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ABSTRACT 

Graphics Processing Units (GPUs) broke out by the end of 

1990s, devoted to the goal of providing ubiquitous interactive 

3D graphics which, a few years back then, was a far-fetched 

dream. By the end of decade, the technology grew 

exponentially, with nearly every computer containing a GPU, 

providing a high performance, visually rich, brilliant 3D 

computer graphics. This unprecedented growth was a 

cumulative outcome of rising demand for high-quality games, 

manufacturing processes advancements, and employment of 

inherent parallelism for computation.  

Today, the raw computational power of a GPU dwarfs that of 

the most powerful CPU, and the gap is continuously 

widening. World‟s most powerful supercomputers (e.g., 

Tianhe-2(China) and Titan(USA)) use GPUs at their core [1]. 

This paper provides a review of GPU technology, overview of 

general purpose application of GPUs, architectural highlights, 

Enhancement of GPGPUs. In the end, we take a look at future 

research directions and challenges to parallel computing 

chips.   

General Terms 
Parallel computing, Compute Unified Device Architecture 

(CUDA), OpenCL, 

Keywords 

Graphics processing unit (GPU), central processing unit 

(CPU), graphics pipeline, parallel-computing 

1. INTRODUCTION 
Gordon Moore [2], predicted way back in 1970 that, the 

processing power of chips would double every two years and 

it still holds almost correct. Semiconductor scaling challenges, 

power efficiency and thermal points along with higher levels 

of intricacies involved in exploiting the power of instruction 

level parallelism (ILP) has motivated researchers, to go 

beyond single-core processors. This performance limitation 

has led microprocessor manufacturers to turn towards multi-

core chips for a promising future. Benefits of multi-core 

organization of chips are numerous, but to tap on full power, 

it demands sophisticated implementation of parallelization via 

programming.  

In this situation, Graphics Processing Units (GPUs), have 

attracted a lot of attention as they are very much resourceful 

not only for graphics workload, but also for mainstream 

computing tasks due to inherent parallelism, high memory 

bandwidth and inbuilt support for both single-precision and 

double-precision IEEE floating point arithmetic calculations. 

Even with all that muscle packed in, GPUs had been quite less 

hungry, when it comes to power. Worth every dollar spent on, 

GPU chips have grown on quite a large scale from being a 

peripheral commodity, to the most powerful and 

programmable processing devices available till date. Of 

course, GPUs are “Multi-Core” but not some small multi-

core, modern GPUs could have over thousands of cores 

(NVIDIA TESLA K80 GPU accelerator having a massive 

4992 CUDA cores [3]). 

The exponential rise in graphics hardware performance 

coupled with advanced programming platforms have made 

GPUs a promising direction, for resource-intensive tasks in 

multifarious computing domains. Since the early days of 

computers, CPUs had been conventionally used to process 

multiple domain-based applications, generally called 

workloads. With enormous computing power driven by high-

degree of parallelism and memory bandwidth packed right-in 

along and appreciable energy-efficiency coupled with 

advances in general-purpose computing using them, GPUs 

tend to outrun the CPUs as preferable computing engines in 

the recent years. 

The use of GPUs for general-purpose computing started out 

by use of corner-case of graphics APIs. Here, programmers 

used graphics-pipeline for data transfer and carefully used 

buffer memory for mapping program data. The architecture 

didn‟t support this sort of operations, however for proper 

workloads great speedups were observed. This triggered 

hardware companies to add explicit hardware functionality for 

general purpose computing tasks, subsequently software 

functionality also improved for the same. The first 

commercial outcomes were NVIDIA‟s CUDA [4] and AMD‟s 

CTM [5] which opened a new field of GPU programming 

using high-level programming interface based on C and added 

hardware functionality. 

 

Figure 1 Evolution of CPU-GPU Architecture 

Since 2011, we‟ve seen chip-level integration of GPUs 

forming heterogeneous chips, where CPU and GPU exist on 

the same die. Early examples include AMD Fusion APUs [6], 

INTEL Sandy Bridge [7] and ARM MALI [8]. These models 

present sharing of memory and address space between CPU 

and GPU and are readily programmable by using different 

platforms such as Opens [9]. It is predicted that the 

combination of CPU-GPU will result in advent of throughput 

optimized cores, the future of general-purpose GPU 

computing. Based on present literature survey, the future work 

and research on GPUs can be represented by fig. 1. 

1.1 Overview of Graphics Processing Unit 

(GPU) 
“We‟ve all heard „desktop supercomputer‟ claims in the past, 

but this time it‟s for real: NVIDIA and its partners will be 

delivering outstanding performance and broad applicability to 
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the mainstream marketplace. Heterogeneous computing is 

what makes such a breakthrough possible [13].” Modern 

GPUs could be well seen as first class parallel-processing 

units, with outstanding computational capabilities and an 

exploding growth rate, far above that of CPUs and is 

becoming increasingly preferred in domain-specific parallel-

data jobs. A GPU is a commodity computer chip optimized 

for graphics (2D/3D), being highly- parallel and 

multithreaded, it provides a brilliant visual output for games, 

high-resolution videos etc.  Developments have led GPUs to 

be a versatile piece of hardware serving as a programmable 

visual engine and a highly scalable computing engine. 

Relatively simpler-core architectures are better direction for 

multicore processors as it turns out that the simpler 

architecture of cores gives numerous advantages over 

traditional architectures. They are readily scalable and have a 

wide range on scope. Additionally, programming platforms 

are pervasive and easy to use giving performance/cost ratio 

times better than traditional CPUs. Use of CPUs and GPUs on 

the same die for achieving accelerated performance has been a 

recent approach, also known as GPU-accelerated computing 

or heterogeneous computing. Continuous betterments of 

GPUs for mainstream non-graphics workloads is a hot topic 

of research presently. 

1.2 Why GPUs? GPUs vs CPUs 
CPUs and GPUs are both, classes of computing engines, 

before we understand why GPU is a better option in near 

future; we need to understand the major differences in both.  

 

Figure 2 CPU vs GPU: Number of cores 

The basic difference between a CPU and a GPU starts from 

their architecture and how they process tasks. The Former 

contains fewer optimized cores for implementing sequential 

processing of tasks. Parallelism is present, but at the task-

level. On the other hand, a GPU comprises of a few thousands 

of smaller cores, built in a massively parallel architecture 

designed for efficient handling of simultaneous tasks. Thus, 

GPU implements data-level parallelism [11]. Throughput is 

defined as the amount of work done in a given amount of time 

[12]. CPUs are designed as to be low on latency and 

throughput, whereas the GPUs are designed to perform, with 

high throughput and latency. To minimize latency in CPUs, a 

large number of caches are required. The design allows to 

fetch maximum running applications from the caches. Due to 

this, GPUs are able to dedicate more of their transistor area to 

derive greater horsepower and hence can process over tens of 

thousands of threads concurrently. Additionally, GPUs have 

advanced, faster memory interfaces as they have to 

load/transfer higher amounts of data compared to CPUs. 

GPUs are employed in almost all kinds of problems that 

require data parallelism (e.g., Graphics, Image and video 

processing, physics, scientific computing, gaming). GPUs 

seem to be perfect for such problems, in fact as the data 

increases, GPUs become more efficient. GPUs employ 

Stream Processing to achieve high throughput. Additionally, 

threads are hardware-managed hence, one is not required to 

write code for each of them individually. 

GPUs are better in terms of computing power, memory 

bandwidth and high-energy efficiency. To harness full power 

of a GPU, sophisticated programming is required to exploit 

embedded parallelism, which may be difficult and requires 

greater amount of time. 

 

Figure 3 CPU vs GPU: Transistor Allocation 

If we consider the performance of latest and the best CPUs 

and GPUs out there. We see the results in favor of the GPUs 

as shown in fig. 4. In High Performance Applications(HPC), 

GPUs tend to beat out the CPUs brutally. For various 

scientific workloads as shown in fig.4, GPUs put a speedup of 

approximately 2.5-7 times the CPU performance. 

1.3 Need of Heterogeneous Architectures 
When both CPU and GPU are integrated on the same die, the 

resultant architecture is known as Heterogeneous 

Architecture. These type of architectures offer some great 

advantages over traditional ones. Firstly, it saves a lot of cost 

overheads due to use of shared resources by both CPU and 

GPU. Secondly, this allows better performance as there is no 

need of explicit data transfers between both the chips. Apart 

from performance improvements, it also gives rise to system 

developments. 

 

Figure 4 Intel’s Xeon Phi CPU vs Nvidia Tesla K80 GPU on various HPC[15]. 

 

 

CPU: Multiple Cores 
GPU: Thousands of Cores 
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Faster communication and reduced costs along with 

bandwidth improvements allows a great deal of optimizations. 

Chip-level integrations not only reduce the latency 

significantly but also opens new communication pathways 

between CPU-GPU. Under “Further optimizations” in fig.1, 

The CPU-GPU system is designed to increase its efficiency 

and performance as a whole. For this to happen, rather than 

being designed for all workloads, the CPU architecture must 

be designed to perform tasks which GPGPU performs poorly. 

As we see in present, combination of CPU-GPU contains a lot 

of redundant components, which could be reduced in future 

architectures. For instance, previously there was a slow 

external memory interface for communication between the 

both, now being on the same die, they share common last 

level cache. This opens new direction in usage optimizations. 

Formally, CPUs and GPUs were designed as separate chips 

and hence it is observed that such separate organization 

doesn‟t seem to work efficiently. 

 

Figure 5 Heterogeneous Computing Architecture [14] 

Based on current study, major research directions have been 

presented in fig.1. The apex shows the requirements that led 

to development of general purpose computing on GPUs 

(GPGPUs). We discuss the need for Unified Shader 

Architecture given by NVIDIA in section 2 with GPGPU 

architectural highlights. In section 3, we discuss various 

programming models for GPGPUs. We then discuss recently 

explored mechanisms for overcoming the major setbacks of 

GPU computing - Performance depletion under control flow 

divergence and poor process scheduling in section 4. In 

section 5, we present a study of latest contemporary GPU 

architectures, additional to this we will analyze the various 

issues and challenges before parallel computing chips in 

section 6. In the end, we sum up our study with conclusions in 

section 7. 

2. OVERVIEW OF GENERAL 

PURPOSE GPUs 
In this Section, we shall take a look at various GPGPU 

architectural highlights.  

The modern GPU chip is a successor of a fixed function 

graphics pipeline, consisting of vertex processors and pixel 

processors. It was “Fixed” since it couldn‟t be programmed to 

carry out different operations except graphics through it. 

Initially, there was an imbalance of vertex and pixel shaders 

as earlier processes required more of pixel shaders than the 

vertex shaders. However, soon it was realized that non-unified 

architecture was unbalanced and was inefficient at resource 

utilization. This inspired the development of unified shader 

architecture, first found on Nvidia Tesla. The vision behind 

Tesla was to build a unified architecture with better resource 

utilization using scalar cores and all the shader operations 

being performed on same processors. Fig.6 shows 

contemporary Nvidia GPGPU architecture [16] [17]. It packs 

15 processing elements known as streaming multiprocessors 

or SM units and 6 64-bit memory controllers. Every GPU SM 

unit includes 192 single-precision CUDA cores with each one 

of them having fully pipelined floating-point units along with 

ALUs. It also features full IEEE 754-2008 compliant single 

and double precision arithmetic processing along with the 

fused multiply-add (FMA) operation. Fig. 7 shows a diagram 

of a SM processing core. An SM includes 32 single 

instructions multiple thread (SIMT) lanes that collaboratively 

issue 1 instruction each cycle, it also includes special function 

units (SFUs) for rapid approximate transcendental operations.  

Threads are maintained in groups of 32 called Warps, 4 warp 

schedulers are also present aside 8 instruction dispatch units, 

which allows 4 warps to be processed simultaneously. Each 

thread is provided access to over 255 registers. The cores run 

on the primary GPU clock instead of the 2x shader clock. A 

unified memory request path for loads and store is supported, 

with an L1 cache per SM. The memory hierarchy is depicted 

in fig.8, with each SM containing 64KB of memory, 

configurable to as 48KB of shared memory along with an L1 

cache of 16KB, or reverse i.e., 48KB of L1 cache and 16KB 

of shared memory. The GPU features a dedicated L2 cache of 

size 1536KB. In fact, the register files, shared memories, L1 

cache, L2 cache and DRAM memory are Single-Error Correct 

Double-Error Detect (SECDED) ECC code protected. 

GPUs use multithreading at an enormous scale to fetch 

maximum resource utilization. Keeping this in mind, threads 

are maintained in a large pool called warps. For instance, 

Nvidia Maxwell architecture launched in 2014 [19], has over 

5.2 billion transistors and 2048 CUDA cores supporting 16 

SMs. It enables 64 active warps per SM (2048 threads per 

SM). To avoid memory spills, up to 255 registers are made 

accessible per thread (64K 32-bit registers). Figure 8 depicts 

an example of warp scheduling. In each cycle, the scheduler 

chooses a ready to execute warp. Subsequently next 

instruction is assigned to threads of that selected warp. Warp 

selection considers parameters such as instruction type and 

fairness during selection. To achieve maximum efficiency, all 

lanes must be occupied. 

 

Figure 6 Contemporary GPU Architecture [14] 

In such case, all 32 threads in a warp must take the same 

execution path, but in case if the threads diverge due to flow 

of control and different paths may get executed serially. The 

threads on a non-execution path are disabled while the others 

are re-converged to original path upon completion. SMs 

employ stacks to manage this divergence and re-convergence. 

GPUs have been designed keeping in mind the scaling they 

must offer. Lack of global structures has facilitated it. GPUs 

implement better and efficient warp scheduling,  
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Table 1 Comparison of CPU and GPU 

Parameter CPU GPU 

Latency 
Intolerant to 

Latency 
Tolerant to latency 

Thread Count 

10s of Threads 

sequentially 

processed 

10000s of threads 

processed in 

parallel 

Cores 
Fewer (Multi-

threaded) 

Thousands of 

SIMT Cores 

Core Complexity High Low 

Parallelism Task Parallelism Data Parallelism 

Caching, 

Prefetching 

Yes( to minimize 

latency) 
No 

Throughput Low High 

multithreading is employed to hide large latencies. Moreover, 

there is no synchronization of threads globally across the 

GPU. GPUs also seem to be deficient of data lines for feeding 

purposes, instead of these there is a rich memory hierarchy 

composed of registers, caches and shared memory for 

persistence of data locality. Such an organization increases 

energy efficiency of GPUs and provide better scaling. Figure 

9 shows the GPU advancements since 2007. 

As observed the GPUs are advancing at an unprecedented rate 

nearly outpacing the Moore‟s law, with the latest architecture 

by Nvidia boasting a humongous performance of about 6.14 

TFLOPS on the other side the rival AMD with a huge 

performance power of about 11.5 TFLOPS [21]. Single 

precision performance seems to grow over 6 times since 2006 

with Double precision performance alleviated by a teraflop 

since its advent in 2008. Albeit, the increment in size of 

memory structures is relatively slow as the shared and 

memory registers have shown increase of about 4 times and 8 

times respectively whereas memory bandwidth growth has 

been quite slow, witnessing an increment of about 2.2 times. 

As discussed above, bandwidth seems to be a field of concern 

for GPU performance scaling. This limitation has been 

partially indemnified by manipulating the nature of 

workloads. Typical nature of workloads shifted to GPU are 

arithmetically intense and thus, show great performance due 

to GPU FLOP performance, but this doesn‟t seem to work 

well with all types of processes, specifically the ones with 

high bandwidth requirements. There have been numerous 

proposals for spatial multitasking [22] arithmetically intense 

and bandwidth demanding workloads on the same GPU chip. 

Lee et al. [24] studied CPU scaling for throughput 

applications using GTX 280 vs Core i7-960 and revealed that 

the performance gap is of about two and a half times. If we 

take a look at raw facts and figures, comparing latest Nvidia 

state of the architecture named “Maxwell” to Intel‟s brand 

new architecture “Skylake” the gap between CPU and GPU 

performance in HPC is already wide enough.  GPUs have 

shown a massive leap to over 10 times in performance while 

the CPU has only been able to double its GFlop performance. 

 

Figure 7 A view of Nvidia Kepler SMX processing unit 

[18] 

 

Figure 8 Kepler Memory hierarchy [18] 

 

Figure 9 Peak Memory Bandwidth Comparison [20] 

 

Figure 10 Thermal Peak Performance Single Precision 

Comparison [20] 
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Figure 11 Thermal Design Power Comparison [20] 

3. FORWARDING GPGPU 

ARCHITECTURE 
To achieve better CPU-GPU systems in future, we need to 

take GPGPU design forward by mitigating all the challenges 

and deficiencies before the present GPU architectures. One of 

the great challenges before contemporary GPU architectures 

is handling of control-flow, which causes divergence of 

threads leading to loss in performance. Further, we also look 

at another obstacle which is warp scheduling, and discuss a 

better scheduling policy. 

Branching is quite tedious to implement in case of GPUs as 

current architectures fetch one instruction per warp. GPUs at 

present use single instruction multiple data (SIMD) execution 

model enabling dynamic control. Grouping of threads is done 

to make a convoy of 32 logical threads called a warp, 

subsequently executed on a SIMD based hardware. Each 

thread in a warp can follow an independent control-flow path. 

This is a hybrid of SIMD technology and is known as Single 

instruction multiple thread (SIMT). In case, a control flow 

statement causes threads to diverge in a warp and take 

different execution pathways. It is up to the hardware (SM) to 

ensure proper execution. Figure 8 illustrates a sample problem 

where the warp size is assumed to be 4 and in those 4 threads, 

2 of them follow the „if‟ path while the other 2 take the „else‟ 

path.The streaming multiprocessor has to visit each path in a 

sequential manner. An active mask field is present to mark the 

number of threads on a particular path in a control-flow graph. 

 

Figure 8 Sample branching code 

This is done via a reconvergence predicate stack used to 

partially serialize execution and proves to be a naïve 

approach, as it serializes execution making the inherent 

parallelism in GPU unutilized leading to performance losses. 

We first discuss stack based reconvergence then, we build up 

enhance schemes over it. 

3.1 Stack Based Reconvergence 
GPUs consists of large number of processing elements (SMs), 

each of them includes a big number of parallel execution lanes 

called CUDA cores in the Nvidia context. All of these parallel 

lames operate in SIMD fashion. As each of the thread in a 

CUDA core is independent to follow its own execution path, 

resulting in a hybrid known as SIMT. A great obstacle with 

the SIMT execution model is to ensure high utilization of 

resources in case of divergence of threads in a warp. The 

reason backing this concern for thread divergence are that 

masked operations keep on utilizing the available resources 

irrespective of need. Secondly, serialized execution of 

branches with every divergence denies parallelism. From this 

it is clear that care is necessary at the point of reconvergence 

of threads. In contemporary GPUs, all the diverged threads 

reach a specific point known as control-flow merge point or 

reconvergence point, also said that each diverged threads 

reconverge at the immediate post-dominator instruction of 

that branch [25]. The post-dominator (PDOM) instruction is 

the first instruction in the control flow that is present in both 

the diverged ways [26]. Stack based reconvergence is 

implemented treating execution of control-flow as a serial 

stack. In this, each time a divergent branch is encountered 

information about both the possible paths for execution are 

pushed into the stack, which may be hardware or software 

implemented. From related works, it is known that NVIDIA 

GPUs use the hardware based model [27]. The path at the top 

of stack (TOS) is executed sequentially. When the control  

 

Figure 12 Sample Control-Flow Graph [28] 

flow detects reconvergence point the entries are popped, 

turning towards alternate branch for execution. This can be 

considered as a depth-first search (DFS) traversal of the 

control-flow graph. The key feature being each path being 

executed serially and one by one. A Program Counter (PC) is 

associated with each node in the control-flow graph, track of 

which is maintained by reconvergence stack. The PC points to 

the first instruction in the node A and the reconvergence PC 

(RPC) is set to end of node A. When a warp undergoes a 

branching, the threads diverge and the stack stores the 

information about both executed and to-be executed path. In 

the beginning, the TOS is changed to the PC of reconvergence 

point The information about RPC is communicated explicitly 

via compiler analysis. Then, the PC of right path (block C) is 

pushed into the reconvergence stack along with the RPC 

(block G), after that the information of the non-taken path, 

i.e., block B is pushed similarly. In the end, left path now 

being the TOS is executed. It is clear that at a time, only a 

single path, the one at the TOS is executed. Thus, this 

execution model is also known as single-path execution (SPE) 

model [28]. 

 

Figure 13 Execution flow of SPE model [28] 

if (thread.Idx < 2) { 

// do work1 

} 

else{ 

// do work 2 

} 
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The example execution flow also brings to light two 

drawbacks of the SPE model. Firstly, the execution is 

serialized executing one path at a time, which works for 

almost all kind of workloads but results in some serious 

degradation of performance as it doesn‟t utilize the inherent 

parallelism efficiently. Second, the SIMD utilization 

decreases each time a control flow divergence is encountered. 

SIMD utilization has been a focus of research, recently. 

In [26], Fung et al., put forward Dynamic Warp Formation to 

mitigate the deficiency of SIMD utilization during divergence. 

3.2 Dynamic Warp Formation (DWF) 
The performance loss due to thread divergence is inevitable, if 

the number of warps is unity. Contemporary GPUs support 

about 48 - 64 active warps, in case if a number of warps 

diverge at a single point in control-flow, then the diverged 

threads at that point from different warps following the same 

execution path can be clubbed to form new warp or warps. 

Since the newly formed warps of diverged threads are on the 

same execution path, they won‟t diverge and exhibit better 

hardware utilization. The creation of new warps from a pool 

of diverged threads on the same execution path is done by 

thread scheduler. It combines threads with same PC values. 

Figure 14 illustrates the concept of Dynamic Warp Formation, 

in which there are two paths A and B in a divergent branch, 2 

warps 0 and 1 diverge at the same point. Here, threads of both 

0 and 1 diverge into paths A and B. threads on the same path 

are combined to form new dynamically formed warps as 

shown having no divergence. 

Dynamic Warp Formation can minimize area overheads by 

providing register-file configuration used in contemporary 

GPUs. This variety of DWF is known as “Lane-Aware” 

DWF. To reduce the number of ports in a register file, the 

number of SIMT lanes is kept statically fixed for thread 

execution, thus such a mechanism is needed. For instance, 32 

SIMT lanes can be simultaneously fed using 32 register bank 

files. In case of DWF, the scheduler‟s job is to ensure that 

different SIMT lanes are used for threads of newly formed 

warps, which removes the requirement of having cross-bar 

connection among ALUs and register file banks resulting in 

profoundly simpler design. 

DWF utilizes SIMT hardware resources to a greater length, 

but the basic condition for usage being existence of more than 

one warp. Also, if the progression of warps is different, there 

might be difficulties in regrouping of threads. The authors 

demonstrate a performance benefit of 20.7% for the 

mechanism. 

 

 

Figure 14 Illustration of DWF 

3.3 Dynamic Warp Subdivision 
Dynamic Warp Subdivision (DWS), proposed by Meng et al. 

[29] selectively deviates from stack-based reconvergence to 

diminish serialization. The core concept backing DWS is to 

consider both the left and the right paths as independently 

schedulable units or warp-splits, allowing serialization to be 

reduced. With DWS, intra-warp tolerance can be achieved. In 

DWS, a divergent path may employ the SPE model stack or 

instead an additional hardware data structure known as Warp-

Split Table or WST which finds its use in tracking of 

independently schedulable warp-splits. Split-warps prove to 

be better than stack as they are concurrently schedule and 

dynamically formed and do not converge as early as the 

PDOM. 

To overcome slow SIMD utilization, DWS employs three 

techniques. First, Warp-Split table, just like stack in SPE 

model to store information about PC. However, the RPC is 

not the PDOM of the diverging branch, rather it pertains to the 

last entry in the stack. Second, to mitigate the impact of 

delayed reconvergence and recursive subdivision, the warp-

splits with identical PC values are attempted to be combined 

dynamically as well as opportunistically. Different from 

PDOM reconvergence in stack, the opportunistic combination 

may never occur. The decision of splitting a warp in the first 

place: a warp is only subdivided if the divergent branch‟s 

immediate PDOM is succeeded by a basic block of number of 

instructions being less than N. According to authors, this 

value of N (subdivision threshold) must be 50 instructions. 

3.4 Large Warp Microarchitecture and 

Two-Level Scheduling 
Narasiman et al. [30] proposed Large Warp Microarchitecture 

is a similar mechanism to dynamically form warps at runtime. 

However, the proposal differs in the method employed for 

warp formation. It all starts out with an initial warp having 

size slightly greater than the width of SIMT lane. At runtime, 

the technique generates smaller-warps lesser than the SIMT 

width from the initial larger one, this is depicted in figure 15. 

Here, a larger warp, consisting of total 16 threads arranged in 

a 2-D manner of 4 threads per warp and 4 such warps. We 

assume that the SIMT lane width is 4 threads. At each time 

interval, the scheduler picks any of the threads and maps to 

different lanes. The scheme assumes a similar register-file 

organization as in Fung et al‟s. [26] dynamic warp formation 

model. 

 

Figure 15 Sub-Warp Formation at Runtime [14] 

In addition to Large Warp Microarchitecture, authors also 

propose a better scheduling algorithm called “Two-level 

scheduling”. Previously, GPUs have been relying on Round-

Robin warp scheduling which gives equal priority to all the 

concurrently executing warps. In such a scenario, memory 

requests of one warp might generate row-buffer hits for other 

warps requesting memory. As a consequence, simultaneously 

all warps get stuck at a single high-latency memory task. The 

authors proposed a fine solution to this problem by grouping 

large warp sets into smaller ones. Warps of a set are scheduled 
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together and execute individually. Howbeit, in case of high 

latency tasks the scheduler switches to another smaller set of 

warps. According to evaluation by authors, the schemes 

provide a performance speedup of 19.1% and an area 

overhead of 224 bytes. 

4. FUTURE DIRECTIONS AND 

CHALLENGES 
GPUs featuring enormous computing power and memory 

bandwidth has enabled their deployment in a multitude of 

High-performance applications. In Recent times, CPU-GPU 

systems have gained a lot of momentum as the heterogeneous 

processing elements have complementary attributes, which 

enables applications to perform even better on such systems. 

This section discusses challenges and future directions of 

research in CPU-GPU systems and parallel computing chips. 

We divide the Future research and challenges to parallel 

computing chips in 3 parts, namely – Challenges to parallel 

computing chips, Emerging technologies and Research tools. 

4.1 Challenges to parallel computing chips. 
4.1.1 Power Efficiency 
Following Moore‟s Law, the number of devices packed on a 

single chip are increasing exponentially, with diminishing 

feature size. The result of this is that for all class of 

computers, whether mobile devices or the greatest 

supercomputers, power and energy will be an issue of grave 

concern. Because packing more devices on a chip is easy 

compared to designing powering circuits and cooling 

mechanisms. A chip‟s utility is determined by its performance 

at a specific power level, generally 3W for mobile devices and 

150W for servers or desktops. For example, the power 

consumption for future supercomputers is expected to be 

20MW and the supercomputers would perform exascale (10
18 

operations/second) calculations. An efficiency of 

approximately 20 picojoules (pJ) per FLOP is s must. 

Achieving this level of energy efficiency is a major challenge 

and will require a lot of research and innovation. 

4.1.2 Memory Bandwidth 
The memory bandwidth growth for GPUs has been quite 

slow, and renders an obstacle in high performance computing. 

Several techniques can improve utilization of bandwidth such 

as improving data locality and removal of overfetching of data 

from DRAM which is not of use for processor. Utilization can 

also be improved by increasing density of data transmitted via 

DRAM, using techniques like data compression. Power is 

another obstacle for off-chip memory. Assuming efficiency of 

20pJ/bit for today‟s GPU chips, for fully tapping Maxwell‟s 

bandwidth of 224.3 GB/sec, approximately 35.88 W is 

required. Coupled with significant energy required for DRAM 

access and signaling results in much greater power 

consumption relative to on-chip memory (over 250 times 

less). For GPUs to grow in performance, increasing off-die 

memory bandwidth is a serious challenge before the research 

community. 

Table 2. Projected DRAM bandwidth and energy [31] 

 

4.2 Emerging Technologies 
Emerging Technologies could be one of the hot areas for 

future research in GPGPUs as there has been no considerable 

work till date. Emerging technologies such as non-volatile 

memory(NVM), 3D stacking to GPUs. NVMs offer lower 

power consumption being a lower leakage and low power 

component, but still needs fine tuning to mitigate some 

disadvantages. 3D stacking can provide much needed 

potential to the memory bandwidth in GPUs. Nvidia 

announced its latest “Volta” architecture with stacked DRAM 

capabilities to be launched sometime in 2017. 

 

Figure 16 GPU emerging technologies [32] 

4.3 Research Tools 
The lack of proper research tools is one of the major areas of 

research in GPUs. While there are performance models 

available, but there is a lack of power models for GPGPUs. 

Once developed integration of such GPGPU models with 

CPU models requires further work. Similarly, there is an 

absence of temperature models for GPUs as well. This offers 

short term research opportunities in the field. 

5. CONCLUSIONS: THINKING 

FORWARD 
The sphere of GPGPU computing is expanding at an 

unprecedented rate. With approximately 400 million CUDA-

capable GPUs sold till date. Single-threaded processors have 

become history, efficient use of parallelism is required for 

better architectures. The GPU has come up as a highly 

capable computing engine, designed to deliver high 

performance exceeding that of low latency CPUs. Early 

efforts in GPUs for general purpose computing has been 

remarkable, giving birth to GPGPUs as a payoff. The blend of 

CPUs and GPUs resulting in development of heterogeneous 

architectures proves to be better alternative than using either 

alternative. Due to their “unparalleled” efficiency on a range 

of applications, the CPU-GPU systems are rather becoming 

pervasive, becoming the only choice for HPC. Along with 

accelerating previous applications. We expect GPUs to enable 

a whole plethora of new applications possible. As GPU 

programming models evolve, making it easier to program, a 

greater adoption rate would be seen. 

In this paper, we discussed GPUs as a better computing 

engine and the need of heterogeneous architectures. Following 

that, we discussed general purpose computing on GPUs and 

architectural highlights in section 2. In section 3, we looked at 

the various schemes and technologies used to create better 

GPGPU architectures. Section 4 discussed future research 

directions and challenges. Finally concluding the study in 

section 5. 
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