and then utilized for DVFS.

However, in Inter-DVFS, the slack time is utilized between

the current task and its successor tasks in order to reduce the

voltage and frequency. Our DVFSMTS algorithm uses the

later approach.

An Inter-DVFS algorithm has two parts – slack estimation and

slack distribution. The slack estimation method for mixed task

set varies from that of periodic task set. Periodic tasks are

known prior about their occurrence and their slack can be

determined statically. Unlike periodic tasks, the arrival time of

aperiodic tasks are not fixed and hence, they must be executed

with full frequency in order to achieve better response times.

Slack distribution method is simple and greedy in nature, as

all the available slack time is provided for the next ready task.

Various algorithms have been proposed to calculate the slack

time dynamically and then assigning the appropriate voltage

and frequency, which includes the cycle-conserving EDF

(ccEDF) [8], look-ahead RTDVS etc. In ccEDF, the utilization

of the task set is first calculated with its wcet and when a task

has been executed completely utilization is again calculated

with the aet in order to scale the voltage and frequency

appropriately. This technique is known as Utilization

Updating. Scheduling of Aperiodic task includes the use of

bandwidth preserving schemes such as Deferrable Server

(DS), Priority exchange server (PES), Constant Bandwidth

Server (CBS) etc., [9].

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.15, August 2014

48

DVFS has also been applied to Real Time Systems with fault

tolerance [12], where fault tolerance is achieved using the

Checkpointing mechanism. In Checkpointing mechanism, the

current system state is preserved after certain intervals called

Checkpoints. In case of a fault, the system is rolled back to the

most recent checkpointed state and the operation resumes

from there [11], [12, [13].

After the successful application of DVFS technique to the uni-

core processors, it has also been carried out on some of the

multi-core processors with or without splitted task [14], [15],

[16], [17]. When using multi-core processors DVFS can be

applied as –

i) POST-DVFS – Here, a schedule is first made

with the splitted task to evaluate the

schedulability and energy consumption. DVFS

is then applied to the schedule.

ii) PRE-DVS – Here, the frequency of each task is

first calculated before scheduling in order to

achieve better performance on both

schedulabilty and energy consumption. The

DVFS is then applied to the schedule.

3. PROPOSED ALGORITHM AND

EXAMPLE
The proposed algorithm DVFSMTS is a scheduling algorithm

for mixed task set comprising of periodic and aperiodic tasks.

It employs EDF decisions at each reference point with Priority

exchange server for aperiodic tasks. Aperiodic tasks are

executed with the maximum frequency in order to achieve

lower response time. For periodic task frequency is calculated

using the utilization updating according to the ccEDF

algorithm [8].

A. Task model
Our system comprises of n periodic tasks, as per task set T = {

T1, T2,……,Tn }. Each task Ti is described by the parameters

{Φi, C i, Pi, Di,} where, Φi, C i, Pi, Di represents the phase,

wcet, period and deadline of the ith periodic task Ti. Ei is the

aet of Ti. The aet for any task is a random variable of the wcet.

There are m Aperiodic tasks, A = {A1, A2,…, Am}. Each

aperiodic task is described by Ai = {Ati, Ci}; where Ati is the

arrival time and Ci is the execution time of the ith aperiodic

task Ai.

B. Server Task
 A Priority exchange server Tpes is used which is described

by TPES = {PPES, CPES}; where, PPES is the server period and

CPES is the server capacity. When the tasks are released for

execution and if there is no aperiodic load, the Cpes is saved at

the priority of periodic task executing. Cpes also gets

replenished with RA i.e. the replenishing amount when the

time equivalent to the Ppes is finished and it is of the highest

priority. So, there may be more than one server task i.e. the

server task which is replenished and is of the highest priority

and the server task which is saved at the priority of the

periodic task. The later server task is not replenished when

server period is over.

C. Notations used

i) PQ and AQ are the ready queues. Periodic tasks are

arranged in PQ according to increasing deadline while

AQ is having Aperiodic tasks prioritized according to

their arrival time.

ii) Ui, UPES and UTotal represent the utilization of the

periodic task Ti, utilization of Priority exchange server

and total utilization respectively.

iii) H is the Hyperperiod defined as the LCM of the

deadlines of all the Periodic tasks.

iv) n_r_p is the next reference point.

v) ETL is the execution time left for a task.

vi) JPQ is the job at the head of the periodic queue PQ

and JAQ is the job at the head of the aperiodic queue

AQ.

vii) Vmax and fmax represent maximum voltage and

frequency, respectively. Vest and fest represents the

estimated voltage and frequency.

viii) FT is the finish time for any task.

ix) PR(Ti) is the priority of the task Ti.

x) Ap and Aa represent arrival time of the next periodic

and Aperiodic task, respectively.

xi) RA is the amount by which server task is to be

replenished.

xii) ST a new server task. Cpes(ST) and Ppes(ST) the

capacity and period of ST respectively.

NOTE: Cpes is the server capacity of Tpes and Cpes(ST) is the

server capacity of a new server task ST. Total server capacity

available for an aperiodic task‒› Cpes=Cpes+Cpes(ST).

D. Assumptions
1. All periodic tasks are released at t=0.

2. The period and deadline of all the periodic tasks are

equal and known in prior.

3. Frequency and voltage ranges are pre-determined.

4. Decisions at each instant as to execute or preempt a

task are based on Earliest Deadline First algorithm.

E. Input
T, A, TPES, PQ, AQ, t=0, H.

F. Output
Next job (Periodic or Aperiodic) to be fed to the processor

with the estimated scaled frequency fest and voltage Vest. An

ERROR message is generated upon missing of the deadline of

any periodic task.

DVFSMTS Scheduler(T, A, PQ, AQ, t=0, H)

BEGIN:

for (t=0 to 2H)

{

 ST==null; //ST is a server task

 If(t==Ppes OR t==0)

 Cpes=RA;

 if (UTotal<= 1), then

 {

 Print(Task set schedulable);

 if (AQ != null) and (CPES > 0),then

 {

 n_r_p ← t+min(CPES, ETL(JAQ));

 run JPQ from t to n_r_p at fmax,Vmax;

 CPES ← n_r_p – (min(CPES, FT(JAQ)));

 t ← n_r_p;

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.15, August 2014

49

 }

 elseif (PQ != null) then

 {

 n_r_p ← min(t+ETL(JPQ), Ap, Aa);

 if((n_r_p-t)<Cpes)

 Cpes(ST)←Cpes-(n_r_p-t) //((n_r_p-t)‒›

 //time upto which JPQ will execute

 else

 Cpes(ST)←Cpes

 PR(ST)←PR(JPQ);

 Cpes=Cpes-Cpes(ST);

 Save ST; //Save ST as a 2nd

 // Server task

 execute JPQ at PR(TPES) and at fest and Vest;

 t ← n_r_p;

 }

 else

 Processor is free until the arrival of next

 periodic job or the aperiodic job or the

 replenishment of the server capacity;

 }

 else

 Print(Task set is not schedulable);

 //ERROR MESSAGE

}

END

Fig. 1. DVFSMTS Scheduler

BEGIN

 If(Ji completed)) //Ji is the periodic job

 Ui=Ei/Pi

 Else

 Ui=Ci/Pi

 If(AQ!=null)

 Upes=Cpes/Ppes

 Else

 Upes=0

 UTotal=
 + Upes //n is number of periodic

 //task and i is an integer variable

Calc_Freq():

 Use lowest frequency fest Ɛ (f1,...fmax| f1<f1<…<fmax)

 Such that UTotal<=fest/fmax

 Return (fest,UTotal)

END

Fig. 2. Algorithm for Frequency Scaling

G. Example Task Set

TABLE I. PERIODIC TASK SET

Task

ID

Ci Pi Di aet of each

job

Priority

 PR(T)

TPES 2 10 10 -
1

T0 9 30 30 5
2

T1 17 45 45 9
3

TABLE II. APERIODIC TASK SET

Aperiodic Task

ID

Arrival Time

(Ati)

Execution Time

(Ci)

A0 12 4

A1 20 3

Table-I describes – the periodic task set which consists of task

ID, wcet, period, deadline, number of jobs in a Task, aet and

priority of each job along with details of Priority exchange

server. Table-II describes – the aperiodic task set with arrival

time and execution time.

Table-III and Table-IV shows the resulting schedule of the

given example task set in Table-I and Table-II on DVFSMTS

and non-DVFS EDF based priority exchange server scheduler,

respectively. Schedule in Table-III shows that at time t = 0,

Jobs Jo,o and J1,0 are released. As no aperiodic tasks are there,

the server capacity is saved at priority of Jo,o and Jo,o is

executed at the priority of TPES. Job Jo,o is scheduled for

execution between t=0 to t=6.6 by calculating the total

utilization upon release, frequency and n_r_p. Upon

completion of Jo,o, utilization is calculated as 0.54. J1,0 starts

execution at t=6.6 and is preempted at t=10 by A0. At t=10,

when server is replenished, the saved CPES(ST) is added to the

replenished CPES and hence, CPES becomes 4 which is then

utilized for executing the aperiodic task A0. A0 is completed at

t=14. The schedule proceeds in this way. Similarly, Table-IV

shows schedule of non-DVFS EDF based priority exchange

server for the same example task set.

TABLE III. DVFSMTS SCHEDULE

T

R C P(ET

L)

U fest Aet Total(

CPES)

0 Jo,o,J1

,0

- - 0.67 0.75 J0,0(6.

6)

2

6.6 - Jo,o - 0.54 0.75 J1,0(12

)

2

10 A0 - J1,o(6.

5)

- 1 A0(4) 4

14 - A0 - 0.54 .75 J1.0(8.

6)

0

20 A1 - J1,0 (2) - 1 A1(3) 2

22 - - A1(1) .54 .75 J1.0(2.

6)

0

24.6 - J1,0 - I D L E

30 J0,1 - - - 1 A1(1) 2

31 - A1 - 0.36 .5 J0,1(10

)

1

41 - J0,1 - I D L E

45 J1,1 - - 0.36 0.5 J1,1

(18)

1

63 - J1,1 - - - - -

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.15, August 2014

50

TABLE IV. NON-DVFS EDF BASED PRIORITY

EXCHANGE SERVER SCHEDULE

T R C P(ETL) aet CPE

S

0 Jo,o, J1,0 - - Jo,o (5) 2

5 - Jo,o - J1,0(9) 2

10 A0 - J1 ,0(4) A0(4) 4

14 - A0(4) - J1,0 (4) 0

18 - J1,0 I D L E

20 A1 - - A1(3) 0

22 - - I D L E

30 J0,1 - - A1(1) 2

31 - A1 - J 0,1(5) 1

36 - J0,1 I D L E

45 J1,1 - - J1,1

(9)

3

54 - J1,1 I D L E

t–Time instant, R–Release, C–Completion of a task, P(ETL) –

Execution time left due to preemption, U–Utilization upon

Release or Completion, fest – Estimated frequency, aet –

Actual execution time of a job, CPES – Server capacity.

4. COMPARATIVE ANALYSIS
The performance metrics that have been used for comparison

are energy consumption, average response time and idle time.

DVFSMTS optimizes energy by scaling down the frequency

and voltage because energy is directly proportional to the

frequency and square of the voltage. Also that idle time leads

to both static and dynamic power consumption. DVFSMTS

reduces both by reducing the duration of idle intervals. Hence,

scaling down the frequency and voltage to a smaller amount

helps in reducing the power consumption.

Periodic task deadlines are not compromised but their

response time increases due to the increased execution time.

DVFSMTS reduces energy with slight increase in the number

of preemption points and response time for periodic task.

A. Experimental Setup
We have implemented both the algorithms for mixed task set

in JAVA language. The periodic tasks are generated on a wide

range of Hyperperiod and utilization (ranging from 30% to

80%). The number of aperiodic task in a task set can be

between 2 to 8. The value of the parameter aet, for every

periodic task, is determined with the help of random

distribution. aet’s value lies between 40% – 85% of wcet.

Frequency ranges used are – 0.5, 0.75, 1.0 and the

corresponding voltage ranges are – 3.0, 4.0, 5.0.

B. Experimental Results
Comparison of DVFSMTS is done with non-DVFS EDF

based priority exchange server for the given periodic and the

aperiodic task sets.

Fig. 3. Average energy consumption

5. CONCLUSION
An energy conscious Real time scheduling algorithm with

Dynamic Voltage and Frequency Scaling based on the Priority

exchange server (DVFSMTS) has been proposed and

implemented for mixed task set. The results are compared

with a non-DVFS EDF based priority exchange server.

Experimental results show that a considerable amount of

energy is saved.

Future work will emphasize on implementing the algorithm

on multi-core processors.

6. ACKNOWLEDGMENT
I would like to extend my thanks and gratitude to my teachers

who have been always helping me with their valuable

experiences.

7. REFERENCES
[1] Shin and Choi, “Power conscious fixed priority scheduling

 for hard real time systems”, Design Automation

 Conference, Proceedings 36th, 1999.

[2] Gang Quan, Xiaobo Sharon Hu, “Fixed priority scheduling

for reducing overall energy on variable voltage

processor”, Real-Time Systems Symposium, Proceedings

25th IEEE International, 2004.

[3] Guy Martin Tchamgoue, Kyong Hoon Kim, Yong-Kee

Jun,” Dynamic Voltage Scaling for Power-aware

Hierarchical Real-Time Scheduling Framework”,

Computational Science and Engineering(CSE), IEEE 15th

International Conference, 2012.

 [4] K. Hakkim ansari, P. Chitra and P. Sonaiyakarthick,”

Power-aware scheduling of fixed priority tasks in soft

real-time multi-core systems”, International Conference

on Emerging Trends in Computing, Communication and

Nanotechnology(ICE-CCN), 2013.

[5] D. Shin and J. Kim, “Dynamic voltage scaling of periodic

and aperiodic tasks in priority-driven systems,”

Proceedings of Asia and South Pacific Design

Automation Conference (ASP-DAC), Yokohama, Japan,

pp. 653–658, 2004.

[6] D. Shin and J. Kim, “Dynamic Voltage Scaling of Mixed

Task set in Priority Driven Systems,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and

Systems, Vol. 25, No. 3, 2006.

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.15, August 2014

51

[7] Woonseok Kim, Dongkun Shin, Han-Saem Yun, Jihong

Kim and Sang Lyul Min, "Performance Comparison of

Dynamic Voltage Scaling Algorithms for Hard Real-

Time Systems",8th IEEE Real Time and Embedded

Technology and Application Symposium, 2002.

[8] P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage

Scaling for Low Power Embedded Operating Systems”,

18th ACM Symposium on Operating Systems Principles,

2001.

[9] Real-Time Systems by Jane W.S. Liu, Pearson

publications.

[10] Ying Zhang and Krishnendu Chakrabarty,” Energy-

Aware Adaptive Checkpointing in Embedded Real-Time

Systems”, Design, Automation and Test in Europe

Conference and Exhibition, 2003.

[11] Ying Zhang and Krishnendu Chakrabarty, “A unified

approach for fault tolerance and Dynamic power

management in Fixed priority real Time Embedded

systems”, Computer-Aided Design of Integrated Circuits

and Systems, IEEE transactions, 2006.

 [12] Sasikumar Punnekkat1, Alan Burns, Robert Davis,”

Analysis of Checkpointing for Real-Time Systems”, The

International Journal of Time-Critical Computing

Systems, 20, 83–102, 2001.

 [13] Viacheslav Izosimov, Paul Pop, Petru Eles, Zebo Peng,”

Synthesis of Flexible Fault-Tolerant Schedules with

Preemption for Mixed Soft and Hard Real-Time

Systems”, Digital System Design, Architectures,

Methods and Tools. 11th Euromicro Conference, 2008.

[14] N. Guan, M. Stiggie, W. Yi, G.Yu, “Fixed priority

multiprocessor scheduling with Liu and Layland’s

utilization bounds”, Real-Time and Embedded

Technology and Applications symposium (RTAS), 2010.

[15] K. Lakshmanan, R Rajkumar and J Lehoczky,

”Partitioned Fixed priority preemptive scheduling for

multi-core processors”, ECRTS '09, 21st Euromicro

Conference on Real_time Systems, 2009.

[16] Junyang Lu, Yao Guo, “Energy-Aware Fixed-priority

Multi-Core scheduling for Real-Time Systems”,

Embedded and Real-time Computing Systems and

Applications (RTCSA), IEEE 17th Interational

Conference, 2011.

[17] Cristina s. Stangaciu, mihai v. Micea, vladimir i. Cretu.”

Energy efficiency in real-time systems: a brief

Overview”, IEEE 8th International Symposium on

Applied Computational Intelligence and

Informatics(SACI), 2013.

IJCATM : www.ijcaonline.org

