
International Journal of Computer Applications (0975 – 8887)

Volume 100– No.12, August 2014

36

Novel Classification of Test Case Prioritization

Techniques

Kamna Solanki
Assistant Professor

University Institute of Engg and Technology
M.D University, Rohtak, India

Yudhvir Singh, Ph.D

Associate Professor
University Institute of Engg and Technology

M.D University, Rohtak, India

ABSTRACT
Test case prioritization techniques schedule test cases to

reduce the cost of regression testing and to maximize some

objective function. Test cases are prioritized such that those

test cases which are more important under some criteria are

executed earlier in regression testing process. The various

objective functions are applicable as a metric of how rapidly

faults are discovered during the testing process like rate of

fault detection. Therefore, prioritization techniques are

effective when implemented for specific instances. In this

paper, a novel classification for test case prioritization is made

which may cover every concept or measure and contribute for

improvement of regression testing process.

General Terms
Regression testing: Test suites are saved so that they can be

reused after the evolution of the software. This reuse of test

suite is called the regression testing.

Keywords

Test case, Test Case Prioritization, test case prioritization

techniques

1. INTRODUCTION
The evolution of computer-based systems and products in the

current scenario of globalization is derived from software

which is one of the most important technologies and has

grown from being a mere problem solving tool, a lot is yet to

be done on the development of quality software that performs

the right job at the right time. It is here that software

engineering intends to provide a structured framework for

building high quality software [1].It is with (SDLC) is framed,

which is a series of steps that are to be followed in an order to

produce efficient software which is cheaper. Amongst the

different steps in SDLC, software testing is a very important

yet a mandatory step, which ensures the proper working of the

software.

For evaluating a system or attribute or capability of a program

software testing is the capable process and also for

determining through the purpose to find that whether it

satisfies or meets the specified requirements or not. In simple

words testing is executing a system in order to discover any

errors gaps or missing requirements in contrary to the actual

requirements desire output [2]. Software testing consists of

following steps: design of test cases, preparing the test data,

execution of program with test data, and the last but not the

least comparing the result with that of test case. Design or

generation of test cases is a challenging part.

Software testing is of different types at different levels. One

of the types of testing is regression testing which detects

errors after modifications in the present system. Regression

testing is a costly testing process used for validation of

modified software and detection of new faults introduced into

earlier tested code. Regression test suites can be expensive to

execute fully; thus, test cases are prioritized, they are assigned

a priority by some criteria such that which are more important

are executed prior in regression testing process.

There are four methods for regression testing

These methods are: [3] [4] [5]

1. Retest all

2. Regression Test Selection

3. Test Suite Reduction

4. Test Case Prioritization

The purpose of this prioritization is to increase the chances

that if the test cases are used for regression testing in the given

order, they will more strongly meet some objectives than they

would if they were executed in some other order.

2. RELATED WORK
Wong et al. suggested prioritizing test cases according to the

measures of increasing cost per coverage added. In the testing

process, an indirect objective was to reveal faults earlier by

the method of ranking. The authors restricted their attention to

prioritization of test cases for execution on a specific modified

version of a program, and to prioritization of only the subset

of test cases selected by a safe regression test selection

technique from the test suite for the program. The authors did

not specify a mechanism for prioritizing the remaining test

cases after full coverage has been achieved. The authors

described a case study in which their technique is applied to a

program of 5000 lines of code, and evaluated against ten

faulty versions of that program, and concluded that the

technique was cost-effective in that application [6].

Rothermel et al. and Elbaum et al. provided the first formal

definition of the prioritization problem and presented metrics

for measuring the rate at which faults are discovered in test

suites. The authors defined prioritization techniques, and

presented the results of several observed studies of those

techniques [7] [8]. Jones et al., described a technique for

prioritizing test cases for use with the modified

condition/decision coverage (MCDC) criteria, this technique

uses feedback, but no modification information [9].

Srivastava et al. presented a technique for prioritizing test

cases based on basic block coverage, using both feedback and

change information. The technique was different from

previous techniques as it computes flow graphs and coverage

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.12, August 2014

37

from binaries, and attempts to predict possible affects on

control flow following from code modifications. The authors

described the application of this technique to several large

systems at Microsoft, and provided data showing that the

approach can be applied efficiently to those systems [10].

Avritzer et al. presented techniques for generating test cases

which can be applied to software that can be modeled by

Markov chains, having a condition that operational profile

data is available. Although the authors do not use the term

“prioritization”, their techniques generate test cases in an

order that can cover a larger proportion of the software states;

most probably to be reached in the field earlier in testing.

Essentially, prioritizing the test cases in an order that

increases the likelihood that faults more likely to be

encountered in the field will be uncovered earlier in testing.

The approach provides an example of the application of

prioritization to the initial testing of software when test suites

are not yet available [11].

Sampath et al. presented the prioritization of test cases for

web applications. The test cases were recorded user sessions

from the previous version of the SUT, in their case. Session-

based test cases were thought to be appropriate for testing web

applications because they tend to reflect the actual usage

patterns of real users, by making for realistic test cases. They

compared different criteria for prioritization such as the

number of HTTP requests per test case, coverage of parameter

values, frequency of visits for the pages recorded in sessions

and the number of parameter values. The empirical studies

showed that prioritized test suites performed better than

randomly ordered test suites, but also that there is not a single

prioritization criterion that is always best. However, the 2-way

parameter-value criterion, the prioritization criterion that

orders tests to cover all pair-wise combinations of parameter-

values between pages as soon as possible, showed the highest

APFD value for 2 out of 3 web applications that were studied

[12].

Fraser et al. introduced a model-based prioritization approach.

This prioritization technique was based on the concept of

property relevance [13]. A test case is relevant to a model

property if it is theoretically possible for the test case to

violate the property. The relevance relation is obtained by the

use of a model-checker, which is used as the input to the

greedy algorithm. While they showed that property-based

prioritization can outperform coverage-based prioritization,

they noted that the performance of property-based

prioritization is heavily dependent on the quality of the model

specification [14].

Kim et al. evaluated several regression test selection

techniques and a prioritization technique of their own

invention that exploits historical execution data. None of the

selection or prioritization techniques considered in the studies

are distribution-based [15].

3. TEST CASE PRIORITIZATION
Test case prioritization finds the best ordering of test cases for

testing, so that the tester obtains maximum benefit, even if the

testing is prematurely halted at some random point. The

approach was first mentioned by Wong et al. [16] . On the

other hand, in that work, it was only applied to test cases that

were already selected by a test case selection technique.

Test case prioritization can deal with a wide variety of

objectives, including the following:

1. Testers may wish to raise the rate of fault detection that is,

the chances of revealing faults prior in a run of regression

tests.

2. Testers may wish to raise the rate of detection of high-risk

faults, locating those faults, prior during the testing process.

3. Testers want to raise the chances of revealing regression

errors associated with particular changes in code, prior during

the regression testing process.

4. Testers may wish to increase their code coverage in the

system under test more rapidly.

5. Testers want to be assured about the reliability of the

system which is to be tested, more rapidly.

According to the observation, and on the basis of the

preference of goal, the test case prioritization problem may be

difficult for certain goals or objectives.

3.1 Test Case Prioritization Problem
The test case prioritization problem can be defined as:

Given: T, a test suite; PT, the set of permutations of T; f, a

function from PT to the real numbers.

Problem: Find T’ belongs to PT such that (for all T”) (T”

belongs to PT) (T” ≠ T’) [f (T’) ≥f (T”)].

Here, PT represents the set of all possible prioritizations of T

and f is function that, applied to any such ordering, yields an

award value for that ordering [7][3].

4. PRIORITIZATION TECHNIQUES
Various test case prioritization techniques may be utilized to

meet the goal, which is to be achieved. For example, to raise

the speed of fault detection in test suites, test cases might be

prioritized in terms of the extent to which they execute

modules that have tended to fail in the past. Otherwise, test

cases in terms of their increasing cost-per-coverage of code,

or in terms of their increasing cost-per-coverage of features

listed in a requirements specification are prioritized [8]. In any

case, the motive behind the choice of a prioritization

technique is to raise the chances that the prioritized test suite

can better meet the goal than some arbitrary ordering of test

cases.

This section introduces a new “3CMDHO” classification of

existing test case prioritization techniques which are: (a) Cost

Based Techniques, (b) Chronological History Based

Techniques, (c) Customer-Requirement Based Techniques,

(d)Maximize Coverage for Early Fault Detection (MCEFD)

(e) Distribution Based Techniques, (f) Hybrid Approaches,

(g)Other Approaches .

Test case prioritization techniques provide a method to plan

and run test cases according to some priority so as to provide

earlier fault detection. The “3CMDHO” classification is

shown in fig1:

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.12, August 2014

38

Fig1: Novel Classification of Test Case Prioritization Techniques

4.1 Cost Based Techniques
Cost based techniques are methods of test case prioritization

on the basis of costs, like analysis cost and prioritization cost.

Many researches are done in this area. The present existing

cost based test case prioritization techniques are given next. A

cost model for regression test selection is provided by Leung

et al. The proposed model includes various costs of regression

testing, the execution and validation costs of test cases and the

analysis cost to maintain test selection. It provides a way to

compare test cases for relative effectiveness. This model can

be properly applied to an effective regression test selection

techniques, which necessarily select all test cases in the

existing test suite that may reveal faults [17]. However, in this

model the costs of overlooking faults are not considered

because of the discarded tests. Malishevsky et al. offered cost

models for prioritization which take these costs of

overlooking faults into account. The authors used different

variables for test case prioritization like : Analysis Cost as

Ca(T) ; cost of Prioritization Algorithm as Cp(T).

 WP = Ca(T) + Cp(T) (7)

Where:

• WP – It is weight prioritization value of every test case.

• Ca(T)- It includes source code analysis cost , change

analysis between old and new versions and a collection of

various execution traces.

• Cp(T)- It is the actual cost which is incurred in running a

prioritization tool, based on the prioritization algorithm used.

The authors have categorized the process of regression testing

process into two phases named as preliminary phase and

critical phase. Activities of Preliminary phase can have

variable costs than activities of critical phase, since the later

can have more complications for many things such as release

time etc. The cost of any particular test case mostly depends

on the amount of resources needed to execute and validate

that test case. Also, Cost-cognizant prioritization needs an

advance idea regarding the brutality of every defect that can

be found by a test case. Brutality of any defect can be used for

ordering tests using the same criteria [18].

4.2 Chronological History Based

Techniques
Chronographic history-based techniques are methods of test

case prioritization on the basis of test execution history. Jung-

Min et al., proposed a technique which was based on

knowledge of prior performance of every test case which

decides the chances to include that test case in present testing

session. This approach was actually inspired by statistical

quality control (exponential weighted moving average) and

statistical forecasting (exponential smoothing) [19]. Kim et al.

described various selection probabilities of each test case,

TC, at time, t, to be Ptc,t(Htc, α), where Htc is a set of t, time-

ordered observations {h1, h2, …hn} drawn from runs of TC

and α is a smoothing constant used to weight individual

historical observations [15]. The higher values indicate recent

observations, while lower values indicate older values. These

values are then normalized and used as probabilities. The

general form of:

 P is P0 = h1 and Pk = αhk + (1- α)Pk-1, 0<=α<=1, k>=1[19].

When testing in a black box environment, source code related

information is not available. In those situations, researchers

have output of test cases only and other dynamic information,

such as the running time of test cases.

4.3 Customer Requirement Based

Techniques
Hema et al. offered the requirements-based test case

prioritization approach to prioritize a set of test cases. They

built upon current test case prioritization techniques and

proposed to use several factors to rank the test cases. Those

factors are the customer-assigned priority (CP), requirements

complexity (RC) and requirements volatility (RV).

Additionally, the authors have assigned values (1 to 10) for

each factor for the measurement. They declared that higher

factor values indicate a need for prioritization of test case

related to that requirement. Weight (rank) prioritization (WP)

measures the important of testing a requirement earlier [20].

WP = Σ (PFvalue* PFweight); PF=1 to n (1)

Where:

WP denotes weight prioritization that measures the

significance of testing a requirement.

• PFvalue is the value of each factor, like CP, RC and RV.

• PFweight is the weight of each factor, like CP, RC and RV.

Test cases are then ordered such that the test cases for

requirements with high WP are executed earlier to others.

Recent research showed that using different test case

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.12, August 2014

39

prioritization techniques can significantly affect the rate of

fault detection of the test suite. The tester can choose to

arrange the test cases in descending order of their priority

values (with arbitrary ordering in case of ties).Hema [20] were

interested in two particular objectives of test case

prioritization approaches: (a) to widen user professed software

quality in a cost effective way by considering potential defect

severity and (b) for improvement of the rate of discovering

harmful faults during system level testing of newly generated

code and regression testing of existing modified code. There

is a simple approach for test case prioritization which was

proposed earlier through the requirement traceability matrix.

The matrix can be produced by mapping from use cases in the

Use Case diagram to functional requirements from users.

4.4 Maximize Coverage for Early Fault

Detection (MCEFD)
This approach combines coverage based and fault based

techniques. Structural coverage is a metric that is often used

as the prioritization criterion. The intuition behind the idea is

that quick maximization of structural coverage increases the

probability of quick maximization of fault detection.

Therefore, while the goal of test case prioritization is to

achieve a higher fault detection rate, prioritization techniques

actually focus on maximizing early coverage.

In this technique, focus is on the objective listed of increasing

the chances of revealing faults earlier by increasing the

coverage in the testing process. The motivation for meeting

this objective is clear: faster feedback on the system under test

can be provided by regression testing, if rate of fault detection

has improved, or earlier proof that quality measures have not

been met according to the goals set; it can also let debuggers

begin their work earlier. Coverage means code coverage, or

structural testing. Structural testing compares test program

behavior against the obvious purpose of the source code. This

contrasts with functional testing, which compares test

program behavior with a requirements specification. It

examines how the program works, considering possible

pitfalls in the structure and logic.

4.4.1 Comparator Techniques
Random ordering: One of the prioritization techniques is the

random ordering of the test cases in the test suite. Random

ordering means test cases are arbitrarily arranged in an order.

Optimal ordering: An optimal ordering of the test cases in

the test suite can be obtained if faults are known and it can be

determined that which faults each test case exposes: this

ordering of test cases maximizes rate of fault detection in a

test suite. As observed, this is not a practical technique, but it

provides an upper bound on the effectiveness of the other

heuristics that we consider.

4.4.2 Statement level techniques
Total statement coverage prioritization
While dealing with a program it can be determined easily that

which statement can be verified by which test case. Thus

these test cases can be prioritized according to the total

number of statements it can cover by sorting them in order of

total statement coverage achieved.

Additional statement coverage prioritization
Total statement coverage prioritization sorts test cases in the

order of total statement coverage achieved. Even after,

executing a test case and covering number of statements,

many more statements can be obtained which are not covered

till now by further testing. Additional statement coverage

prioritization chooses a test case which provides the highest

statement coverage, after that adjusts the coverage data about

subsequent test cases to show their coverage of statements

which are not yet covered, and then process is repeated so as

all statements are at least covered once by any test case.

When all statements are covered, remaining test cases must

also be scheduled; we do this recursively by resetting all

statements to “not covered” and applying additional statement

coverage on the remaining test cases again.

Total FEP prioritization
The ability of a fault to be uncovered by a particular test case

actually not only relies on the ability of a test case to execute

a defective component, but it also relies on the chance that a

defect in that statement will trigger a failure for that particular

test case [21]. However, practical measurement of this

probability must be an approximation; it should be known

whether the use of such an approximation might yield a

prioritization technique better than any other techniques based

only on code coverage, in terms of rate of fault detection than

techniques. To approximate the fault-exposing-potential

(FEP) of a test case we used mutation analysis [22]. Given

program P and test suite T, for each test case t 2 T, for each

statement s in P, we determined the mutation score ms(s; t) of

t on s to be the ratio of mutants of s exposed by t to total

mutants of s. We then calculated, for each test case tk in T, an

award value for tk, by summing all ms(s; tk) values. Total

fault-exposing-potential prioritization orders the test cases in a

test suite in order of these award values.

This is an approximation method; FEP prioritization is more

costly than code-coverage-based techniques due to the

expenditure of mutation analysis. If FEP prioritization shows

promise, however, this would motivate a search for cost-

effective approximations of fault-exposing potential.

Additional FEP prioritization
Similar to the extensions made to total statement coverage

prioritization to obtain additional statement coverage

prioritization, total FEP prioritization is also extended to

generate additional fault-exposing-potential (FEP)

prioritization. In case of additional FEP prioritization, a test

case t is selected initially, then it award values for all other

test cases are lowered that exercise statements in the

correctness of those statements; then selection of a next test

case is made, repeating this process until all test cases are

sorted.

4.4.3 Function Level Techniques
Total function coverage prioritization
Equivalent to total statement coverage prioritization but

dealing with the level of functions, this technique prioritizes

test cases on the basis of the total number of functions which

are executed.

Additional function coverage prioritization
Equivalent to additional statement coverage prioritization but

dealing with the level of functions, this technique prioritizes

test cases on the basis of the total number of additional

functions which are covered.

Total FEP (function level) prioritization
This technique is similar to total FEP prioritization at the

statement level. To transform that technique to the function

level, a function level approximation of fault-exposing

potential is required. Then mutation analysis is used for

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.12, August 2014

40

computing each test case t and each function f, the ratio of

mutants in f exposed by t to mutants of f executed by t.

Adding up these values, award values for test cases are

obtained. Then same prioritization algorithm is applied as for

total FEP (statement level) prioritization, replacing functions

with statements.

Additional FEP (function level) prioritization
In this technique, the total FEP (function level) technique is

extended in the same manner the total FEP (statement level)

technique is extended.

Total fault index (FI) prioritization
Faults are not equally expected to exist in each function;

rather, certain functions are more liable to contain faults than

others. This fault proneness can be associated with

measurable software attributes. Test cases based on their

history of executing fault prone functions are prioritized

taking the advantage of their association. To represent fault

proneness, a fault index based on principal component

analysis is used [23].Generation of fault indexes requires

measurement of each function in the new version, generation

of fault indexes for the new version, and comparison of the

new indexes against the indexes calculated for the baseline

version. Each function is then assigned an absolute fault index

representing the fault proneness for that function, based on the

complexity of the changes that were introduced into that

function. By these fault indexes, total fault index coverage

prioritization is performed in a manner analogous to total

function coverage. For each test case, the sum of the fault

indexes are computed for every function that test case

executes. Then, the test cases are ordered in decreasing order

of these sums.

Additional fault-index (FI) prioritization
Additional fault index coverage prioritization is accomplished

in a manner analogous to additional function coverage. The

set of functions are covered by earlier executed test cases is

maintained. If this set contains all functions. The mechanisms

of the method are given in [23]. To find the next best test case

for each test case, the sum of the fault indexes for each

function that test case executes, except for functions in the set

of covered functions are computed. The test case for which

this sum is the greatest will win. This process is repeated until

all test cases have been prioritized.

Total FI with FEP coverage prioritization
A superior rate of fault detection is obtained by using both an

approximation of fault exposing potential and an estimate of

fault proneness. Therefore, in this technique, first total fault

index prioritization to all test cases is applied; then, for all test

cases that have equal fault index award values, apply total

FEP prioritization as a secondary order.

Additional FI with FEP coverage prioritization
The previous technique to an additional" variant is extended.

In this technique, additional fault index prioritization is used

to achieve an initial test case ordering; then apply FEP

prioritization to rank all test cases possessing equal fault-

index-based award values.

4.5 Distribution Based Techniques
Leon et al. introduced distribution-based filtering and

prioritization [24]. Distribution-based techniques reduce and

prioritize test cases on the basis of the distribution of profiles

of test cases in the multi-dimensional profile space. Test case

profiles are produced by the dissimilarity metric, a function

that produces a real number which represents the degree of

dissimilarity between two input profiles. Using this metric,

test cases can be clustered or divided into classes having the

similar profiles according to their properties. The clustering

can reveal some interesting information. For example:

 Clusters of similar profiles may indicate a group of

redundant test cases

 Isolated clusters contain test cases suggest unusual

conditions that are perhaps expected to cause

failures

 Low density regions of the profile space may

indicate uncommon usage behaviors

The first point is related to reduction of effort; if test cases in

a cluster are indeed very similar, it is sufficient to execute

only one of them. The second and third points are related to

fault-proneness. Certain unusual conditions and uncommon

behaviors may tend to be harder to reproduce than more

common conditions and behaviors. Therefore, the

corresponding parts of the program are likely to be tested less

than other, more frequently used parts of the program.

Assigning a high priority to test cases that execute these

unusual behaviors may increase the chance of early fault

detection. A good example might be exception handling code.

4.6 Hybrid Approaches
Hybrid Approaches are the techniques formed by combining

features of other techniques and by achieving different

objectives through various techniques used in a combination.

In this, two or more approaches can be combined to attain the

two or more goals. For example, combining MCEFD and

Customer requirement based techniques; both functional and

structural testing can be done for any system. Customer

requirements are used for system design, thus, important

phases of SDLC that is, design and coding are tested

completely in this example. Leon et al. developed new

prioritization techniques that combine coverage-based

prioritization with distribution-based prioritization. This

hybrid approach is based on the observation that basic

coverage maximization performs reasonably well compared to

repeated coverage maximization [24]. The authors observed

that the fault detection rate of repeated coverage maximization

is not as high as that of basic coverage maximization. This

motivated them to consider a hybrid approach that first

prioritizes test cases based on coverage, then switch to

distribution-based prioritization once the basic coverage

maximization is achieved. They considered two different

distribution-based techniques. The one-per cluster approach

samples one test case from each cluster or class, and

prioritizes them according to the order of cluster creation

during the clustering. The failure-pursuit approach behaves

similarly, but it adds the closest neighbors of any test case that

finds a fault. The results showed that the distribution-based

prioritization techniques could outperform repeated coverage

maximization [24].

4.7 Other Approaches
Rothermel et al. analyzed the use of mutation score for test

case prioritization along with other structural coverage criteria

[17]. Hou et al. considered interface contract mutation for the

regression testing of component-based software and evaluated

it with the additional prioritization technique [25]. Sampath et

al. presented the prioritization of test cases for web

applications [12]. The test cases are, in this case, recorded

user sessions from the previous version of the SUT. Session-

based test cases are thought to be ideal for testing web

applications because they tend to reflect the actual usage

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.12, August 2014

41

patterns of real users, thereby making for realistic test cases.

They compared different criteria for prioritization such as the

number of HTTP requests per test case, coverage of parameter

values, and frequency of visits for the pages recorded in

sessions and the number of parameter values. The empirical

evaluations showed that prioritized test suites performed

better than randomly ordered test suites, but also that there is

not a single prioritization criterion that is always best.

However, the 2-way parameter-value criterion, the

prioritization criterion that orders tests to cover all pair-wise

combinations of parameter-values between pages as soon as

possible, showed the highest APFD value for 2 out of 3 web

applications that were studied.

Fraser et al introduced a model-based prioritization approach

[14]. Their prioritization technique is based on the concept of

property relevance [13]. A test case is relevant to a model

property if it is theoretically possible for the test case to

violate the property. The relevance relation is obtained by the

use of a model-checker, which is used as the input to the

greedy algorithm. While they showed that property-based

prioritization can outperform coverage-based prioritization,

they noted that the performance of property-based

prioritization is heavily dependent on the quality of the model

specification. A few techniques and analyses used for test

suite minimization or regression test selection problem have

been also applied to test case prioritization. Rummel et al.

introduced a prioritization technique based on data-flow

analysis by treating each du pair as a testing requirement to be

covered [26].

5. CONCLUSION
Test case prioritization is a way to prioritize and schedule test

cases. The technique is developed so as to run test cases of

higher priority in order to minimize time, cost and effort

during software testing phase. The literature review shows

that many researchers have proposed many methods to

prioritize and reduce the effort, time and cost in the software

testing phase; such as test case prioritization methods,

regression selection techniques and test case reduction

approaches. This paper concentrates on test case prioritization

techniques only. This study introduces a new classification

scheme for test case prioritization called as “3CMDHO”.

6. REFERENCES
[1] R. Pressman, Software Engineering: A Practitioner's

Approach.: Mc-GrawHill, 2005.

[2] [tutorialpoint.Online].

www.tutorialspoint.com/software_testing

[3] S. Elbaum, A. Malishevsky, G.Rothermel, "Test case

prioritization: A family of empirical studies," IEEE

Transactions on Software, Febrary 2002.

[4] Aditya P.Mathur, Foundation of software testing, 1st ed.:

Pearson.

[5] Maruan Khoury, Cost-Effective Regression Testing.,

2006.

[6] W.Wong, J. Horgan, S. London, H. Agrawal, "A study of

effective regression testing in practice," in Eighth Intl.

Symp. on Softw. Rel. Engr, 1997, pp. 230-238.

[7] Gregg Rothermel,Roland H. Untch,Mary Jean Harrold,

"Prioritizing Test Cases For Regression Testing," IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING,

vol. 27, no. 10, October 2001.

[8] Sebastian Elbaum,Alexey G. Malishevsky,Gregg

Rothermel, "Prioritizing Test Cases for Regression

Testing," International Symposium of Software Testing

and Analysis, pp. 102-112, August 2000.

[9] J. Jones, M. Harrold., "Test-suite reduction and

prioritization for modified condition/decision coverage,"

in International Conference on Software Maintenance,

2001.

[10] Srivastava, J. Thiagarajan, "Effectively prioritizing tests

in development environment," in International

Symposium on Software Testing and Analysis, 2002, pp.

97-106.

[11] Avritzer and E. Weyuker., "The automatic generation of

load test suites and the assessment of the resulting

software," IEEE Transactions on Software Engineering,

vol. 21, no. 9, pp. 705-716, December 1995.

[12] Sampath S, Bryce RC, Viswanath G, Kandimalla V,

Koru AG, "Prioritizing user-session-based test cases for

web applications testing," in 1st International Conference

on Software Testing Verification and Validation, 2008,

pp. 141-150.

[13] Fraser G,Wotawa F, "Property relevant software testing

with model-checkers," SIGSOFT Software Engineering

Notes , vol. 31, no. 6, pp. 1-10, 2006.

[14] Fraser G,Wotawa F, "Test-case prioritization with

model-checkers," in 25th conference on IASTED, USA,

2007, pp. 267-272.

[15] Kim, J. M.; Porter, A, "A history-based test prioritization

technique for regression testing in resource constrained

environments," in 24th International Conference on

Software Engineering, 2002.

[16] Wong WE, Horgan JR, London S, Mathur AP, "Effect of

test set minimization on fault detection effectiveness,"

Software Practice and Experience, pp. 347-369, April

1998.

[17] Gregg Rothermel, R. H. Untch, C. Chu, and M.

J.Harrold, "Test case prioritization: An empirical study,"

in IEEE International Conference on Software

Maintenance, UK, 1999, pp. 179-188.

[18] Alexey G. Malishevsky, Gregg Rothermel,Sebastian

Elbaum, "Modeling the Cost-Benefits Tradeoffs for

Regression Testing Techniques," in International

Conference on Software Maintenance, 2002.

[19] Jung-Min Kim, Adam Porter, Gregg Rothermel, "An

Empirical Study of Regression Test Application

Frequency," International Conference on Software

Engineering, 2000.

[20] Hema Srikanth, Laurie Williams, Jason Osborne,

"System Test Case Prioritization of New and Regression

Test Cases," in 4th International Symposium on

Empirical Software Engineering, 2005, pp. 62-71.

[21] M. Thompson, D. Richardson, L. Clarke, "An

information flow model of fault detection," Int'l. Symp.

on Softw. Testing and Analysis, pp. 182-192, 1993.

[22] R. G. Hamlet, "Testing programs with the aid of a

compiler," pp. 279-290, July 1977.

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.12, August 2014

42

[23] S. G. Elbaum and J. C. Munson, "Code churn: A measure

for estimating the impact of code change," in Int'l. Conf.

Softw. Maint, 1998, pp. 24-31.

[24] Leon D, Podgurski A, "A comparison of coverage-based

and distribution-based techniques for filtering and

prioritizing test cases," in IEEE International Symposium

on Software Reliability Engineering, 2003, pp. 442-456.

[25] Hou SS, Zhang L, Xie T, Mei H, Sun JS, "Applying

interface-contract mutation in regression testing of

component-based software," in 23rd IEEE International

Con

[26] Reference on Software Maintenance, 2007, pp. 174-

183.Rummel M, Kapfhammer GM, GM, Thall,

"Towards the prioritization of regression test suites with

data flow information," in 20th Symposium on Applied

Computing, 2005.

IJCATM : www.ijcaonline.org

