
International Journal of Computer Applications (0975 – 8887)

Technical Symposium on Emerging Technologies in Computer Science

20

Evolution of Gpus, Moving Towards GPGPUS: A Survey

Shivam Bharadwaj
GLBITM, Gr. Noida, India

Tejas Upmanyu
GLBITM, Gr. Noida, India

Sandeep Saxena
GLBITM, Gr. Noida, India

ABSTRACT

Graphics Processing Units (GPUs) broke out by the end of

1990s, devoted to the goal of providing ubiquitous interactive

3D graphics which, a few years back then, was a far-fetched

dream. By the end of decade, the technology grew

exponentially, with nearly every computer containing a GPU,

providing a high performance, visually rich, brilliant 3D

computer graphics. This unprecedented growth was a

cumulative outcome of rising demand for high-quality games,

manufacturing processes advancements, and employment of

inherent parallelism for computation.

Today, the raw computational power of a GPU dwarfs that of

the most powerful CPU, and the gap is continuously

widening. World‟s most powerful supercomputers (e.g.,

Tianhe-2(China) and Titan(USA)) use GPUs at their core [1].

This paper provides a review of GPU technology, overview of

general purpose application of GPUs, architectural highlights,

Enhancement of GPGPUs. In the end, we take a look at future

research directions and challenges to parallel computing

chips.

General Terms
Parallel computing, Compute Unified Device Architecture

(CUDA), OpenCL,

Keywords

Graphics processing unit (GPU), central processing unit

(CPU), graphics pipeline, parallel-computing

1. INTRODUCTION
Gordon Moore [2], predicted way back in 1970 that, the

processing power of chips would double every two years and

it still holds almost correct. Semiconductor scaling challenges,

power efficiency and thermal points along with higher levels

of intricacies involved in exploiting the power of instruction

level parallelism (ILP) has motivated researchers, to go

beyond single-core processors. This performance limitation

has led microprocessor manufacturers to turn towards multi-

core chips for a promising future. Benefits of multi-core

organization of chips are numerous, but to tap on full power,

it demands sophisticated implementation of parallelization via

programming.

In this situation, Graphics Processing Units (GPUs), have

attracted a lot of attention as they are very much resourceful

not only for graphics workload, but also for mainstream

computing tasks due to inherent parallelism, high memory

bandwidth and inbuilt support for both single-precision and

double-precision IEEE floating point arithmetic calculations.

Even with all that muscle packed in, GPUs had been quite less

hungry, when it comes to power. Worth every dollar spent on,

GPU chips have grown on quite a large scale from being a

peripheral commodity, to the most powerful and

programmable processing devices available till date. Of

course, GPUs are “Multi-Core” but not some small multi-

core, modern GPUs could have over thousands of cores

(NVIDIA TESLA K80 GPU accelerator having a massive

4992 CUDA cores [3]).

The exponential rise in graphics hardware performance

coupled with advanced programming platforms have made

GPUs a promising direction, for resource-intensive tasks in

multifarious computing domains. Since the early days of

computers, CPUs had been conventionally used to process

multiple domain-based applications, generally called

workloads. With enormous computing power driven by high-

degree of parallelism and memory bandwidth packed right-in

along and appreciable energy-efficiency coupled with

advances in general-purpose computing using them, GPUs

tend to outrun the CPUs as preferable computing engines in

the recent years.

The use of GPUs for general-purpose computing started out

by use of corner-case of graphics APIs. Here, programmers

used graphics-pipeline for data transfer and carefully used

buffer memory for mapping program data. The architecture

didn‟t support this sort of operations, however for proper

workloads great speedups were observed. This triggered

hardware companies to add explicit hardware functionality for

general purpose computing tasks, subsequently software

functionality also improved for the same. The first

commercial outcomes were NVIDIA‟s CUDA [4] and AMD‟s

CTM [5] which opened a new field of GPU programming

using high-level programming interface based on C and added

hardware functionality.

Figure 1 Evolution of CPU-GPU Architecture

Since 2011, we‟ve seen chip-level integration of GPUs

forming heterogeneous chips, where CPU and GPU exist on

the same die. Early examples include AMD Fusion APUs [6],

INTEL Sandy Bridge [7] and ARM MALI [8]. These models

present sharing of memory and address space between CPU

and GPU and are readily programmable by using different

platforms such as Opens [9]. It is predicted that the

combination of CPU-GPU will result in advent of throughput

optimized cores, the future of general-purpose GPU

computing. Based on present literature survey, the future work

and research on GPUs can be represented by fig. 1.

1.1 Overview of Graphics Processing Unit

(GPU)
“We‟ve all heard „desktop supercomputer‟ claims in the past,

but this time it‟s for real: NVIDIA and its partners will be

delivering outstanding performance and broad applicability to

International Journal of Computer Applications (0975 – 8887)

Technical Symposium on Emerging Technologies in Computer Science

21

the mainstream marketplace. Heterogeneous computing is

what makes such a breakthrough possible [13].” Modern

GPUs could be well seen as first class parallel-processing

units, with outstanding computational capabilities and an

exploding growth rate, far above that of CPUs and is

becoming increasingly preferred in domain-specific parallel-

data jobs. A GPU is a commodity computer chip optimized

for graphics (2D/3D), being highly- parallel and

multithreaded, it provides a brilliant visual output for games,

high-resolution videos etc. Developments have led GPUs to

be a versatile piece of hardware serving as a programmable

visual engine and a highly scalable computing engine.

Relatively simpler-core architectures are better direction for

multicore processors as it turns out that the simpler

architecture of cores gives numerous advantages over

traditional architectures. They are readily scalable and have a

wide range on scope. Additionally, programming platforms

are pervasive and easy to use giving performance/cost ratio

times better than traditional CPUs. Use of CPUs and GPUs on

the same die for achieving accelerated performance has been a

recent approach, also known as GPU-accelerated computing

or heterogeneous computing. Continuous betterments of

GPUs for mainstream non-graphics workloads is a hot topic

of research presently.

1.2 Why GPUs? GPUs vs CPUs
CPUs and GPUs are both, classes of computing engines,

before we understand why GPU is a better option in near

future; we need to understand the major differences in both.

Figure 2 CPU vs GPU: Number of cores

The basic difference between a CPU and a GPU starts from

their architecture and how they process tasks. The Former

contains fewer optimized cores for implementing sequential

processing of tasks. Parallelism is present, but at the task-

level. On the other hand, a GPU comprises of a few thousands

of smaller cores, built in a massively parallel architecture

designed for efficient handling of simultaneous tasks. Thus,

GPU implements data-level parallelism [11]. Throughput is

defined as the amount of work done in a given amount of time

[12]. CPUs are designed as to be low on latency and

throughput, whereas the GPUs are designed to perform, with

high throughput and latency. To minimize latency in CPUs, a

large number of caches are required. The design allows to

fetch maximum running applications from the caches. Due to

this, GPUs are able to dedicate more of their transistor area to

derive greater horsepower and hence can process over tens of

thousands of threads concurrently. Additionally, GPUs have

advanced, faster memory interfaces as they have to

load/transfer higher amounts of data compared to CPUs.

GPUs are employed in almost all kinds of problems that

require data parallelism (e.g., Graphics, Image and video

processing, physics, scientific computing, gaming). GPUs

seem to be perfect for such problems, in fact as the data

increases, GPUs become more efficient. GPUs employ

Stream Processing to achieve high throughput. Additionally,

threads are hardware-managed hence, one is not required to

write code for each of them individually.

GPUs are better in terms of computing power, memory

bandwidth and high-energy efficiency. To harness full power

of a GPU, sophisticated programming is required to exploit

embedded parallelism, which may be difficult and requires

greater amount of time.

Figure 3 CPU vs GPU: Transistor Allocation

If we consider the performance of latest and the best CPUs

and GPUs out there. We see the results in favor of the GPUs

as shown in fig. 4. In High Performance Applications(HPC),

GPUs tend to beat out the CPUs brutally. For various

scientific workloads as shown in fig.4, GPUs put a speedup of

approximately 2.5-7 times the CPU performance.

1.3 Need of Heterogeneous Architectures
When both CPU and GPU are integrated on the same die, the

resultant architecture is known as Heterogeneous

Architecture. These type of architectures offer some great

advantages over traditional ones. Firstly, it saves a lot of cost

overheads due to use of shared resources by both CPU and

GPU. Secondly, this allows better performance as there is no

need of explicit data transfers between both the chips. Apart

from performance improvements, it also gives rise to system

developments.

Figure 4 Intel’s Xeon Phi CPU vs Nvidia Tesla K80 GPU on various HPC[15].

CPU: Multiple Cores
GPU: Thousands of Cores

International Journal of Computer Applications (0975 – 8887)

Technical Symposium on Emerging Technologies in Computer Science

22

Faster communication and reduced costs along with

bandwidth improvements allows a great deal of optimizations.

Chip-level integrations not only reduce the latency

significantly but also opens new communication pathways

between CPU-GPU. Under “Further optimizations” in fig.1,

The CPU-GPU system is designed to increase its efficiency

and performance as a whole. For this to happen, rather than

being designed for all workloads, the CPU architecture must

be designed to perform tasks which GPGPU performs poorly.

As we see in present, combination of CPU-GPU contains a lot

of redundant components, which could be reduced in future

architectures. For instance, previously there was a slow

external memory interface for communication between the

both, now being on the same die, they share common last

level cache. This opens new direction in usage optimizations.

Formally, CPUs and GPUs were designed as separate chips

and hence it is observed that such separate organization

doesn‟t seem to work efficiently.

Figure 5 Heterogeneous Computing Architecture [14]

Based on current study, major research directions have been

presented in fig.1. The apex shows the requirements that led

to development of general purpose computing on GPUs

(GPGPUs). We discuss the need for Unified Shader

Architecture given by NVIDIA in section 2 with GPGPU

architectural highlights. In section 3, we discuss various

programming models for GPGPUs. We then discuss recently

explored mechanisms for overcoming the major setbacks of

GPU computing - Performance depletion under control flow

divergence and poor process scheduling in section 4. In

section 5, we present a study of latest contemporary GPU

architectures, additional to this we will analyze the various

issues and challenges before parallel computing chips in

section 6. In the end, we sum up our study with conclusions in

section 7.

2. OVERVIEW OF GENERAL

PURPOSE GPUs
In this Section, we shall take a look at various GPGPU

architectural highlights.

The modern GPU chip is a successor of a fixed function

graphics pipeline, consisting of vertex processors and pixel

processors. It was “Fixed” since it couldn‟t be programmed to

carry out different operations except graphics through it.

Initially, there was an imbalance of vertex and pixel shaders

as earlier processes required more of pixel shaders than the

vertex shaders. However, soon it was realized that non-unified

architecture was unbalanced and was inefficient at resource

utilization. This inspired the development of unified shader

architecture, first found on Nvidia Tesla. The vision behind

Tesla was to build a unified architecture with better resource

utilization using scalar cores and all the shader operations

being performed on same processors. Fig.6 shows

contemporary Nvidia GPGPU architecture [16] [17]. It packs

15 processing elements known as streaming multiprocessors

or SM units and 6 64-bit memory controllers. Every GPU SM

unit includes 192 single-precision CUDA cores with each one

of them having fully pipelined floating-point units along with

ALUs. It also features full IEEE 754-2008 compliant single

and double precision arithmetic processing along with the

fused multiply-add (FMA) operation. Fig. 7 shows a diagram

of a SM processing core. An SM includes 32 single

instructions multiple thread (SIMT) lanes that collaboratively

issue 1 instruction each cycle, it also includes special function

units (SFUs) for rapid approximate transcendental operations.

Threads are maintained in groups of 32 called Warps, 4 warp

schedulers are also present aside 8 instruction dispatch units,

which allows 4 warps to be processed simultaneously. Each

thread is provided access to over 255 registers. The cores run

on the primary GPU clock instead of the 2x shader clock. A

unified memory request path for loads and store is supported,

with an L1 cache per SM. The memory hierarchy is depicted

in fig.8, with each SM containing 64KB of memory,

configurable to as 48KB of shared memory along with an L1

cache of 16KB, or reverse i.e., 48KB of L1 cache and 16KB

of shared memory. The GPU features a dedicated L2 cache of

size 1536KB. In fact, the register files, shared memories, L1

cache, L2 cache and DRAM memory are Single-Error Correct

Double-Error Detect (SECDED) ECC code protected.

GPUs use multithreading at an enormous scale to fetch

maximum resource utilization. Keeping this in mind, threads

are maintained in a large pool called warps. For instance,

Nvidia Maxwell architecture launched in 2014 [19], has over

5.2 billion transistors and 2048 CUDA cores supporting 16

SMs. It enables 64 active warps per SM (2048 threads per

SM). To avoid memory spills, up to 255 registers are made

accessible per thread (64K 32-bit registers). Figure 8 depicts

an example of warp scheduling. In each cycle, the scheduler

chooses a ready to execute warp. Subsequently next

instruction is assigned to threads of that selected warp. Warp

selection considers parameters such as instruction type and

fairness during selection. To achieve maximum efficiency, all

lanes must be occupied.

Figure 6 Contemporary GPU Architecture [14]

In such case, all 32 threads in a warp must take the same

execution path, but in case if the threads diverge due to flow

of control and different paths may get executed serially. The

threads on a non-execution path are disabled while the others

are re-converged to original path upon completion. SMs

employ stacks to manage this divergence and re-convergence.

GPUs have been designed keeping in mind the scaling they

must offer. Lack of global structures has facilitated it. GPUs

implement better and efficient warp scheduling,

International Journal of Computer Applications (0975 – 8887)

Technical Symposium on Emerging Technologies in Computer Science

23

Table 1 Comparison of CPU and GPU

Parameter CPU GPU

Latency
Intolerant to

Latency
Tolerant to latency

Thread Count

10s of Threads

sequentially

processed

10000s of threads

processed in

parallel

Cores
Fewer (Multi-

threaded)

Thousands of

SIMT Cores

Core Complexity High Low

Parallelism Task Parallelism Data Parallelism

Caching,

Prefetching

Yes(to minimize

latency)
No

Throughput Low High

multithreading is employed to hide large latencies. Moreover,

there is no synchronization of threads globally across the

GPU. GPUs also seem to be deficient of data lines for feeding

purposes, instead of these there is a rich memory hierarchy

composed of registers, caches and shared memory for

persistence of data locality. Such an organization increases

energy efficiency of GPUs and provide better scaling. Figure

9 shows the GPU advancements since 2007.

As observed the GPUs are advancing at an unprecedented rate

nearly outpacing the Moore‟s law, with the latest architecture

by Nvidia boasting a humongous performance of about 6.14

TFLOPS on the other side the rival AMD with a huge

performance power of about 11.5 TFLOPS [21]. Single

precision performance seems to grow over 6 times since 2006

with Double precision performance alleviated by a teraflop

since its advent in 2008. Albeit, the increment in size of

memory structures is relatively slow as the shared and

memory registers have shown increase of about 4 times and 8

times respectively whereas memory bandwidth growth has

been quite slow, witnessing an increment of about 2.2 times.

As discussed above, bandwidth seems to be a field of concern

for GPU performance scaling. This limitation has been

partially indemnified by manipulating the nature of

workloads. Typical nature of workloads shifted to GPU are

arithmetically intense and thus, show great performance due

to GPU FLOP performance, but this doesn‟t seem to work

well with all types of processes, specifically the ones with

high bandwidth requirements. There have been numerous

proposals for spatial multitasking [22] arithmetically intense

and bandwidth demanding workloads on the same GPU chip.

Lee et al. [24] studied CPU scaling for throughput

applications using GTX 280 vs Core i7-960 and revealed that

the performance gap is of about two and a half times. If we

take a look at raw facts and figures, comparing latest Nvidia

state of the architecture named “Maxwell” to Intel‟s brand

new architecture “Skylake” the gap between CPU and GPU

performance in HPC is already wide enough. GPUs have

shown a massive leap to over 10 times in performance while

the CPU has only been able to double its GFlop performance.

Figure 7 A view of Nvidia Kepler SMX processing unit

[18]

Figure 8 Kepler Memory hierarchy [18]

Figure 9 Peak Memory Bandwidth Comparison [20]

Figure 10 Thermal Peak Performance Single Precision

Comparison [20]

International Journal of Computer Applications (0975 – 8887)

Technical Symposium on Emerging Technologies in Computer Science

24

Figure 11 Thermal Design Power Comparison [20]

3. FORWARDING GPGPU

ARCHITECTURE
To achieve better CPU-GPU systems in future, we need to

take GPGPU design forward by mitigating all the challenges

and deficiencies before the present GPU architectures. One of

the great challenges before contemporary GPU architectures

is handling of control-flow, which causes divergence of

threads leading to loss in performance. Further, we also look

at another obstacle which is warp scheduling, and discuss a

better scheduling policy.

Branching is quite tedious to implement in case of GPUs as

current architectures fetch one instruction per warp. GPUs at

present use single instruction multiple data (SIMD) execution

model enabling dynamic control. Grouping of threads is done

to make a convoy of 32 logical threads called a warp,

subsequently executed on a SIMD based hardware. Each

thread in a warp can follow an independent control-flow path.

This is a hybrid of SIMD technology and is known as Single

instruction multiple thread (SIMT). In case, a control flow

statement causes threads to diverge in a warp and take

different execution pathways. It is up to the hardware (SM) to

ensure proper execution. Figure 8 illustrates a sample problem

where the warp size is assumed to be 4 and in those 4 threads,

2 of them follow the „if‟ path while the other 2 take the „else‟

path.The streaming multiprocessor has to visit each path in a

sequential manner. An active mask field is present to mark the

number of threads on a particular path in a control-flow graph.

Figure 8 Sample branching code

This is done via a reconvergence predicate stack used to

partially serialize execution and proves to be a naïve

approach, as it serializes execution making the inherent

parallelism in GPU unutilized leading to performance losses.

We first discuss stack based reconvergence then, we build up

enhance schemes over it.

3.1 Stack Based Reconvergence
GPUs consists of large number of processing elements (SMs),

each of them includes a big number of parallel execution lanes

called CUDA cores in the Nvidia context. All of these parallel

lames operate in SIMD fashion. As each of the thread in a

CUDA core is independent to follow its own execution path,

resulting in a hybrid known as SIMT. A great obstacle with

the SIMT execution model is to ensure high utilization of

resources in case of divergence of threads in a warp. The

reason backing this concern for thread divergence are that

masked operations keep on utilizing the available resources

irrespective of need. Secondly, serialized execution of

branches with every divergence denies parallelism. From this

it is clear that care is necessary at the point of reconvergence

of threads. In contemporary GPUs, all the diverged threads

reach a specific point known as control-flow merge point or

reconvergence point, also said that each diverged threads

reconverge at the immediate post-dominator instruction of

that branch [25]. The post-dominator (PDOM) instruction is

the first instruction in the control flow that is present in both

the diverged ways [26]. Stack based reconvergence is

implemented treating execution of control-flow as a serial

stack. In this, each time a divergent branch is encountered

information about both the possible paths for execution are

pushed into the stack, which may be hardware or software

implemented. From related works, it is known that NVIDIA

GPUs use the hardware based model [27]. The path at the top

of stack (TOS) is executed sequentially. When the control

Figure 12 Sample Control-Flow Graph [28]

flow detects reconvergence point the entries are popped,

turning towards alternate branch for execution. This can be

considered as a depth-first search (DFS) traversal of the

control-flow graph. The key feature being each path being

executed serially and one by one. A Program Counter (PC) is

associated with each node in the control-flow graph, track of

which is maintained by reconvergence stack. The PC points to

the first instruction in the node A and the reconvergence PC

(RPC) is set to end of node A. When a warp undergoes a

branching, the threads diverge and the stack stores the

information about both executed and to-be executed path. In

the beginning, the TOS is changed to the PC of reconvergence

point The information about RPC is communicated explicitly

via compiler analysis. Then, the PC of right path (block C) is

pushed into the reconvergence stack along with the RPC

(block G), after that the information of the non-taken path,

i.e., block B is pushed similarly. In the end, left path now

being the TOS is executed. It is clear that at a time, only a

single path, the one at the TOS is executed. Thus, this

execution model is also known as single-path execution (SPE)

model [28].

Figure 13 Execution flow of SPE model [28]

if (thread.Idx < 2) {

// do work1

}

else{

// do work 2

}

International Journal of Computer Applications (0975 – 8887)

Technical Symposium on Emerging Technologies in Computer Science

25

The example execution flow also brings to light two

drawbacks of the SPE model. Firstly, the execution is

serialized executing one path at a time, which works for

almost all kind of workloads but results in some serious

degradation of performance as it doesn‟t utilize the inherent

parallelism efficiently. Second, the SIMD utilization

decreases each time a control flow divergence is encountered.

SIMD utilization has been a focus of research, recently.

In [26], Fung et al., put forward Dynamic Warp Formation to

mitigate the deficiency of SIMD utilization during divergence.

3.2 Dynamic Warp Formation (DWF)
The performance loss due to thread divergence is inevitable, if

the number of warps is unity. Contemporary GPUs support

about 48 - 64 active warps, in case if a number of warps

diverge at a single point in control-flow, then the diverged

threads at that point from different warps following the same

execution path can be clubbed to form new warp or warps.

Since the newly formed warps of diverged threads are on the

same execution path, they won‟t diverge and exhibit better

hardware utilization. The creation of new warps from a pool

of diverged threads on the same execution path is done by

thread scheduler. It combines threads with same PC values.

Figure 14 illustrates the concept of Dynamic Warp Formation,

in which there are two paths A and B in a divergent branch, 2

warps 0 and 1 diverge at the same point. Here, threads of both

0 and 1 diverge into paths A and B. threads on the same path

are combined to form new dynamically formed warps as

shown having no divergence.

Dynamic Warp Formation can minimize area overheads by

providing register-file configuration used in contemporary

GPUs. This variety of DWF is known as “Lane-Aware”

DWF. To reduce the number of ports in a register file, the

number of SIMT lanes is kept statically fixed for thread

execution, thus such a mechanism is needed. For instance, 32

SIMT lanes can be simultaneously fed using 32 register bank

files. In case of DWF, the scheduler‟s job is to ensure that

different SIMT lanes are used for threads of newly formed

warps, which removes the requirement of having cross-bar

connection among ALUs and register file banks resulting in

profoundly simpler design.

DWF utilizes SIMT hardware resources to a greater length,

but the basic condition for usage being existence of more than

one warp. Also, if the progression of warps is different, there

might be difficulties in regrouping of threads. The authors

demonstrate a performance benefit of 20.7% for the

mechanism.

Figure 14 Illustration of DWF

3.3 Dynamic Warp Subdivision
Dynamic Warp Subdivision (DWS), proposed by Meng et al.

[29] selectively deviates from stack-based reconvergence to

diminish serialization. The core concept backing DWS is to

consider both the left and the right paths as independently

schedulable units or warp-splits, allowing serialization to be

reduced. With DWS, intra-warp tolerance can be achieved. In

DWS, a divergent path may employ the SPE model stack or

instead an additional hardware data structure known as Warp-

Split Table or WST which finds its use in tracking of

independently schedulable warp-splits. Split-warps prove to

be better than stack as they are concurrently schedule and

dynamically formed and do not converge as early as the

PDOM.

To overcome slow SIMD utilization, DWS employs three

techniques. First, Warp-Split table, just like stack in SPE

model to store information about PC. However, the RPC is

not the PDOM of the diverging branch, rather it pertains to the

last entry in the stack. Second, to mitigate the impact of

delayed reconvergence and recursive subdivision, the warp-

splits with identical PC values are attempted to be combined

dynamically as well as opportunistically. Different from

PDOM reconvergence in stack, the opportunistic combination

may never occur. The decision of splitting a warp in the first

place: a warp is only subdivided if the divergent branch‟s

immediate PDOM is succeeded by a basic block of number of

instructions being less than N. According to authors, this

value of N (subdivision threshold) must be 50 instructions.

3.4 Large Warp Microarchitecture and

Two-Level Scheduling
Narasiman et al. [30] proposed Large Warp Microarchitecture

is a similar mechanism to dynamically form warps at runtime.

However, the proposal differs in the method employed for

warp formation. It all starts out with an initial warp having

size slightly greater than the width of SIMT lane. At runtime,

the technique generates smaller-warps lesser than the SIMT

width from the initial larger one, this is depicted in figure 15.

Here, a larger warp, consisting of total 16 threads arranged in

a 2-D manner of 4 threads per warp and 4 such warps. We

assume that the SIMT lane width is 4 threads. At each time

interval, the scheduler picks any of the threads and maps to

different lanes. The scheme assumes a similar register-file

organization as in Fung et al‟s. [26] dynamic warp formation

model.

Figure 15 Sub-Warp Formation at Runtime [14]

In addition to Large Warp Microarchitecture, authors also

propose a better scheduling algorithm called “Two-level

scheduling”. Previously, GPUs have been relying on Round-

Robin warp scheduling which gives equal priority to all the

concurrently executing warps. In such a scenario, memory

requests of one warp might generate row-buffer hits for other

warps requesting memory. As a consequence, simultaneously

all warps get stuck at a single high-latency memory task. The

authors proposed a fine solution to this problem by grouping

large warp sets into smaller ones. Warps of a set are scheduled

International Journal of Computer Applications (0975 – 8887)

Technical Symposium on Emerging Technologies in Computer Science

26

together and execute individually. Howbeit, in case of high

latency tasks the scheduler switches to another smaller set of

warps. According to evaluation by authors, the schemes

provide a performance speedup of 19.1% and an area

overhead of 224 bytes.

4. FUTURE DIRECTIONS AND

CHALLENGES
GPUs featuring enormous computing power and memory

bandwidth has enabled their deployment in a multitude of

High-performance applications. In Recent times, CPU-GPU

systems have gained a lot of momentum as the heterogeneous

processing elements have complementary attributes, which

enables applications to perform even better on such systems.

This section discusses challenges and future directions of

research in CPU-GPU systems and parallel computing chips.

We divide the Future research and challenges to parallel

computing chips in 3 parts, namely – Challenges to parallel

computing chips, Emerging technologies and Research tools.

4.1 Challenges to parallel computing chips.
4.1.1 Power Efficiency
Following Moore‟s Law, the number of devices packed on a

single chip are increasing exponentially, with diminishing

feature size. The result of this is that for all class of

computers, whether mobile devices or the greatest

supercomputers, power and energy will be an issue of grave

concern. Because packing more devices on a chip is easy

compared to designing powering circuits and cooling

mechanisms. A chip‟s utility is determined by its performance

at a specific power level, generally 3W for mobile devices and

150W for servers or desktops. For example, the power

consumption for future supercomputers is expected to be

20MW and the supercomputers would perform exascale (10
18

operations/second) calculations. An efficiency of

approximately 20 picojoules (pJ) per FLOP is s must.

Achieving this level of energy efficiency is a major challenge

and will require a lot of research and innovation.

4.1.2 Memory Bandwidth
The memory bandwidth growth for GPUs has been quite

slow, and renders an obstacle in high performance computing.

Several techniques can improve utilization of bandwidth such

as improving data locality and removal of overfetching of data

from DRAM which is not of use for processor. Utilization can

also be improved by increasing density of data transmitted via

DRAM, using techniques like data compression. Power is

another obstacle for off-chip memory. Assuming efficiency of

20pJ/bit for today‟s GPU chips, for fully tapping Maxwell‟s

bandwidth of 224.3 GB/sec, approximately 35.88 W is

required. Coupled with significant energy required for DRAM

access and signaling results in much greater power

consumption relative to on-chip memory (over 250 times

less). For GPUs to grow in performance, increasing off-die

memory bandwidth is a serious challenge before the research

community.

Table 2. Projected DRAM bandwidth and energy [31]

4.2 Emerging Technologies
Emerging Technologies could be one of the hot areas for

future research in GPGPUs as there has been no considerable

work till date. Emerging technologies such as non-volatile

memory(NVM), 3D stacking to GPUs. NVMs offer lower

power consumption being a lower leakage and low power

component, but still needs fine tuning to mitigate some

disadvantages. 3D stacking can provide much needed

potential to the memory bandwidth in GPUs. Nvidia

announced its latest “Volta” architecture with stacked DRAM

capabilities to be launched sometime in 2017.

Figure 16 GPU emerging technologies [32]

4.3 Research Tools
The lack of proper research tools is one of the major areas of

research in GPUs. While there are performance models

available, but there is a lack of power models for GPGPUs.

Once developed integration of such GPGPU models with

CPU models requires further work. Similarly, there is an

absence of temperature models for GPUs as well. This offers

short term research opportunities in the field.

5. CONCLUSIONS: THINKING

FORWARD
The sphere of GPGPU computing is expanding at an

unprecedented rate. With approximately 400 million CUDA-

capable GPUs sold till date. Single-threaded processors have

become history, efficient use of parallelism is required for

better architectures. The GPU has come up as a highly

capable computing engine, designed to deliver high

performance exceeding that of low latency CPUs. Early

efforts in GPUs for general purpose computing has been

remarkable, giving birth to GPGPUs as a payoff. The blend of

CPUs and GPUs resulting in development of heterogeneous

architectures proves to be better alternative than using either

alternative. Due to their “unparalleled” efficiency on a range

of applications, the CPU-GPU systems are rather becoming

pervasive, becoming the only choice for HPC. Along with

accelerating previous applications. We expect GPUs to enable

a whole plethora of new applications possible. As GPU

programming models evolve, making it easier to program, a

greater adoption rate would be seen.

In this paper, we discussed GPUs as a better computing

engine and the need of heterogeneous architectures. Following

that, we discussed general purpose computing on GPUs and

architectural highlights in section 2. In section 3, we looked at

the various schemes and technologies used to create better

GPGPU architectures. Section 4 discussed future research

directions and challenges. Finally concluding the study in

section 5.

International Journal of Computer Applications (0975 – 8887)

Technical Symposium on Emerging Technologies in Computer Science

27

6. REFERENCES
[1] URL: http://www.top500.org/lists/2015/06/.

[2] Gordon E. Moore, the co-founder and chairman emeritus

of Intel and Fairchild Semiconductor.

[3] URL: http://www.nvidia.com/object/tesla-servers.html.

[4] NVIDIA Corporation. CUDA Toolkit 4.0.

http://developer.nvidia.com/ category/zone/cuda- zone.

[5] AMD Close to the Metal (CTM). http://www.amd.com/.

[6] The AMD Fusion Family of APUs.

http://sites.amd.com/us/fusion/apu/ Pages/fusion.aspx.

[7] URL: https://en.wikipedia.org/wiki/Sandy_Bridge.

[8] URL: http://www.androidauthority.com/arm-mali-closer-

look-605021/.

[9] Khronos Group. OpenCL - the open standard for parallel

programming on heterogeneous systems.

http://www.khronos.org/opencl/

[10] URL: http://allegroviva.com/gpu-computing/difference-

between-gpu-and-cpu/#prettyPhoto

[11] URL:http://www.nvidia.com/object/what-is-gpu-

computing.html

[12] „An Introduction to Modern GPU architecture‟ by Ashu

Rege, Director of Developer Technology, NVIDIA

[13] Preliminary views on GPU technology by Burton Smith,

Technical Fellow, Microsoft Formerly, Chief Scientist at

Cray

[14] “The Architecture and Evolution of CPU-GPU Systems

for General Purpose Computing,” Manish Arora,

University of California, San Diego.

[15] URL:http://www.nvidia.in/object/gpu-computing-in.html

[16] E. Lindholm et al. NVIDIA Tesla: A unified graphics

and computing   architecture. IEEE Micro, 2008.

[17] C. M. Wittenbrink et al. Fermi GF100 gpu architecture.

IEEE Micro,   2011.

[18] NVIDIA‟s next generation cuda compute architecture:

Kepler GK110. Technical report, 2012.  

[19] URL: http://devblogs.nvidia.com/parallelforall/maxwell-

most-advanced-cuda-gpu-ever-made/

[20] URL:http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-

hardware-characteristics-over-time/

[21] URL:http://www.pcgamer.com/hardware-report-card-

nvidia-vs-amd/

[22] J. T. Adriaens et al. The case for gpgpu spatial

multitasking. High Performance Computer Architecture,

2012.

[23] J. Nickolls et al. The GPU computing era. IEEE

Micro, 2010.

[24] V. W. Lee et al. Debunking the 100x GPU vs. CPU

myth: An evaluation of throughput computing on CPU

and GPU. In International Symposium on Computer

Architecture, 2010

[25] Steven Muchnick. Advanced Compiler Design and

Imple- mentation. Morgan Kaufmann, 1997

[26] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt.

Dynamic Warp Formation and Scheduling for Efficient

GPU Control Flow. In 40th International Symposium on

Microarchitec- ture (MICRO-40), December 2007.

[27] Collange, Sylvain. Stack-less SIMT Reconvergence at

Low Cost, 2011.  

[28] Minsoo Rhu, Mattan Eraz, The Dual-Path Execution

Model for Efficient GPU Control Flow, 2013.

[29] J. Meng, D. Tarjan, and K. Skadron. Dynamic Warp

Subdivision for Integrated Branch and Memory

Divergence Tolerance. In 37th International Symposium

on Computer Architecture (ISCA-37), 2010.

[30] V. Narasiman et al. Improving GPU performance via

large warps and two-level warp scheduling. In

International Symposium on Microarchitecture, 2011.

[31] S.W Keckler et al. GPUs and The Future of Parallel

Computing. IEEE Micro,2011.

[32] [32]URL: http://www.extremetech.com/gaming/201417-

nvidias-2016-roadmap-shows-huge-performance-gains-

from-upcoming-pascal-architecture.

IJCATM : www.ijcaonline.org

