
International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.15, August 2014

21

Genetic Algorithm based Approach to Solve Non

Fractional (0/1) Knapsack Optimization Problem

Vikas Thada

Asst. Prof (CSE), ASET, Amity University,
Gurgaon, India

Shivali Dhaka
Asst. Prof (CSE), ASET, Amity University,

Gurgaon, India

ABSTRACT

In this paper we solve the non fractional knapsack problem

also known as 0-1 knapsack using genetic algorithm. The

usual approaches are greedy method and dynamic

programming. Its an optimization problem where we try to

maximize the values that can be put into a knapsack under the

constraint of its weight. We solve the problem using genetic

algorithm in matlab using gatool. In this research work

different selection schemes have been used like roulette

wheel, tournament selection, Stochastic selection etc.

Following the introduction of genetic algorithm and knapsack

problem, formulation of 0-1 knapsack problem in genetic

algorithm is presented. Experimental results using various

selection schemes have been analyzed and comparison of

genetic algorithm technique is done with greedy method and

dynamic programming optimizing techniques.

General Terms
Weight, value, optimization, problem

Keywords

Knapsack, genetic, algorithm,

1. INTRODUCTION
In this research paper solution of 0-1 knapsack problem is

presented using Genetic Algorithm approach. The other

approaches for solving are greedy method and dynamic

programming. The greedy approach does not always results in

an optimal solution and dynamic programming method having

time complexity of O(nW) where n is number of items and W

is the capacity of the knapsack. The reason for choosing this

problem as this research work is that it is the problem that has

been studied for almost a century and still finds its place in

one of the good combinatorial optimization problem. In the

problem number of items each with a weight and value are

given. The aim is to find each item to be put in a knapsack so

that the total weight of included items is less than or equal to

the capacity of the knapsack simultaneous total value of the

included items should be maximum. It’s a problem that

belongs to the NP class of problems. The decision

problem form of the knapsack problem is NP-complete

whereas optimization problem is NP-hard. As compare to

other two methods mentioned above the GA based methods

takes very less time and returns results in an efficient manner.

2. GENETIC ALGORITHM
GAs is search algorithms that follow the concept of natural

selection and genetics [1]. GA are powerful and very efficient

search and optimization techniques motivated by the natural

selection theory of Darwin [2].

Genetic Algorithms [3] are based on the principle of heredity

and evolution which claims “in each generation the stronger

individual survives and the weaker dies”. Therefore, each new

generation would contain stronger (fitter) individuals in

contrast to its ancestors. The process of GA’s is iteration

based of constant population size of candidate solutions. In

each generation/iteration each chromosome’s fitness in the

current population is evaluated and new population evolves.

Chromosomes with higher fitness values goes through

reproduction phase in which selection, crossover and mutation

operators are applied to get new population. Chromosomes

with lower fitness values are discarded. Again this generated

new population is evaluated and selection, crossover,

mutation operators are applied. This process continues until

we get an optimal solution for the given problem

Fig 1: Basic operation of Genetic Algorithm[6]

2.1 Fitness Evaluation
Fitness function is a function which is responsible for

evaluating some value to indicate among number of solutions

which one is optimum. It can also be considered as a measure

of performance or fitness to show how fit is the candidate

solution. Fitness function for this research work will be

discussed in the next section.

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.15, August 2014

22

2.2 Selection
Once the fitness evaluation process is done next step is to

perform selection operation. Process of selection operation is

based on the principle of ‘‘survival of the fittest’. Higher

fitness valued chromosomes goes through reproduction.

Lower fitness valued chromosomes are discarded. There are

number of ways to implement this operator, but all relies on

the concept that candidates with good fitness values are to be

preferred over poor fitness values. The idea is to give

preference to better individuals. This selection operation does

the replication of candidate chromosomes with good fitness

values and eliminating those with poor fitness values [4].

Fig 2: Selection Operator on a Population of 4

Individuals[4]

The research work uses roulette wheel selection method,

tournament selection method, stochastic uniform, uniform and

remainder method as selection operator.

2.3 Crossover[1,5]
In the crossover operation mating of two chromosomes is

performed that gives birth to two new offspring. This

operation of crossover always happens with one parameter

that is known as probability of crossover (ProC). When ProC

is say 0.8 it means only 80% of the total population goes for

crossover operation. Rests 20% chromosomes remain abstain

from this operation and has no effect of crossover. Motive

behind performing crossover operation is to explore new

solutions and exploit use of old solutions. GA forms an

optimum solution by mating two fit chromosomes together.

Chromosomes with higher fitness will always have good

selection probability then others with lower fitness values,
thus a good solution moves from one generation to next

generation

Fig 3: Single Point Crossover Explained

2.4 Mutation[1,5]

Mutation involves changing one bit of a chromosome from 0

to 1 or viceversa. This is performed under the constraint

parameter called probability of mutation (ProM). For example

if ProM is 0.10 then 10% genes of total chromosomes will go

for mutation. The concept of mutation is based on this natural

theory that varying breeds are possible only by varying gene

values. After this operation fitness quality of new

chromosomes may be high or low then old ones. In case new

chromosomes are poor then old ones they are removed during

selection process. The motive behind mutation is regaining

the lost and discovering varying breeds. For example:

randomly mutate chromosome at position 5

Fig 4: Mutation Operation Explained

3. KNAPSACK PROBLEM
In the 0-1 knapsack problem given some items say n and a

knapsack, the aim is to pack the knapsack to get the

maximum total value. Each item has some weight and some

value or profit. Total weight that we can carry is no more than

some fixed number W that is the maximum weight knapsack

can carry. So we must consider weights of items as well as

their values. The aim is to fill the knapsack using various

items so that the total weight of the items does not exceed the

capacity of the knapsack i.e. W simultaneously maximizing

the total profit of the included objects. The problem is
called a 0-1 problem, because each item must be entirely

accepted or rejected. Every object has a weight wi and profit

pi. The goal is to maximize the value/profit of the included

objects in the knapsack. The value of xi will be 0 if object is

not included else xi will be 1. Mathematically the problem can

be stated as shown in equation 1.

Fig 5: Knapsack problem with knapsack and four items

 (1)

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.15, August 2014

23

Table 1: Different Solutions to 0-1Knapsack Instance

shown in table 1.

Here i denotes ith item, pi is profit of ith item, wi is weight of

the ith item, xi is either 0 or 1 and W is capacity of knapsack.

3.7.1 Example of 0-1 Knapsack Problem

Let’s consider the knapsack problem instance as given in table

1. The capacity W of knapsack in this instance is 6.

Mathematically stating this instance of knapsack we have

Here each xi is either 0 or 1.

Subject to Constraint

Again each xi is either 0 or 1.

Table 2: An Instance of 0-1 Knapsack Problem

In the table 1 total possible solutions 25=32 are shown. The

red marked solution violates the constraint in which total

weight of included item exceeds capacity of knapsack.

Optimal solution for this instance of 0-1 knapsack problem is

65 where item 3 and 5 are included in the knapsack.

x1 x2 x3 x4 x5

0 0 0 0 0 0 0

0 0 0 0 1 50 5

0 0 0 1 0 40 4

0 0 0 1 1 90 9

0 0 1 0 0 15 1

0 0 1 0 1 65 6

0 0 1 1 0 55 5

0 0 1 1 1 105 10

0 1 0 0 0 20 2

0 1 0 0 1 70 7

0 1 0 1 0 60 6

0 1 0 1 1 110 11

0 1 1 0 0 35 3

0 1 1 0 1 85 8

0 1 1 1 1 125 12

1 0 0 0 0 25 3

1 0 0 0 1 75 8

1 0 0 1 0 65 7

1 0 0 1 1 115 12

1 0 1 0 0 65 4

1 0 1 0 1 90 9

1 0 1 1 0 80 8

1 0 1 1 1 130 13

1 1 0 0 0 45 5

1 1 0 0 1 95 10

1 1 0 1 0 85 9

1 1 0 1 1 135 13

1 1 1 0 0 60 6

1 1 1 0 1 110 11

1 1 1 1 0 100 10

1 1 1 1 1 150 15

Item

i

Profit

pi

Weight

wi

1 25 3

2 20 2

3 15 1

4 40 4

5 50 5

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.15, August 2014

24

4. MATLAB IMPLEMENTATION

For implementation of 0-1 knapsack problem in matlab the

research work uses gatool built-in matlab. This is shown in

figure:

Fig 6: MATLAB GA optimization tool

The tool can be invoked in matlab using command:

optimtool(‘ga’)

For the implementation of this research problem 3 separate

functions are to be written: First function is for maximizing

profit, second is for constraint satisfaction and third function

is for creating initial population. All three functions are listed

here;

4.1 Fitness Function

The fitness function will try to maximize total profit as

obtained by including the items in the knapsack following the

constraint.

function y = simple_KS(x)

y = (25*x(1)+20*x(2)+15*x(3)+40*x(4)+50*x(5));

end

Here x is a vector that takes values from the creation function.

All binary values (total 32) constitute the population of the

problem to be solved by GA.

4.2 Constraint Function

The constraint function will try to minimize the total weights

of the included objects so that it is less than equal to capacity

of the knapsack. The function for the instance of the knapsack

shown in table 1 is given as:

function [c, ceq] = simple_constraint_KS(x)

c = [3*x(1)+2*x(2)+1*x(3)+4*x(4)+5*x(5)-6];

ceq = [];

end

Similarly to the input to fitness function vector is passed as

input to constraint function. Again values for x are taken from

the initial population as supplied by creation function.

4.3 Creation Function

In order to write your own creation function for gatool you

must write it as par the syntax as listed in the documentation

of matlab. The function is given below:

function rtn = KPop1(genomeLength, fitnessFn, options)

x=[

 0 0 0 0 0; 0 0 0 0 1; 0 0 0 1 0; 0 0 0 1 1; 0 0 1 0 0;

 0 0 1 0 1;0 0 1 1 0; 0 0 1 1 1; 0 1 0 0 0; 0 1 0 0 1;

 0 1 0 1 0;0 1 0 1 1;0 1 1 0 0;0 1 1 0 1; 0 1 1 1 0;

 0 1 1 1 1;1 0 0 0 0; 1 0 0 0 1; 1 0 0 1 0;1 0 0 1 1;

 1 0 1 0 0;1 0 1 0 1;1 0 1 1 0;1 0 1 1 1;1 1 0 0 0;

 1 1 0 0 1;1 1 0 1 0;1 1 0 1 1;1 1 1 0 0;1 1 1 0 1;

 1 1 1 1 0;1 1 1 1 1;

];

rtn=x;

end

 You simply need to pass the parameters as shown in the

above manner and return the population as binary vector.

4.4 Termination Criteria

The terminating condition for the process is to either

predefined number of generations reached or 97% of the

population have same fitness value.

4.4 Results

The research work supplied the discussed functions to the

gatool as shown below in figure X. The selection function was

varied from one type to another and results were obtained.

Different subsections of this section are solely because of

different selection operators the research work used.

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.15, August 2014

25

4.4.1 Stochastic Uniform Selection Operator

Fig 7: Sample Run and output for 0-1 knapsack problem

From the final point in the figure it is easily visible that for

maximum profit item number 3rd and 5th should be selected so

that maximum profit obtained in 65 and weight of the

included object is 6 which satisfy the capacity constraint.

Fig 8: Current Best Individual using Stochastic Operator

From the figure it is also shown that current best individuals

are item number 3 and 5 with value 1. This was also clear

from display result on command window.

Generation f(x) constraint

 1 -0 0

 2 -50 0

 3 -65 0

 4 -65 0

 5 -65 0

Figures for the remaining selection operators are same so we

do not repeat the figures X1 and Y1.

4.4.2 Remainder Selection Operator

Results obtained as on command window:

Generation f(x) constraint

 1 -0 0

 2 -50 0

 3 -65 0

 4 -65 0

 5 -65 0

4.4.3 Uniform Selection Operator

Results obtained as on command window:

Generation f(x) constraint

 1 -0 0

 2 -50 0

 3 -65 0

 4 -65 0

 5 -65 0

4.4.5 Roulette Selection Operator

This selection operator didn’t give us good results in the first

run and process terminated after just 2 iterations but running

the tool again for subsequent time gave us desired results as

obtained using other selection operator.

Generation f(x) constraint

 1 -0 0

 2 -50 0

 3 -65 0

 4 -65 0

 5 -65 0

International Journal of Computer Applications (0975 – 8887)

Volume 100 – No.15, August 2014

26

4.4.6 Tournament Selection Operator

Results obtained as on command window:

Generation f(x) constraint

 1 -0 0

 2 -50 0

 3 -65 0

 4 -65 0

 5 -65 0

5. CONCLUSION
The research work did not take into account croosover and

mutation probability and used their default values from

gatool. All the selection operators except roulette operator

performed very well and optimal result was obtained in just 5

iterations. All the operators selected item 3 and 5 as item to be

included in the knapsack. Thus it can be concluded that any

selection operator except roulette wheel can be used for

getting optimal results for 0-1 knapsack problem using gatool

in matlab.

Comparing the technique with traditional dynamic

programming approach it is concluded that even for more

number of items knapsack problem can be easily solved

without much complexity whereas dynamic programming

method takes more amount of time and is less efficient.

6. REFERENCES
[1] B.Klabbankoh, O.Pinngern. “applied genetic algorithms

in information retrieval” Proceeding of IEEE ,pp.702-

711,Nov 2004

[2] S.S.Satya and P.Simon, "Review on Applicability of

Genetic Algorithm to Web Search," International

Journal of Computer Theory and Engineering, vol. 1, no.

4, pp. 450-455, 2009.

[3] Shokouhi, M.; Chubak, P.; Raeesy, Z “ Enhancing

focused crawling with genetic algorithms”Vol: 4-6,

pp.503-508,2005.

[4] M.A.Kauser, M. Nasar, S.K.Singh, “A Detailed Study on

Information Retrieval using Genetic Algorithm”,

Journal of Industrial and Intelligent Information vol. 1,

no. 3, pp.122-127 Sep 2013.

[5] J.R. Koza, “ Survey Of Genetic Algorithms And Genetic

Programming”, Proceedings of the Wescon, pp.589-

595,1995

[6] V.Thada, V.Jaglan, “Use of Genetic Algorithm in Web

Information Retrieval”, International Journal of

Emerging Technologies in Computational and Applied

Sciences, vol.7,no.3,pp.278-281, Feb,2014

IJCATM : www.ijcaonline.org

