
International Journal of Computer Applications (0975 – 8887)

National Conference on Trends in Advanced Computing & Information Technology-2016

33

New Integrated Approach for Mitigating DDOS Attacks

Pranay Meshram

Information Technology
PJLCOE

Nagpur ,India

Ravindra Jogekar
Computer Sci.& Engineering

PJLCOE
Nagpur ,India

Pratibha Bhaisare
Computer Sci.& Engineering

AGPCOE
Nagpur ,India

ABSTRACT

In this paper we provide an integrated defense solution that

enables filtering and admission challenges to be implemented

in a distributed manner throughout the network on behalf of

the target. The admission challenge is provided through the

client puzzles employed at the target. This scuttles any

attempt made by the attacker to flood the target because until

the client solves the puzzle it isn’t granted access to the

targets resources. If the attack persists or worsens, then the

target could propagate a distress signal upstream to its Internet

Service Provider (ISP), who could deploy proxy defenses at

the ingress points to the ISP’s network on behalf of the target.

In general, the target’s ISP could request other upstream ISPs

to also deploy the defenses for the target by using the

pushback technique, so that the attack traffic is blocked as

close as possible to the source of the traffic. A key advantage

of this proposed approach is that it could enable the defenders

to harness greater computational resources in order to

counteract the growth in attack power that is becoming

available to attackers.

Keywords

Client Puzzle, Pushback, Integrated Approach

1. INTRODUCTION
The Internet connects hundreds of millions of computers

across the world running on multiple hardware and software

platforms. It serves uncountable personal and professional

needs for people and corporations. However, this

interconnectivity among computers also enables malicious

users to misuse resources and mount denial of service (DoS)

attacks against arbitrary sites. In a denial of service attack, a

malicious user exploits the connectivity of the Internet to

cripple the services offered by a victim site, often simply by

flooding a victim with many requests. A DoS attack can be

either a single-source attack, originating at only one host, or a

multi-source, where multiple hosts coordinate to flood the

victim with a barrage of attack packets. The latter is called a

distributed denial of service (DDoS) attack. The goal of a

DDoS attack is to compromise scores of computer

systems(known as zombies/slaves) spread over the Internet

using a variety of methods and targeting a single system

thereby causing denial of service for users of the targeted

system. The flood of incoming messages to the target system

essentially forces it to shut down, thereby denying service of

the system to legitimate users. A Distributed Denial of Service

Attack involves typically a master and many slaves/zombies.

The master represents the host used by the attacker to

coordinate the attacks, while the zombies represent the

vulnerable systems exploited by the attacker. Prior to

launching an attack, the attacker scans the systems and

uploads the attacking software into the master and zombie

hosts. This allows the attacker to remotely control the each

zombie and master host without running the risk of being

detected.

.

Fig 1: DDoS attack

Attackers constantly modify their tools to bypass these

security systems, and researchers in turn modify their

approaches to handle new attacks. The DDoS field is

evolving quickly, and it is becoming increasingly hard to

grasp a global view of the problem. In Feb. 2000, a string

of DDoS attacks crippled popular wed sites including

CNN.com, yahoo.com, eBay.com for several hours. In 2003,

for example, one honey pot research project saw 15,164

unique zombies from a large botnet within days. In 2004, the

witty worm created 12,000 zombies within 45min. IP

spoofing has often been exploited by DDOS attack to 1)

conceal flooding sources and dilute localities in flooding

traffic 2) coax legitimate host into becoming reflectors

redirecting and amplifying flooding traffic.

2. RELATED WORK
Denial of service attacks attempt to exhaust or disable access

to resources at the victim. These resources are either network

bandwidth, computing power, or operating system data

structures. Attack detection identifies an ongoing attack using

either anomaly-detection [30, 6, 14] or signature-scan

techniques [32, 21]. Most response mechanisms attempt to

alleviate the damage caused by the attack by taking reactive

measures like reducing the intensity of the attack by blocking

attack packets [22, 23, 6], or tracing the source of the attack

using traceback techniques [26, 15, 28, 2, 11]. Besides the

reactive techniques discussed above, some systems take

proactive measures to discourage DoS activity, for example,

both CenterTrack [25] and SOS [3] use overlay techniques

with selective re-routing to prevent large flooding attacks.

MULTOPS exploits the correlation of incoming and outgoing

packet rates at different level of subnet prefix aggregation to

identify attacks [30]. Wang provides a rigorous statistical

model to detect abrupt changes in the number of TCP SYN

packets as compared to the TCP SYN ACK packets [14]. All

the above techniques are based on anomaly-detection which is

faster than static signature-scan techniques used by Snort [21].

Snort has one main disadvantage; new attacks that do not have

well-define signatures may go undetected until the signature is

defined. Response to an attack consists of localizing the

attackers and reducing the intensity of the attack. The SPIE

systems can traceback individual packets within a domain

using packet digests [2]. On the other hand, Burch and

Cheswick propose a technique to traceback to the Client

puzzles [4, 24, 18, 1, 10, 31, 17, 19, 20, 16, 35, 34] have been

proposed as a mechanism for controlling undesirable network

International Journal of Computer Applications (0975 – 8887)

National Conference on Trends in Advanced Computing & Information Technology-2016

34

communication like virus and worm attacks [12, 29, 5]. This

approach forces each client to solve a cryptographic puzzle

thus imposing a formidable computational challenge to the

attackers who aim to slow down the server by generating

legitimate service requests and using up the servers resources.

Such a mechanism gives devices the ability to selectively

push back load to the source of an attack when overloaded. To

apply a binary filter to traffic for preventing undesirable

communication is difficult due to impact of false positives and

the inability to differentiate good traffic from bad. Client

puzzles provide an analog control against traffic that may

potentially be deleterious and also limit an attacker’s ability to

send bad traffic to multiple victims concurrently by

consuming their computational resources. To reduce the

intensity of an attack, Mahajan proposed an aggregate

congestion control and pushback technique to identify and

throttle the attack flows [23]. Pushback is a cooperative

technique that allows routers to block an aggregate upstream.
Our approach combines filtering and admission challenges in

a pushback scheme.

3. PROPOSED WORK
Please use a 9-point Times Roman font, or other Roman font

with serifs, as close as possible in appearance to Times

Roman in which these guidelines have been set. The goal is to

have a 9-point text, as you see here. Please use sans-serif or

non-proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should

be justified, not ragged. A. Client Puzzle

There are several important goals that must be achieved in

order for client puzzles to be deployed effectively at the

network layer. These goals include:

Lightweight: Puzzle creation and solution verification should

be inexpensive and low on computation task on part of the

server so that receiving a flood of requests will not exhaust its

computational resources.

Adjustable: In order to provide graceful degradation of

services, the server should be able to increase and decrease the

computational resources required of the client as the server’s

load increases and decreases.

Universal Deployment: The protocol must be sufficiently

flexible to support universal puzzle issuance at arbitrary

points in the network. Furthermore it should be solvable on

most types of client hardware.

Cheat Proof: First, it should not be possible for a client to

cheat by pre-computing the solutions to puzzles. Puzzle

answers should not be valid indefinitely and should not be

usable by other clients. Stateless: The puzzle should also be

stateless, so the server does not have to store the solution or

any other information about the client while it is solving the

puzzle. Otherwise, a flood of requests may exhaust the

server’s memory by filling it up with stored state information.

Reusable: The same puzzle may be given to several clients.

Knowing the solution of one or more clients does not help a

new client in solving the puzzle.

Minimal application impact: The use of the puzzle protocol

should not break latency-sensitive applications such as

interactive voice, streaming video and networked games.

Clients who are able and willing to solve puzzles should be

able to run all of their applications seamlessly.

4. PUZZLE PROTOCOL
The protocol starts with the client issuing a client nonce (Nc)

to the server. The client nonce contains client specific

information which helps the server to distinguish it from other

clients. Client nonces also prevent a server from continually

issuing puzzles indefinitely to a client that is no longer

requesting service. Similar to client nonce even a server

maintains a server nonce. Server nonces are kept secret and

are used to efficiently verify answers. On receiving the client

nonce the server generates a puzzle and an answer to it. It also

calculates the hash of the corresponding answer and stores it

accordingly in the server nonce table and then returns the

client nonce, puzzle and hash to the client. The advantage of

generating the hash is that it allows the server to discard the

otherwise memory consuming information about the

respective clients. After receiving the client nonce the client

checks its nonce table to verify the validity of the nonce. If

valid it goes ahead and solves the puzzle and presents the

answer along with the hash to the server. The server uses the

hash to generate a corresponding hash from the server nonce

table. If it matches, the correct answer has been given and the

server accepts the packet.

Fig 2: Full Client Puzzle Protocol

Some of the puzzles are, Time-lock puzzle [36], Hash reversal

puzzle [6], multiple hash reversal puzzle [37], Hint Based

hash reversal puzzle [38]. We here present a new way to use

puzzle to mitigate spoofed DDoS attack. At first the client

puzzles are first implemented centrally at the target. If the

attack persists or worsens, then the target could propagate a

distress signal upstream to its Internet Service Provider (ISP),

who could deploy puzzles at the ingress points to the ISP’s

network on behalf of the target. In general, the target’s ISP

could request other upstream ISPs to also deploy the defenses

for the target, so that the attack traffic is blocked as close as

possible to the source of the traffic. The distress signal would

be propagated using pushback techniques as discussed in the

nextsection.

Fig 3: Comparison of various Client Puzzle Protocols

International Journal of Computer Applications (0975 – 8887)

National Conference on Trends in Advanced Computing & Information Technology-2016

35

In this paper we are using the “Hint based hash reversal

puzzle”. As figure 3 shows that the generation time for time-

lock puzzles is several orders of magnitude greater than that

of the hint based hash-reversal puzzle hence it’s our obvious

choice. Its basic approach is to provide the client with a hash

reversal puzzle and a hint which would give the client a

chance to solve the puzzle. The difficulty level of the puzzle

can be increased or decreased by suitably varying the hint. To

generate a puzzle with difficulty level f(D) the server passes

the client a hash and a hint, x- u(0,D) where x is a randomly

generated number used as input to hash and u(0,D) is a

randomly chosen number located between 0 and D. The client

then uses the hint to search the range to get the answer. The

number of hashes done by the client to find x varies

probabilistically but the expected value is D/2. The creation of

puzzle is outsourced to a secure entity we call a bastion. An

arbitrary number of servers or routers can use the same

bastion, and can safely share the same set of puzzles. Once

constructed, the puzzles will be digitally signed by the bastion

so that they can be redistributed by anyone. The client can

solve the puzzles off-line, so that users don’t have to wait for

puzzles to be solved. Solving a puzzle gives a client access,

for a time interval, to a channel on the server (i.e.) to a small

slice of the servers’ resources and the server ensures no virtual

channel uses more than its fair share of available resources.

The client must present their solution with the server cookie

which was attached to the puzzle. To verify correctness, the

server uses the timestamp to index into the nonce table and

obtains the corresponding nonce, performs a hash of the client

solution with the nonce and checks to see if it matches the

echoed server cookie. C. Pushback Scheme

A network-based solution, Pushback, tries to solve the

problem of spoofed DDoS attacks from within the network

using the congestion level between different routers. When a

link’s congestion level reaches a certain threshold, the sending

router starts dropping packets and tries to identify illegitimate

traffic by counting the number of times packets are dropped

for a certain destination IP address, since the attacker

constantly changes the source IP address. The router then

sends a pushback message to the routers connecting it to other

congested links, asking them to limit the traffic arriving to this

destination. To illustrate Pushback, consider the network in

Figure 4. The server D is under attack; the routers Rn are the

last few routers by which traffic reaches D. The thick lines

show links through which attack traffic is flowing; the thin

lines show links with no bad traffic.

Fig 4: DDoS Attack in Progress

Only the last link is actually congested, as the inner part of the

network is adequately provisioned. Without any special

measure, hardly any non-attack traffic can reach the

destination. Some of the non-attack traffic is flowing through

the links between R2-R5, R3-R6, R5-R8, R6-R8, and from R8

to D, but most of it is dropped due to congestion in R8-D.

With Pushback, R8 sends messages to R5 and R6 telling them

to rate-limit traffic for D. Even though the links downstream

from R5 and R6 are not congested, when packets arrive at R8

they are going to be dropped anyway, so they may as well be

dropped at R5 and R6. These two routers, in turn, propagate

the request up to R1, R2, and R3, telling them to rate-limit the

bad traffic, allowing some of the ‘poor’ traffic, and more of

the good traffic, to flow through.

5. AGGREGATE DETECTION
When the attack persists or worsens, then the target tries to

inform the upstream routers to block the traffic using

pushback. The first step towards this is to detect and create an

aggregate set (congestion signature). We present such an

algorithm here. We start by considering the drop set, that is,

the set of packets that are dropped by the target. A drop set

should be exhaustive such that malicious packets don’t slip

away. On the other hand it must not also be resource intensive

i.e. it shouldn’t use a lot of resources on the server’s part.

Only the packets which most frequently satisfy the definition

of “malicious” are included in the drop set. The important

feature is that the algorithm should run in less time that it

takes to collect the packets. In order to obtain the drop set it

starts by deciding whether the congestion level is high

enough, that is, the drop rate is high enough. If it is seen that

the traffic on a particular input link (Wi) exceeds a certain

threshold value of the traffic on the output link (Wo) say Wi>

1.5Wo then the algorithm checks each of the dropped packets

for malicious signatures. The dropped packets can be

compared according to their eventual destination addresses.

The packets with the highest count are included in the drop

set.Apart from the information of the characteristics of the

packets dropped by the router it must also include information

to distinguish between normal traffic and attack traffic which

can be obtained by applying the algorithms as discussed in

[30,6,14,31]. After including all the information regarding the

dropped packets and characteristics of the traffic it gives us

the drop set for a particular router. As the pushback signal is

propagated the size of the drop set keeps increasing to make it

more exhaustive and precise.

6. IMPLEMENTATION OF PUSHBACK
Once the router has identified the drop set(congestion

signature), the next step is to communicate that information to

its upstream links. The messages exchanged by routers

implementing Pushback are described in detail in [23]. There

are three such messages: request, response, and status. The

pushback request is shown in Figure 5.

 Various header fields

 RLS-ID

 Maximum depth

 Depth of Requesting

 Bandwidth Limit

 Expiration Time

 Congestion Signature

. Fig 5: Pushback Request

The header fields contain many fields like type of pushback

(PType), type of feedback (SRMode) etc. Each request has a

Rate-Limiting Session Identifier (RLS-ID), which is used to

R1 R2 R3 R4

R5 R6 R7

R8

D

International Journal of Computer Applications (0975 – 8887)

National Conference on Trends in Advanced Computing & Information Technology-2016

36

match responses to requests. If we were to consider the whole

network as a tree with the originator of the pushback request

as the root and all other routers as the child nodes then the

maximum depth signifies the last level of the tree till which

the pushback request will be propagated. The depth of the

originator is considered 0. With each upstream router the

depth is incremented by 1. The maximum depth of

propagation is set by the originating router and passed along

by each subsequent router. Depth information is useful in

setting timers for sending feedback. The bandwidth limit is

expressed in bytes per second and defines an upper bound for

the bandwidth to be provided to an aggregate in case of

congestion. When the depth becomes 0 before reaching its

eventual destination the pushback request is discarded.

However the router marks the request and makes an entry into

its table for future use. If the pushback refresh message

arrives after the expiration time then that entry is deleted.

Thus the expiration time is the time period after which the

pushback request expires if no REFRESH messages arrive.

The congestion signature includes specific information about

the aggregates which are to be rate limited. The aggregates are

identified by the algorithm as explained above. All those

traffic which come under the purview of the aggregate

definition are rate limited by the upstream routers. Each of

these upstream routers employs their own aggregate detection

algorithms in order to make the congestion signature more

exhaustive. In this way the attack traffic is slowly rate limited

near its source.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented a defending technique against

spoofed DDoS traffic. This technique intends to complement,

rather than replace existing schemes. For instance, the

integrated solution combines filtering and admission

challenges with a pushback scheme between the target and the

upstream ISPs. In our approach, we place the client puzzle

mechanism centrally at the router at which the attack is taking

place by which most of the spoofed packets are discarded.

When the attacker strengthens its attack volume such that it
surpasses the defending capacity of the router under attack

then it sends a distress signal using the pushback technique to

the upstream ISP’s to employ proxy defense mechanisms on

its behalf so as to limit the attack traffic right near the source.

In this way as the algorithm keeps working it continuously

builds up an attack database which will eventually mitigate

the attack traffic to a great extent. A key advantage of this

proposed approach is that it enables the defenders to harness

greater computational resources in order to counteract the

growth in attack power that is becoming available to attackers.
Many open issues still need to be addressed, both in terms of

research and management. The first issue is how to ensure

that the pushback signal can be trusted, so that it is not open to

manipulation by attackers. The problem of managing trust in a

distributed environment is a challenging issue for research.

The final issue is how to ensure the scalability of the

pushback approach when it involves multiple ISPs and targets

with many simultaneous attacks.

8. REFERENCES
[1] A. Juels and J. Brainard, “Client Puzzles: A

Cryptographic Defense against Connection Depletion,”

in NDSS, 1999, pp. 151–165.

[2] Alex C. Snoeren, Craig Partridge, Luis A. Sanchez,

Christine E. Jones, Fabrice Tchakountio Stephen T.

Kent, and W. Timothy Strayer. Hash-based ip traceback.

In Proceedings of the ACM SIGCOMM, pages 3–14,

San Deigo

[3] Angelos D. Keromytis, Vishal. Misra, and Dan.

Rubenstein. SOS: Secure Overlay Services. In

Proceedings of ACM SIGCOMM 2002, August 2002.

[4] C. Dwork and M. Naor, “Pricing via Processing or

Combatting Junk Mail,” in Crypto, 1992.

[5] CERT, “CERT Advisory CA-2004-02 Email-borne

Viruses,” http://www.cert.org/advisories/CA-2004-

02.html, 2004.

[6] Christos Papadopoulos, Robert Lindell, John Mehringer,

Alefiya Hussain, and Ramesh Govindan. COSSACK:

Coordinated Suppression of Simultaneous Attacks. In

Proceeding of Discex III, Washington, DC, USC, April

2003.

[7] Cisco Systems. Netflow services and applications.

http://www.cisco.com/warp/public/732/netflowCisco

Systems. Rmon.

http://www.cisco.com/warp/public/614/4.html

[8] Drew Dean, Matt Franklin, and Adam Stubblefield. An

algebraic approach to IP traceback. In Proceedings of

Network and Distributed Systems Security Symposium,

San Diego, CA, February 2001.

[9] D. Dean and A. Stubblefield, “Using Client Puzzles to

Protect TLS,” in 10th Annual USENIX Security

Symposium, 2001.

[10] Dawn X. Song and Adrian Perrig. Advanced and

authenticated marking schemes for IP traceback. In

Proceedings of the IEEE Infocom, Anchorage, Alaska,

April 2001.

[11] D. Moore, C. Shannon, and J. Brown, “Code-Red: A

Case Study on the Spread and Victims of an

InternetWorm,” in Internet Measurement Workshop,

November 2002.

[12] Fu- Yuan Lee, Shiuhpyng shieh. “Defending against

spoofed DDOS attack with path fingerprint”-

www.elsevier.com/locate/cose

[13] Haining Wang, Danlu Zhang, and Kang Shin. Detecting

SYN flooding attacks. In Proceedings of the IEEE

Infocom, New York, NY, June 2002. IEEE.

[14] Hal Burch and Bill Cheswick. Tracing anonymous

packets totheir approximate source. In Proceedings of the

USENIX LISA, pages 319–327, New Orleans, USA,

Decemeber 2000. USENIX.

[15] I. Clarke, O. Sandberg, B. Wiley, and T. Hong,

“Freenet: A Distributed anonymous Information Storage

and Retrieval System,” Lecture Notes in Computer

Science, vol. 2009, pp. 46+, 2001.

[16] J. Leiwo, T. Aura, and P. Nikander, “Towards Network

Denial of Service Resistant Protocols,” in SEC, 2000, pp.

301–310.

[17] L. von Ahn, M. Blum, N. Hopper, and J. Langford,

“CAPTCHA: Using Hard AI Problems for Security,” in

Eurocrypt 2003., 2003.

[18] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and

D.Wallach, “Security for Peer-to-Peer Routing

Overlays,” in Proceedings of OSDI, December 2002

[19] M. Abadi, M. Burrows, M. Manasse, and T.Wobber,

“Moderately Hard, Memory-bound Functions,” 2003.

International Journal of Computer Applications (0975 – 8887)

National Conference on Trends in Advanced Computing & Information Technology-2016

37

[20] Martin Roesch. Snort - lightweight intrusion detection

for networks.http://www.snort.org/docs/lisapaper.txt

[21] Peter Reiher Jelena Mirkovic, Greg Prier. Attacking

DDoS at the source. In Proceedings of the IEEE

International Conference on Network Protocols, Paris,

France, November 2002.

[22] Ratul Mahajan, Steven M. Bellovin, Sally Floyd, John

Ioannidis, Vern Paxson, and Scott Shenker. Controlling

high bandwidth aggregates in the network. In ACM

Computer Communication Review, July 2001

[23] R. Merkle, “Secure Communications Over Insecure

Channels,” Communications of the ACM, vol. 21, no. 4,

April 1978.

[24] Robert Stone. Centertrack: An IP overlay network for

tracking DoS floods. In Proceedings of the USENIX

Security Symposium, pages 199–212, Denver, CO, USA,

July 2000. USENIX.

[25] [Steven Bellovin. ICMP traceback messages.IETF draft-

bellovin-itrace-00.txt

[26] S. Crosby and D. Wallach, “Denial of Service via

Algorithmic Complexity Attacks,” in USENIX Security

Symposium, August 2003.

[27] Stefan Savage, David Wetherall, Anna Karlin, and Tom

Anderson. Practical network support for IP traceback. In

Proceedings of the ACM SIGCOMM Conference, pages

295–306, Stockholm, Sweeden, August 2000. ACM.

[28] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn

the Internet in Your Spare Time,” in 11th USENIX

Security Symposium (Security ’02), 2002.

[29] Thomer M. Gil and Massimiliano Poletto. MULTOPS: A

Data-Structure for bandwidth attack detection. In

Proceedings of the USENIX Security Symposium, pages

23–38, Washington, DC, July 2001.

[30] Vern Paxson. Bro: A system for detecting network

intruders in real-time. Computer Networks, 31(23–

24):2435–2463, Decemeber 1999.

[31] Vern Paxson. Bro: A system for detecting network

intruders in real-time. Computer Networks, 31(23–

24):2435–2463, Decemeber 1999.

IJCATM : www.ijcaonline.org

