
International Journal of Computer Applications (0975 – 8887)

National Conference on Trends in Advanced Computing & Information Technology-2016

17

Effective Semantic Namespace for File System

Priya N. Parkhi
Department of Computer Enginnering

St. Vincent Pallotti College of Enginnering
Nagpur,India

 Vivek B. Kute
Department of Computer Enginnering

St. Vincent Pallotti College of Enginnering
Nagpur,India

ABSTRACT
Almost all today’s file system namespace management is

based on hierarchical tree Structure. As data volume increase

this tree based namespace impose great challenges to

effectively and efficiently manage data and also leads to

performance bottlenecks. The basic idea is to build file’s

namespace by considering their semantic correlation and

avoid brute-force search in entire system. The semantic

correlations in file is used to facilitate scalability, search-

ability, data de-duplication, file-prefecting and minimize extra

overhead.

Keywords
File system, namespace management, semantic correlation,

search-ability

1. INTRODUCTION
Today’s file systems are facing great challenges in handling

large volume of data because of many applications such as

social network webs, cloud computing, business transactions,

scientific computing and mobile applications. This data

volume has imposed great challenges to storage systems,

particularly to the metadata management of file. For example,

many systems are required to perform thousands of metadata

operations per second and the performance is totally

restricted by the hierarchical directory-tree based metadata

management scheme used in almost all file systems[1].

The most important functions of namespace management are

file identification and lookup. File system namespace is

responsible for improving system’s quality of service such as

performance, scalability, and ease of use. Unfortunately,

almost all current file systems are based on hierarchical

directory trees. This namespace design invented more than 40

years ago since has not been changed[2] .

Selecting appropriate attributes is important due to two

challenging constraints, i.e., the curse of dimensionality and

dimensionality heterogeneity. First, when the dimensionality

exceeds , traversing the existing data structures becomes

slower than the linear-scan approach. This slowdown

phenomenon is often called the “curse of dimensionality”. We

hence need to reduce the dimensionality in order to decrease

operational complexity. Second, dimensionality

heterogeneity, which means that two items that are close-by in

one space might be far away in another space with a different

dimensionality, is another great challenge. The data

correlation is sensitive to the observation space selected. Two

items that are correlated when observed in one attribute subset

might be totally uncorrelated in another attribute subset

1.1 NEED OF EFFECTIVE

NAMESPACE FILESYSTEM
As the complexity and data volume keep increasing,

conventional namespace schemes based on hierarchical

directory trees have exposed some challenges are as follows

1.1.1 System Scalability
The directory-based management is effective only when

similar documents or files have been stored in the same

directory [1]. Although the directory size distribution has not

significantly changed [3], the file system capacity has

increased dramatically. This not only causes great

inconvenience for file systems users, but also slows down

applications by generating random accesses to underlying

disks. In addition, since file lookups are always performed

recursively starting from root directories, disks or servers

have a highly unbalanced share of the workloads, leading to a

higher probability of becoming performance bottlenecks.

1.1.2 Depends on end-users to organize and

lookup data
Locating a target file by manually navigating the directories

through directory trees in a large system is just like searching

a needle in a haystack. As the directory tree increases it is

equally difficult for users to instruct the file systems where a

file should be stored and to find them quickly. When one does

not know the full pathname of a file need exhaustive search

over all directories. Such exhaustive search on a large system

with billions of files takes a prohibitive amount of time. It is

even more difficult to locate correlated files since users often

cannot explicitly define mandatory search criteria in most file

systems.

1.1.3 Lack of metadata-semantics exploration
While it is difficult to manage large volume of data through a

centralized hierarchical structure. In most of industry and

academic, a small subset of file system’s data serves a

majority of data access requests. Being able to identify

frequently accessed data by semantic exploration is hence

beneficial for system optimizations such as file prefetching

and data deduplication. Conventional file systems have by and

large ignored the semantic context in which a file is created

and accessed during its lifetime.

2. PROJECT OBJECTIVE
The proposed namespace management scheme for search

attribute, which provides a flat but manageable and efficient

namespace. In this namespace, the notion of semantic-aware

namespace is proposed in which a file is represented by

considering its semantic correlations to other files, instead of

conventional static file names. Our goal is not to totally

replace conventional directory-treemanagement that already

invented more than 40 years ago. Instead, we aim to provide

another metadata that will work parallely to directory trees.

This propose namespace runs concurrently with the

conventional file system that integrates it and takes over the

responsibilities of file search and semantic file grouping from

the file system when necessary. Moreover, this namespace

while providing the same functionalities makes use of a new

naming scheme that only requires constant-scale complexity

to identify and aggregate semantically correlated files. This

namespace extracts the semantic correlation information from

International Journal of Computer Applications (0975 – 8887)

National Conference on Trends in Advanced Computing & Information Technology-2016

18

a hierarchical tree. Fig. 1.3.1 illustrates the relationship and

difference between propose and the existing hierarchical

directory tree namespace. For instance, in order to serve a

complex query, new namespace only needs to check the small

and flat namespace one time, thus avoiding a time-consuming

search of brute-forced traversal over the entire hierarchical

tree[4].

Fig 2 Semantic Correlation Extraction

Our goal in this research is to complement existing file

systems and improve system search and delay. Major

contributions in this project are summarized below

2.1 Scalability And Depends On End User
The propose namespace is designed to extract semantic

correlations residing in multi-dimensional attributes instead of

considering one-dimensional attributes such as pathnames, to

represent a file. The metadata of files that are strongly

correlated are aggregated together and then stored together in

namespace. When a user performs a file lookup, propose

namespace also present the user files that are strongly

correlated to this searched file, which constitute the semantic-

aware per-file namespace of this file. This allows the user to

access the correlated files easily without performing

additional searches otherwise directory tree navigations by

considering all these things we made improvement in

scalability.

2.2 SEMANTIC CORRELATION

CONSIDERATION
Semantic namespace achieve by locality sensitive hashing

(LSH) [5] which automatically organize semantically

correlated files without the involvement of end-users or

applications. This algorithm has very little performance

overhead since LSH has a low complexity of probing

constant-scale buckets. Semantic namespace represents each

file based on its semantic correlations to other files. As the file

system evolves, this namespace can efficiently identify their

changes to update the namespace by exploiting the file

semantics. The semantics in files are obtained from multiple

dimensions, rather than a single one, thus also allowing us to

optimize the overall system.

2.3 FILE-PREFETCHING
The propose namespace is implemented as a middleware that

can be deployed/embedded in most existing file systems

without modifying the kernels or applications. This research

provides users with two auxiliary namespace views, i.e.,

default (conventional hierarchy) and customized (semantic

correlated file representation). Both views hide the complex

details of the physical representation of individual files, and

export only a context-specific logical outlook of the data.

Experimental results demonstrate that Semantic namespace

efficiently supports query services for users, while facilitating

system performance improvements, such as file prefetching

and data de-duplication.

2.4 Minimize Extra Overheads And Delay

Improvement
The propose namespace consider semantic correlations

residing in multi-dimensional attributes to represent a

namespace. The metadata of files which are strongly

correlated are aggregated and then stored together in

namespace. When a user performs a file lookup, this

namespace allows the user to access the correlated files easily

without having to perform additional searches over all

directory trees. Thus this helps in minimize extra overhead

and delay improvement.

3. DESIGN AND IMPLEMENTATION

3.1 Architectural Overview
The model gives idea about how efficient namespace created

for search keywords. Here do prefetching of attributes of files

from hierarchical tree structure i.e. filename, file contents, file

access time. Enter the search keyword for which namespace

created. Then identify semantic correlation i.e. similarity

among files base on search keyword and prefetch attributes of

files.Similarity of files calculates by considering

normalization of files i.e. value of matching of file contents in

between 0-1. After identification of similarity among files

perform locality sensitive hashing on files. The basic idea here

is to mapped the similar files into same bucket with high

dimensionality. Construct the namespace for search keyword

by fetching files which are strongly correlated or file who

have maximum probability. This LSH also help for

prefetching because it maintain namespace for that particular

keyword search so next time when do searching for same

keyword instead of going thorough all procedure just made

look up in bucket.

Fig 3 Architecture Propose Model

3.2 Prefetching Of File Attributes
Selecting appropriate attributes is important due to two

challenging constraints

International Journal of Computer Applications (0975 – 8887)

National Conference on Trends in Advanced Computing & Information Technology-2016

19

3.2.1 Curse Of Dimensionality
When the dimensionality exceeds at certain point then

performance is decreases, this slowdown phenomenon is often

called the “curse of dimensionality”. Hence need to reduce the

dimensionality in order to decrease operational complexity.

3.2.2 Dimensionality Heterogeneity
 Dimensionality heterogeneity is another great challenge. Two

items that are correlated when observed in one attribute subset

might be totally uncorrelated in another attribute subset[6].

Select the particular directories where have to made search.

Here we fetch four file attribute from hierarchical data

structure.

1] File Name

2] File extension

3] File Contents

4] File Access time

3.3 Semantic Correlation Identification
Semantic correlation among the files are calculated on the

basis of prefetch attributes and search keyword. Normalized

each file with their attributes

 SIM(Similarity)=MN
’+MC

’+MT
’ +other file

attributes

 MN
’ –Match with Name, Extension

MC
’ –Match with Contents

 MT
’ –Match with Access Time

3.4 Apply Locality Sensitive Hashing
For the purposes of this section, consider functions that take

two items an make decision about whether these items should

be hash to same bucket or not. In many cases, the function f

will “hash” items, and the decision will be based on whether

or not the result is equal. Because it is convenient to use the

notation f(x) = f(y) to mean that f(x, y) is “yes; put x and y

into same bucket.

Let d1 and d2 be two distances where 0 ≤ d1 < d2 ≤ 1

According to some distance measured.

A family F of functions is said to be (d1, d2, 1−d1, 1−d2)-

sensitive if for every f in F:

1. If d(x, y) ≤ d1, then the probability that f(x) = f(y) is at least

(1-d1).

2. If d(x, y) ≥ d2, then the probability that H(x) = H(y) is at

most (1-d2)[4].

Fig 3.4 Behavior of a (d1, d2, p1, p2)-sensitive function

Example: We could let d1 = 0.3 and d2 = 0.6. Then we can

assert that the family of functions is a (0.3, 0.6, 0.7, 0.4)-

sensitive family. That is, if the distance/dissimilarity between

x and y is at most 0.3 (i.e., SIM(x, y) ≥ 0.7) then there is at

least a 0.7 chance that a minhash function will send x and y to

the same bucket, and if the Dissimilarity between x and y is at

least 0.6 (i.e., SIM(x, y) ≤ 0.4), then there is at most a 0.4

chance that x and y will be sent to the same bucket. Note that

we could make the same assertion with another choice of d1

and d2; only d1 < d2 is required.

The semantic namespace of file f consists of t files (f1,

f2….ft) that are the most strongly correlated with f based on p

predefined semantics attributes, i.e., (a1, a2,a3,…ap). The

correlation degrees, as a quantitative representation of

semantic correlation, are (d1, d2….. dt) respectively.

The semantic-aware namespace of f is denoted by a t-tuple

Namespace(f)={(f1,d1),(f2,d2)…….(ft,dt)}

4. EXPERIMENTAL RESULTS AND

ANALYSIS
This project made conclusion is that propose design

namespace is more effective in search and also it helps in

delay improvement.

4.1 Effective Search
Construct the namespace for search keyword by fetching files

which are strongly correlated to file who have maximum

probability. It provides effective search result as compare to

normal search result. Table show the search result by taking

different keywords.

Table.4.1 Effective Search Result value

Normal

Namespace

Propose

Namespace

51 73

20 30

38 45

17 23

18 25

41 75

38 50

37 47

49 55

38 72

From Table No.4.1 draw the graph where x axis contain

different search keyword and y axis contain number of

effective search result. From the graph and table made

conclusion that search is more efficient in propose namespace

as compare to normal search

Fig.4.1 Search result of effective and Normal Namespace

4.2 Delay Improvement

0

20

40

60

80

Normal
Namespac
e

Effective
Namespac
e

International Journal of Computer Applications (0975 – 8887)

National Conference on Trends in Advanced Computing & Information Technology-2016

20

When a user performs a file lookup, this namespace allows

the user to access the correlated files easilywithout having to

perform additional searches over all directory trees.

Table 4.2 Delay in millisecond for Normal and Effective

search

Normal

Namespace

Propose Namespace

1057
1000

1115 788

1194 935

1121 678

1164 745

1137 915

1239 720

928
714

1049 900

805 720

Thus this help in minimize extra overhead and delay

improvement. Table show the delay result by taking different

keywords in millisecond.

Fig 4.2 Delay result of effective and normal namespace

From Table 4.2 draw the graph where x axis contain different

search keyword and y axis contain delay in millisecond. From

the graph and table conclusion is that Propose system take less

time as compare to normal search

5. CONCLUSION
There is a need of ease and efficiency of data access and this

proposed system help to remove traditional file system’s

drawback.This work targets file attribute prefetching,

semantic correlation identification among files, prefetching

and namespace construction. Through experimental analysis

we are able to shows effective result for search and reduction

in delay as compare to normal search hence the propose

system help in effective search and delay. In future, this

project work can be extended for image documents and it can

be release for public use. It will also be helpful in distributed

environment.

6. REFERENCES
[1] DingQ. Lv, W. Josephson, Z. Wang, M. Charikar, and K.

Li, “Multi-Probe LSH: Efficient Indexing for High-

Dimensional Similarity Search,” Proc. VLDB, pp. 950-

961, 2007.

[2] A. Guttman, “R-Trees: A Dynamic Index Structure for

Spatial Searching,” ACM SIGMOD Record, vol. 1, pp.

47-57, 1984.

[3] Yu Hua, Hong Jiang, Yifeng Zhu and Lei Xu,” SANE:

Semantic-Aware Namespace in Ultra-Large-Scale File

Systems”, VOL. 25, NO. 5, MAY 2014

[4] M. Seltzer and N. Murphy, “Hierarchical File Systems

are Dead,” Proc. 12th Conf. Hot Topics in Operating

Systems (HotOS’09), 2009.

[5] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li,

“Multi- Probe LSH: Efficient Indexing for high-

Dimensional SimilaritySearch,” Proc. VLDB, pp. 950-

961, 2007

[6] P. Indyk and R. Motwani, “Approximate Nearest

Neighbors: Towards Removing the Curse of

imensionality,” Proc. 30th Ann. ACM Symp. Theory of

Computing (STOC), 1998.

[7] D. Beaver, S. Kumar, H. Li, J. Sobel, and P. Vajgel,

“Finding a Needle in Haystack: Facebooks Photo

Storage,” Proc. Ninth USENIX Conf. Operating Systems

Design and Implementation(OSDI), 2010.

[8] A.W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E.L.

Miller, “Spyglass: Fast, Scalable Metadata Search for

Large-Scale Storage Systems,” Proc. Seventh USENIX

Conf. File and Storage Technologies(FAST), 2009.

[9] K. Veeraraghavan, J. Flinn, E.B. Nightingale, and B.

Noble, “quFiles: The Right File at the Right Time,” Proc.

USENIX Conf. File and Storage Technologies (FAST),

2010.

[10] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian,

“SmartStore: A New Metadata Organization Paradigm

with Semantic-Awareness for Next-Generation File

Systems,” Proc. ACM/IEEE Supercomputing Conf.

(SC), 2009.

[11] A. Andoni and P. Indyk, “Near-Optimal Hashing

Algorithms for Approximate Nearest Neighbor in High

Dimensions,” Comm. The ACM, vol. 51, pp. 117-122,

2008.

[12] A. Guttman, “R-Trees: A Dynamic Index Structure for

Spatial Searching,” ACM SIGMOD Record, vol. 1, pp.

47-57, 1984.

[13] D.K. Gifford, P. Jouvelot, M.A. Sheldon, and J.W.O. Jr,

“Semantic File Systems,” Proc. Symp. Operating

Systems Principle (SOSP), 1991.

0
500

1000
1500 Normal

Serch
Delay

Effective
Search
Delay

IJCATM : www.ijcaonline.org

