
International Journal of Computer Applications (0975 – 8887)

Technical Symposium on Emerging Technologies in Computer Science

9

Transaction Management in SOA based System

Rohit Barotia
Research Scholar,

Jagannath Universirty Jaipur

Abhay Upadhaya, PhD
Associate Professor,

Department of A.B.S.T.
 University of Rajasthan

Himanshu Pareek
Guest Faculty

Commerce College
University of Rajasthan, Jaipur

ABSTRACT
In SOA-based system there is a big problem of integration of

applications and business transactions, which often results into

mismatched trust among domains and inactive during the long

period. These activities put a big challenge to traditional

ACID transaction processing. To prove this theoretically we

presented three successive theoretical analyses which are

familiar to the present transaction theories; including the

classical ACID model the extended transaction model with

ACID relaxations. These theoretical analyses are

architecturally capable of playing the role of a loosely-

coupled, pluggable middleware, overlaying heterogeneous

legacy systems.

Keywords
ACID, EAI, ERP, SOA

1. INTRODUCTION
In the recent times SOA (service oriented architecture)

emerged as a strong competitor to conventional integrated

solutions like EAI (Enterprise Application Integration) and

ERP (Enterprise Resource Planning), and is which is claimed

by many, to be the solution for the problem of companies

system integration. It would be the strong recommendation

that the earlier versions of ERP solution should be removed

with a new and comprehensive ERP system, Instead of being

deconstructed; SOA adopts a softer and incremental approach

to system integration legacy functionalities are wrapped into

web services. EAI (Enterprise Application Integration)

solutions are the proprietary product of an individual and

cannot be integrated with other solutions. SOA-provides

interoperability, interoperability is an unrivalled choice when

we do not have the facility of starting from scratch and forcing

everyone to throw away their previous investments in the

legacy systems‟ infrastructure, training, etc., and when an

open standard-based solution is preferred to a proprietary

solution. Attaining global agreement is additionally dependent

on the ability of web services to provide interoperable

transaction mechanisms despite partial failures experienced in

individual services. The transaction problem is a distributed

system problem, since any distributed transaction needs a

mechanism to reach global agreement in the face of partial

failures. So, is the answer to web service transactions what we

have been using for distributed transaction processing over the

last two decades, but this time by applying XML and SOAP

rather than the traditional platform-dependent message

passing.

2. SOA BASED SYSTEM

INTEGRATION
SOA (Service Oriented architecture) can be viewed as the

service oriented architecture with a standard-driven approach

to integrating heterogeneous legacy applications. Service-

oriented integration is appropriate under the assumption that

leveraging legacy logic is preferable to replacing it. In SOA

web services are integrated and these services are builds the

application, web services are the internet enabled and services

oriented integration component in system integration setting.

A web service can be used to abstract the application logic

that is locked in existing legacy applications. A web service

can also compose other web services to form a service-

oriented process flow; still another service type can be used

for the coordination of other web services.

In regards to legacy applications, being “legacy” does not

necessarily mean that an application employs older

technology, e.g. mainframe. In our project, an application

deployed on a modern Java EE platform can also be deemed

“legacy”, when there is the need for it to communicate with

business functionality deployed on a different platform. SOA

usually extends the applications‟ existing multi-tier

architecture by introducing a logical service integration layer.

Service-oriented design is a extension of object- and

component-based design. The most common service-oriented

design principles include loose coupling, autonomy,

discoverability, reuse, contract based design, abstraction,

statelessness.

3. SYSTEM INTEGRATION

APPROACH
The primary reason behind system integration is for two or

more applications to collaborate on a certain task. This

collaboration can be as simple as one application retrieving a

value stored in another‟s database. There are three system

integration approaches with increasing complexity levels. We

assume that all legacy applications have a data-tier and an

application-logic tier, among other tiers.

a. Data-level point-to-point integration
In data integration level, data from „A‟ application is accessed

by „B‟ application without involving A‟s application logic,

can be classified as being among the early system integration

attempts. Incompatible database platforms stop the use of

conventional data access technologies such as remote JDBC

or ADO connections. Interoperability can be achieved by

placing a wrapper service, as an extra service integration layer

with existing data layer. Wrapper service can be used as a

central data access controller from the service client. If

designed with a common service interface, the use of the

wrapper service can result in improved performance by

getting fine-grained data traffic.

3.2 Application-level point-to-point

integration
In application-level integration, direct data access is not an

option. Application „A‟ and „B‟ exclusively communicate via

their application-logic tier. The assumption of mismatched

application platforms prevents the use of traditional remote

invocation technologies such as Java RMI, RPC or .NET. The

integration components such as proxy service or wrapper

International Journal of Computer Applications (0975 – 8887)

Technical Symposium on Emerging Technologies in Computer Science

10

service can be used with the applications layer. As the proxy

services can be easily auto generated because the proxy

service interface easily mixed with the functionality from

which the proxy is derived, like java methods. Although XML

is mixed with the proxy services, this method uses PRC-

centric message exchange pattern, as SOAP is designed to

support both the tightly coupled RPC-centric, and the loosely

coupled document-centric, message exchange patterns. A

wrapper service is used custom-developed and designed to

representation the coarser-grained legacy logic.

3.3 Process-level incorporation
Process-level incorporation uses new automated business

processes by integrating existing applications, or sub-

processes. A business process integrating disparate and

distributed legacy functionalities is also known as a

distributed workflow. To achieve process-level integration, it

is not only enough to place wrapper or proxy services in a

service integration layer on top of the legacy application

layers. As in the point-to-point application-level integration

model. We also need a resource to store and execute the

business rules which lead the workflow. Traditionally,

process-level integration is achieved through either

proprietary point-to-point integration models or a proprietary

hub-and-spoke EAI architecture.

4. CLASSICAL TRANSACTION

PROCESSING MODELS
Transactions are a fundamental concept in building reliable

distributed applications. A transaction is the grouping of a set

of operations so that they constitute an indivisible, logical unit

of work. Discussions of transaction processing models, we

will briefly state the failure model.

4.1 Failure models
Transactions are a basic concept in the development of

distributed applications. A transaction is the group of a set of

operations so that they represent an indivisible, logical unit of

work. In order to set an unambiguous situation for later

discussions of transaction processing models, we will briefly

state the failure model assumed in this paper.

 Logical Failure: The idea of placing multiple

operations within a single transactional scope is to

safeguard the system against various degrees of

logical failures, such as lost update, inconsistent

retrieval, dirty read, premature write, etc.

 Omission failures: a transaction processing system

should be capable of dealing with omission failures

in the form of process crashes, disk failures, or

communication failures. In traditional transaction

processing systems, these omission failures are

masked by assuming a stable storage and a stable

processor.

 Disk Crash: Disk crash is covered by stable

storage. After a disk crash, it is the job of a recovery

manager to keep on all committed updates from a

recovery file to disk; this can be done through RAID

(Redundant Array of Inexpensive/Independent

Disks). A recovery file is a logical concept.

 Process crash omission failures: Process crash

omission failure means replacing a crashed process

with a new process that is reinstated from stable

storage and other processes.

 Communication omission failure: There should be

reliable point to point communication channel; we

assume that reliable communication exists. In real-

world SOA, reliable communication is often

handled by another protocol on the SOA stack,

namely WS-Reliable Messaging.

5. CLASSICAL TRANSACTION

MODEL
According to the Classical transaction theory, transactions

should put on view a serial equivalence means any concurrent

execution must have the same effect as a serial execution and

failure atomicity means the effects are atomic in the event of a

server crash. In this paper these requirements are collectively

referred to as reliability guarantees. Transaction we refer to

the collection of reliability for transactions as the ACID

properties:

1. Atomicity: Atomicity means the effects of all

operations are reflected in the Transaction or none

are.

2. Consistency: Consistency means a transaction must

bring the system from one consistent state to

another.

3. Isolation: The effects of the operations are not

visible outside the Transaction until it completes

successfully. Each transaction appears as if it

executes in isolation.

4. Durability: once a transaction successfully

completes, the changes it has made will survive

system failures.

ACID Properties guarantees about: (1) single-machine

transactions, (2) distributed transactions with the

synchronous RPC/RMI communication paradigm (3)

nested transactions.

5.1 Single-machine transactions
In single machine transaction model Recovery Manager is

responsible for ensuring the atomicity and durability

properties of transactions. Resource and transaction is

managed by a database Transaction Manager. Consistency is

and is dealt with at the application level. Isolation assures you

in varying degrees by a concurrency control mechanism, such

as locking, optimistic concurrency control, or timestamp-

based concurrency control. DBMS‟s allow for choosing

between different read uncommitted, read committed,

repeatable read, serializable (isolation level) to match different

data access patterns. Object-oriented languages have those

facilities which allow client application to communicate with

database monitor through OOPS API. The System.

Transactions namespace in .NET 2.0 Framework is a case in

point.

5.2 One-phase atomic commit protocol
In one phase atomic control protocol transaction model

assumes that all resources are under the control of a single

Transaction Manager. One-phase atomic commit protocol

assumes that abort operation is completed as an atomic step

for all objects, data, etc. participating in the transaction.

6. DISTRIBUTED TRANSACTIONS
A distributed transaction accesses objects managed by

multiple, distributed servers. The classical model for

distributed transactions - both database-level and application-

level - uses a single Transaction Coordinator, and multiple

Resource Managers. While the Transaction manager initiates

and coordinates an atomic commit protocol, each individual

International Journal of Computer Applications (0975 – 8887)

Technical Symposium on Emerging Technologies in Computer Science

11

Resource Manager manages its local resource and responds to

the Transaction manager.

6.1 The two-phase atomic commit protocol
The one-phase protocol can be fitted in a single-machine

environment, because it is insufficient for distributed

transactions. In two phase commit protocol the first

preparation phase, the user are asked to give information

about the transaction to be commit. An actual commit is not

carried out until the second, completion phase, when a joint

commit decision has been reached.

5.1 The three-phase commit protocol
In this protocol, a transaction can be survived with the with

the collaborative decision. The three-phase commit protocol is

non blocking because a running process can finish without

introducing a globally inconsistent state. This can be done by

synchronization points on the communicating state machines

at the server‟s and Participants‟ processes, respectively.

Theoretically the three-phase commit protocol‟s algorithm is

superior to any other protocol but it is seldom used in practice.

This is due to the fact that blocking the two-phase commit

protocol very rarely occurs, and three phase protocol is

complicated to implement

5.2 Nested distributed transactions
A nested distributed transaction can have a hierarchical tree-

like structure. A parent transaction can execute more

dependent transactions on the parent transaction. It provides

you extra concurrency which is more flexible in a sense that

the root transaction manager can choose to commit the whole

transaction even when some of the child transaction have

failed. Locking resources in nested distributed transactions are

subject to more understated rules.

7. EXTENDED TRANSACTION MODEL
The distributed two-phase commit protocol is a well-formed,

ACID protocol. ACID behavior is too expensive in terms of

security.

7.1 Relaxing the ACID properties
Some researcher has proposed ways to relax the ACID

properties. This section outlines a number of the possible

ACID relaxations.

In larger enterprise systems, the results of the distributed

system often involve complicated business logic which is

difficult to integrate. In an extended transaction model, the

atomicity property can be relaxed

1. Participants can only be included in the final results.

2. Participants can be participated in the local

transaction commit without waiting for the global

transaction.

8. WEB SERVICE TRANSACTION

PROCESSING MODEL
It‟s a need to adopt the classical and extended transaction

processing models in a service-oriented architecture. It is a

challenge to understand the use of SOA impacts on transaction

and why the ACID transaction model is not sufficient.

8.1 Impact of web services on transaction

 management
It becomes more complex if we provide less efficient solution

as solution compared to transaction management at the

application or database level because web services usually

wrap around common functionality in legacy systems which

otherwise would not be able to communicate. These legacy

systems execute in different environment with the

implementation of ACID-style two-phase or three-phase

commit. If all the services are managed within a single

transaction, web services have no role in the execution.
Transaction management at the web service level should only

be considered when using web services to integrate disparate

systems. Interoperability is provided, by wrapping legacy

systems behind a web service interface, between otherwise

incompatible systems. Examples of such systems are Web

Sphere, CORBA, EJB, .NET, SAP etc. The figure also display

the possibility for transaction coordination middleware to

work in conjunction with business process workflows

expressed in Business Process Execution Language. The

purpose is to coordinate all the layers to reach a common

decision whether to commit, rollback, or compensate the

changes done according the business workflow. We assume

that web services are rightfully employed.

8.2 A reference model for web service

transaction management
We have constructed a reference model for web service

transaction management. This model serves the purpose of

summarizing a theoretical analysis and serving a transaction

which focus on building a service oriented middleware. This

model represents three distributed “actors” in web transaction.

Service Container Framework: This framework handles the

subsidy applications well as the document handling. On the

behalf of these services the service container framework

initiates the transaction

The Coordination Framework: This framework act as the

extension of the web services protocols. Functionalities are as

follows:

a) Activation service through which we start a new

transaction

 context, so it is referred to as Coordination

Context.

b) Registration service through which a participant

joins an existing transaction scope.

c) Completion service through which transaction is

terminated.

The Legacy Server: The Legacy Server is a server through

which a legacy server is hosted. Local resources are accessed

through a local Resource Manager API. The resource manager

is responsible to set the remote user to capture its local

resource.

8.3 Three Phases In The Lifecycle Of A

Transactional Service
The three phases of lifecycle are drawn inside the Service

Container; this proves the fact that all transaction services are

“hosted” by Service Containers.

 In the Enlistment phase two types of messages are

exchanged between the user and a server.

1) Activation: The User initiates the transaction and

issues a request to the Activation service for

creating a new Coordination Context.

International Journal of Computer Applications (0975 – 8887)

Technical Symposium on Emerging Technologies in Computer Science

12

2) Registration: user wishes to join an transaction

scope send requests to the Registration service.

 In the Execution phase, the application logic is

executed, involving the invocation of one or more child

services running on legacy servers.

 In the Termination phase, specific transaction protocols

will be driven to their termination.

9. CONCLUSION
In we have analyzed the classical transaction model and

surveyed four

Variants of the commit mechanism: single-machine one-phase

commit, distributed two-phase commit, distributed three-phase

commit and nested two phases commit. We conclude that the

classical model is a good fit for single machine transactions

and short-lived distributed transactions across closely

integrated trust domains. The classical transaction model has

the strength of providing the safe and strict ACID guarantees.

However, its use of exclusive long-duration locks (pessimistic

concurrency control) or tentative update versions (optimistic

concurrency control) is in disharmony with asynchronous,

long-running transactions, or transactions that require interim

results to be visible to concurrent users. this paper we are

trying to analyze the characteristics of transaction in SOA and

how the transaction is different from traditional programming.

In the world of web services where long-running transactions

are more important rather than the exception, blocking

transaction processing models such as the two-phase commit

protocol are challenged. New transactional models are

becoming dominant than ACID based transactions. Various

combinations of the web services are required to use the

various protocols to bridge the gap between execution

environments. In this analysis the design criteria is given,

which is the base for the reference model which can be

applicable in the designing of web service transaction

management middleware. In our theoretical analysis, we have

aimed to spell out the new challenges SOA has posed in terms

of the management of distributed transactions.

10. REFERENCES
[1] [AT-Interop, 2004]WS-Atomic Transaction Interop

 Scenarios. November, 2004.

[2] [BA-Interop, 2006] WS-Business Activity Interop

Scenarios

 1.1 November, 2006.

[3] [Bernstein, 1997] Philip A. Bernstein and Eric

Newcomer.Principles of Transaction Processing. Morgan

Kaufman.

[4] Business Transaction Protocol (BTP) Committee

 Specification (2002).

[5] [Chappell, 2004] David A Chappell. Enterprise Service

Bus Theory in Practice. O‟Reilly, USA.

[6] [Denzin, 1978] Norman K. Denzin. The research Act.

 McGraw Hill.

[7] [Ementor, 2006-b] Ementor. Use Case Model – CAP.

[8] [Ementor, 2006-c]Ementor. Data Model – CAP.

[9] [Erl, 2005] Thomas Erl. Service-Oriented Architecture –

 Concepts, Technology, and Design. Prentice Hall. New

Jersey, USA.

[10] [Fowler, 2003] Martin Fowler. UML distilled A brief

guide to the standard object modeling Language.

Pearson Education Inc., Boston.

[11] [Frank, 2006] Lars Frank. Databases with Relaxed

ACID Properties. Copenhagen Business School Press.

[12] [Hasan, 2006] Jeffrey Hasan and Mauricio Duran.

Expert Service-oriented Architecture in C# 2005. 2nd. A

Press, California, USA.

[13] [IEEE, 1990] IEEE. Standard Glossary of Software

Engineering Terminology. (IEEE Std. 610.12-1990).

IEEE Computer Soc.

[14] [Kaye, 2003] Doug Kaye. Loosely Coupled - the

MissingPieces of Web Services. RDS Press, California,

USA.

[15] [Little, 2004] Mark Little, Jon Maron and Greg Pavlik.

Java Transaction Processing.Prentice Hall.

[16] [Löwy, 2005]Juval Löwy. Introducing System.

 Transactions. Microsoft Press.

[17] [Löwy, 2007]Juval Löwy. Programming WCF Services.

 O‟Reilly, USA.

[18] [Lublinsky, 2003] Boris Lublinsky and Dmitry

 Tyomkin. Dissecting Service-oriented Architectures.

 Business Integration Journal, USA.

[19] [McConnel, 2004] Steve McConnell. Code Example.

 Microsoft Press, Redmond, USA.

[20] [Tanenbaum, 2006] Andres S. Tanenbaum and

Maarten Van Steen. Distributed Systems

 Principles and Paradigms. Pearson Prentice Hall, New

 Jersey, USA.

[21] [Project Tango] Sun‟s Project Tango - Web

 Services Interoperability Technologies

[22] [Møller, 2004] Kasper Møller. Integration of

Applications.Thesis report. IT University of Copenhagen,

Denmark.

[23] Myers, 1979] Glenford J. Myers. The Art of

 Software Testing. Wiley, New York, USA.

[24] Löwy, 2007] Juval Löwy. Programming WCF

Services. O‟Reilly, USA.

[25] [Frank, 2006] Lars Frank. Databases with Relaxed

ACID Properties. Copenhagen Business School

 Press.

IJCATM : www.ijcaonline.org

