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ABSTRACT 

In this paper we provide an integrated defense solution that 

enables filtering and admission challenges to be implemented 

in a distributed manner throughout the network on behalf of 

the target. The admission challenge is provided through the 

client puzzles employed at the target. This scuttles any 

attempt made by the attacker to flood the target because until 

the client solves the puzzle it isn’t granted access to the 

targets resources. If the attack persists or worsens, then the 

target could propagate a distress signal upstream to its Internet 

Service Provider (ISP), who could deploy proxy defenses at 

the ingress points to the ISP’s network on behalf of the target. 

In general, the target’s ISP could request other upstream ISPs 

to also deploy the defenses for the target by using the 

pushback technique, so that the attack traffic is blocked as 

close as possible to the source of the traffic. A key advantage 

of this proposed approach is that it could enable the defenders 

to harness greater computational resources in order to 

counteract the growth in attack power that is becoming 

available to attackers.   
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1. INTRODUCTION 
The Internet connects hundreds of millions of computers 

across the world running on multiple hardware and software 

platforms. It serves uncountable personal and professional 

needs for people and corporations. However, this 

interconnectivity among computers also enables malicious 

users to misuse resources and mount denial of service (DoS) 

attacks against arbitrary sites. In a denial of service attack, a 

malicious user exploits the connectivity of the Internet to 

cripple the services offered by a victim site, often simply by 

flooding a victim with many requests. A DoS attack can be 

either a single-source attack, originating at only one host, or a 

multi-source, where multiple hosts coordinate to flood the 

victim with a barrage of attack packets. The latter is called a 

distributed denial of service (DDoS) attack. The goal of a 

DDoS attack is to compromise scores of computer 

systems(known as zombies/slaves) spread over the Internet 

using a variety of methods and targeting a single system 

thereby causing denial of service for users of the targeted 

system. The flood of incoming messages to the target system 

essentially forces it to shut down, thereby denying service of 

the system to legitimate users. A Distributed Denial of Service 

Attack involves typically a master and many slaves/zombies. 

The master represents the host used by the attacker to 

coordinate the attacks, while the zombies represent the 

vulnerable systems exploited by the attacker. Prior to 

launching an attack, the attacker scans the systems and 

uploads the attacking software into the master and zombie 

hosts. This allows the attacker to remotely control the each 

zombie and master host without running the risk of being 

detected. 

.      

Fig 1: DDoS attack 

Attackers constantly modify their tools to bypass these 

security systems, and researchers in turn modify their 

approaches to handle new attacks.  The  DDoS  field  is  

evolving quickly,  and  it  is  becoming  increasingly  hard  to  

grasp  a  global  view  of  the  problem. In Feb. 2000, a string 

of DDoS attacks crippled popular wed sites including 

CNN.com, yahoo.com, eBay.com for several hours. In 2003, 

for example, one honey pot research project saw 15,164 

unique zombies from a large botnet within days. In 2004, the 

witty worm created 12,000 zombies within 45min. IP 

spoofing has often been exploited by DDOS attack to 1) 

conceal flooding sources and dilute localities in flooding 

traffic 2) coax legitimate host into becoming reflectors 

redirecting and amplifying flooding traffic. 

2. RELATED WORK 
Denial of service attacks attempt to exhaust or disable access 

to resources at the victim. These resources are either network 

bandwidth, computing power, or operating system data 

structures. Attack detection identifies an ongoing attack using 

either anomaly-detection [30, 6, 14] or signature-scan 

techniques [32, 21]. Most response mechanisms attempt to 

alleviate the damage caused by the attack by taking reactive  

measures like reducing the intensity of the attack by blocking 

attack packets [22, 23, 6], or tracing the source of the attack 

using traceback techniques [26, 15, 28, 2, 11]. Besides the 

reactive techniques discussed above, some systems take 

proactive measures to discourage DoS activity, for example, 

both CenterTrack [25] and SOS [3] use overlay techniques 

with selective re-routing to prevent large flooding attacks. 

MULTOPS exploits the correlation of incoming and outgoing 

packet rates at different level of subnet prefix aggregation to 

identify attacks [30]. Wang provides a rigorous statistical 

model to detect abrupt changes in the number of TCP SYN 

packets as compared to the TCP SYN ACK packets [14]. All 

the above techniques are based on anomaly-detection which is 

faster than static signature-scan techniques used by Snort [21]. 

Snort has one main disadvantage; new attacks that do not have 

well-define signatures may go undetected until the signature is 

defined. Response to an attack consists of localizing the 

attackers and reducing the intensity of the attack. The SPIE 

systems can traceback individual packets within a domain 

using packet digests [2]. On the other hand, Burch and 

Cheswick propose a technique to traceback to the Client 

puzzles [4, 24, 18, 1, 10, 31, 17, 19, 20, 16, 35, 34] have been 

proposed as a mechanism for controlling undesirable network 
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communication like virus and worm attacks [12, 29, 5]. This 

approach forces each client to solve a cryptographic puzzle 

thus imposing a formidable computational challenge to the 

attackers who aim to slow down the server by generating 

legitimate service requests and using up the servers resources. 

Such a mechanism gives devices the ability to selectively 

push back load to the source of an attack when overloaded. To 

apply a binary filter to traffic for preventing undesirable 

communication is difficult due to impact of false positives and 

the inability to differentiate good traffic from bad. Client 

puzzles provide an analog control against traffic that may 

potentially be deleterious and also limit an attacker’s ability to 

send bad traffic to multiple victims concurrently by 

consuming their computational resources. To reduce the 

intensity of an attack, Mahajan proposed an aggregate 

congestion control and pushback technique to identify and 

throttle the attack flows [23]. Pushback is a cooperative 

technique that allows routers to block an aggregate upstream. 
Our approach combines filtering and admission challenges in 

a pushback scheme. 

3. PROPOSED WORK 
Please use a 9-point Times Roman font, or other Roman font 

with serifs, as close as possible in appearance to Times 

Roman in which these guidelines have been set. The goal is to 

have a 9-point text, as you see here. Please use sans-serif or 

non-proportional fonts only for special purposes, such as 

distinguishing source code text. If Times Roman is not 

available, try the font named Computer Modern Roman. On a 

Macintosh, use the font named Times.  Right margins should 

be justified, not ragged. A. Client Puzzle 

There are several important goals that must be achieved in 

order for client puzzles to be deployed effectively at the 

network layer. These goals include: 

Lightweight: Puzzle creation and solution verification should 

be inexpensive and low on computation task on part of the 

server so that receiving a flood of requests will not exhaust its 

computational resources. 

Adjustable: In order to provide graceful degradation of 

services, the server should be able to increase and decrease the 

computational resources required of the client as the server’s 

load increases and decreases. 

Universal Deployment: The protocol must be sufficiently 

flexible to support universal puzzle issuance at arbitrary 

points in the network. Furthermore it should be solvable on 

most types of client hardware. 

Cheat Proof: First, it should not be possible for a client to 

cheat by pre-computing the solutions to puzzles. Puzzle 

answers should not be valid indefinitely and should not be 

usable by other clients. Stateless: The puzzle should also be 

stateless, so the server does not have to store the solution or 

any other information about the client while it is solving the 

puzzle. Otherwise, a flood of requests may exhaust the 

server’s memory by filling it up with stored state information. 

Reusable: The same puzzle may be given to several clients. 

Knowing the solution of one or more clients does not help a 

new client in solving the puzzle.  

Minimal application impact: The use of the puzzle protocol 

should not break latency-sensitive applications such as 

interactive voice, streaming video and networked games. 

Clients who are able and willing to solve puzzles should be 

able to run all of their applications seamlessly. 

4. PUZZLE PROTOCOL  
The protocol starts with the client issuing a client nonce (Nc) 

to the server. The client nonce contains client specific 

information which helps the server to distinguish it from other 

clients. Client nonces also prevent a server from continually 

issuing puzzles indefinitely to a client that is no longer 

requesting service. Similar to client nonce even a server 

maintains a server nonce. Server nonces are kept secret and 

are used to efficiently verify answers. On receiving the client 

nonce the server generates a puzzle and an answer to it. It also 

calculates the hash of the corresponding answer and stores it 

accordingly in the server nonce table and then returns the 

client nonce, puzzle and hash to the client. The advantage of 

generating the hash is that it allows the server to discard the 

otherwise memory consuming information about the 

respective clients. After receiving the client nonce the client 

checks its nonce table to verify the validity of the nonce. If 

valid it goes ahead and solves the puzzle and presents the 

answer along with the hash to the server. The server uses the 

hash to generate a corresponding hash from the server nonce 

table. If it matches, the correct answer has been given and the 

server accepts the packet. 

 

Fig 2:  Full Client Puzzle Protocol 

Some of the puzzles are, Time-lock puzzle [36], Hash reversal 

puzzle [6], multiple hash reversal puzzle [37], Hint Based 

hash reversal puzzle [38]. We here present a new way to use 

puzzle to mitigate spoofed DDoS attack. At first the client 

puzzles are first implemented centrally at the target. If the 

attack persists or worsens, then the target could propagate a 

distress signal upstream to its Internet Service Provider (ISP), 

who could deploy puzzles at the ingress points to the ISP’s 

network on behalf of the target. In general, the target’s ISP 

could request other upstream ISPs to also deploy the defenses 

for the target, so that the attack traffic is blocked as close as 

possible to the source of the traffic. The distress signal would 

be propagated using pushback techniques as discussed in the 

nextsection. 

Fig 3: Comparison of various Client Puzzle Protocols 
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In this paper we are using the “Hint based hash reversal 

puzzle”. As figure 3 shows that the generation time for time-

lock puzzles is several orders of magnitude greater than that 

of the hint based hash-reversal puzzle hence it’s our obvious 

choice. Its basic approach is to provide the client with a hash 

reversal puzzle and a hint which would give the client a 

chance to solve the puzzle. The difficulty level of the puzzle 

can be increased or decreased by suitably varying the hint.  To 

generate a puzzle with difficulty level f(D) the server passes 

the client a hash and a hint, x- u(0,D) where x is a randomly 

generated number used as input to hash and u(0,D) is a 

randomly chosen number located between 0 and D. The client 

then uses the hint to search the range to get the answer. The 

number of hashes done by the client to find x varies 

probabilistically but the expected value is D/2. The creation of 

puzzle is outsourced to a secure entity we call a bastion. An 

arbitrary number of servers or routers can use the same 

bastion, and can safely share the same set of puzzles. Once 

constructed, the puzzles will be digitally signed by the bastion 

so that they can be redistributed by anyone. The client can 

solve the puzzles off-line, so that users don’t have to wait for 

puzzles to be solved. Solving a puzzle gives a client access, 

for a time interval, to a channel on the server (i.e.) to a small 

slice of the servers’ resources and the server ensures no virtual 

channel uses more than its fair share of available resources. 

The client must present their solution with the server cookie 

which was attached to the puzzle. To verify correctness, the 

server uses the timestamp to index into the nonce table and 

obtains the corresponding nonce, performs a hash of the client 

solution with the nonce and checks to see if it matches the 

echoed server cookie. C. Pushback Scheme 

A network-based solution, Pushback, tries to solve the 

problem of spoofed DDoS attacks from within the network 

using the congestion level between different routers. When a 

link’s congestion level reaches a certain threshold, the sending 

router starts dropping packets and tries to identify illegitimate 

traffic by counting the number of times packets are dropped 

for a certain destination IP address, since the attacker 

constantly changes the source IP address. The router then 

sends a pushback message to the routers connecting it to other 

congested links, asking them to limit the traffic arriving to this 

destination. To illustrate Pushback, consider the network in 

Figure 4. The server D is under attack; the routers Rn are the 

last few routers by which traffic reaches D. The thick lines 

show links through which attack traffic is flowing; the thin 

lines show links with no bad traffic. 

  

Fig 4: DDoS Attack in Progress 

Only the last link is actually congested, as the inner part of the 

network is adequately provisioned. Without any special 

measure, hardly any non-attack traffic can reach the 

destination. Some of the non-attack traffic is flowing through 

the links between R2-R5, R3-R6, R5-R8, R6-R8, and from R8 

to D, but most of it is dropped due to congestion in R8-D. 

With Pushback, R8 sends messages to R5 and R6 telling them 

to rate-limit traffic for D. Even though the links downstream 

from R5 and R6 are not congested, when packets arrive at R8 

they are going to be dropped anyway, so they may as well be 

dropped at R5 and R6. These two routers, in turn, propagate 

the request up to R1, R2, and R3, telling them to rate-limit the 

bad traffic, allowing some of the ‘poor’ traffic, and more of 

the good traffic, to flow through. 

5. AGGREGATE DETECTION 
When the attack persists or worsens, then the target tries to 

inform the upstream routers to block the traffic using 

pushback. The first step towards this is to detect and create an 

aggregate set (congestion signature). We present such an 

algorithm here. We start by considering the drop set, that is, 

the set of packets that are dropped by the target.  A drop set 

should be exhaustive such that malicious packets don’t slip 

away. On the other hand it must not also be resource intensive 

i.e. it shouldn’t use a lot of resources on the server’s part. 

Only the packets which most frequently satisfy the definition 

of “malicious” are included in the drop set. The important 

feature is that the algorithm should run in less time that it 

takes to collect the packets. In order to obtain the drop set it 

starts by deciding whether the congestion level is high 

enough, that is, the drop rate is high enough. If it is seen that 

the traffic on a particular input link (Wi) exceeds a certain 

threshold value of the traffic on the output link (Wo) say Wi> 

1.5Wo then the algorithm checks each of the dropped packets 

for malicious signatures. The dropped packets can be 

compared according to their eventual destination addresses. 

The packets with the highest count are included in the drop 

set.Apart from the information of the characteristics of the 

packets dropped by the router it must also include information 

to distinguish between normal traffic and attack traffic which 

can be obtained by applying the algorithms as discussed in 

[30,6,14,31]. After including all the information regarding the 

dropped packets and characteristics of the traffic it gives us 

the drop set for a particular router. As the pushback signal is 

propagated the size of the drop set keeps increasing to make it 

more exhaustive and precise. 

6.  IMPLEMENTATION OF PUSHBACK 
Once the router has identified the drop set( congestion 

signature), the next step is to communicate that information to 

its upstream links. The messages exchanged by routers 

implementing Pushback are described in detail in [23 ]. There 

are three such messages: request, response, and status. The 

pushback request is shown in Figure 5. 

                         Various header fields 

                            RLS-ID 

                       Maximum depth 

                        Depth of Requesting 

                        Bandwidth Limit 

                         Expiration Time 

                   Congestion Signature 

. Fig 5:  Pushback Request 

The header fields contain many fields like type of pushback 

(PType), type of feedback (SRMode) etc. Each request has a 

Rate-Limiting Session Identifier (RLS-ID), which is used to 

R1  R2 R3 R4 

R5 R6 R7 

R8 

D 
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match responses to requests. If we were to consider the whole 

network as a tree with the originator of the pushback request 

as the root and all other routers as the child nodes then the 

maximum depth signifies the last level of the tree till which 

the pushback request will be propagated. The depth of the 

originator is considered 0. With each upstream router the 

depth is incremented by 1. The maximum depth of 

propagation is set by the originating router and passed along 

by each subsequent router. Depth information is useful in 

setting timers for sending feedback.  The bandwidth limit is 

expressed in bytes per second and defines an upper bound for 

the bandwidth to be provided to an aggregate in case of 

congestion.  When the depth becomes 0 before reaching its 

eventual destination the pushback request is discarded. 

However the router marks the request and makes an entry into 

its table for future use. If the pushback refresh message 

arrives after the expiration time then that entry is deleted. 

Thus the expiration time is the time period after which the 

pushback request expires if no REFRESH messages arrive. 

The congestion signature includes specific information about 

the aggregates which are to be rate limited. The aggregates are 

identified by the algorithm as explained above. All those 

traffic which come under the purview of the aggregate 

definition are rate limited by the upstream routers. Each of 

these upstream routers employs their own aggregate detection 

algorithms in order to make the congestion signature more 

exhaustive. In this way the attack traffic is slowly rate limited 

near its source. 

7. CONCLUSION AND FUTURE WORK 
In this paper, we presented a defending technique against 

spoofed DDoS traffic. This technique intends to complement, 

rather than replace existing schemes. For instance, the 

integrated solution combines filtering and admission 

challenges with a pushback scheme between the target and the 

upstream ISPs. In our approach, we place the client puzzle 

mechanism centrally at the router at which the attack is taking 

place by which most of the spoofed packets are discarded. 

When the attacker strengthens its attack volume such that it 
surpasses the defending capacity of the router under attack 

then it sends a distress signal using the pushback technique to 

the upstream ISP’s to employ proxy defense mechanisms on 

its behalf so as to limit the attack traffic right near the source. 

In this way as the algorithm keeps working it continuously 

builds up an attack database which will eventually mitigate 

the attack traffic to a great extent. A key advantage of this 

proposed approach is that it enables the defenders to harness 

greater computational resources in order to counteract the 

growth in attack power that is becoming available to attackers. 
Many open issues still need to be addressed, both in terms of 

research and management. The first issue is how to ensure 

that the pushback signal can be trusted, so that it is not open to 

manipulation by attackers. The problem of managing trust in a 

distributed environment is a challenging issue for research. 

The final issue is how to ensure the scalability of the 

pushback approach when it involves multiple ISPs and targets 

with many simultaneous attacks. 
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