
International Journal of Computer Applications (0975 – 8887)

National Conference on Structuring Innovation Through Quality “SITQ-2013”

36

Study of Various Partitioning Policies of Multiprocessor
Systems

Harpreet Kaur#, Sukhpreet Kaur#

Faculity, Department of Computer Science & Engineering, Panjab University SSGRC, Hoshiarpur

Faculity, Department of Computer Science & Engineering, Panjab University SSGRC, Hoshiarpur

Abstract
Many techniques of partitioning the processing elements have

been developed since past few years to improve the

performance of the system. A common approach is to divide

the set of processing elements into independent partitions

depending upon the job requirements. This can be done

statically, dynamically or adaptively depending upon current

requirements and workload characteristics of the particular

job. This paper presents several partitioning policies, which

are commonly used to partition the set of processing elements

to improve the performance of the multiprocessor systems.

Keywords
Adaptive Partitioning, Equipartitioning, Multiprocessors,

Partitioning Policies, Scheduling, performance.

I. INTRODUCTION
Parallel job scheduling has got the increasing recognition in

recent years. Parallel computing is an efficient technique of

achieving the high performance and efficient use of

multiprocessor and multicomputer systems over sequential

processing on a single processor. The major goal of

parallelization is to reduce the overall computation time and

improving the performance by distributing or dividing the

computation workload amongst the available number of

processors [4].

One of the most crucial issues in parallel computing is the

efficient distribution of a workload and data (workload

balancing) among the processors in multiprocessor and

multicomputer systems to achieve optimal performance. The

main objective of partitioning the space or resources is to

minimize the scheduling overheads [1]. Therefore, it is

important to study and implement the efficient decomposition

techniques, which play an important role in achieving desired

performance and efficient use of multiprocessor and

multicomputer systems. Based on whether the workload is

distributed before or during run-time, partitioning can be

classified as static, adaptive or dynamic [1][6].

II. PARTITIONED SYSTEM
Partitioned systems allow applications with different

criticalities or workload characteristics to co-exist and run on

the same module without causing any damages to other

partitions or applications. A partitioned system is a static

system where the time to start and stop an application is

predetermined.

The advantages of partitioning the system are [2]:

1. It allows applications with different characteristics to co-

exist and run on the same core module without causing any

potential damages to other partitions/ applications.

2. Partitions provide the flexibility to add enhancement to an

application without modifying the schedule or any other

applications.

3. The benefit of partitioning is that one can make

modifications in one partition and not have to test the others

because each partition has its own space.

III. PARTITIONING STRATEGIES
The parallel application may not be able to efficiently utilize

all the processors in the system, it may be better to partition

the processor set among the program in a space sharing

fashion. Several approaches have been considered in space

sharing class [4].

A. Static Partitioning: In this processors are partitioned into a

fixed number of disjoint sets, each of which are allocated to

individual jobs, This scheduling strategy has often been used

in the number of commercial systems. In this policy the

system overhead is low and it is a simple policy from both the

system and application viewpoints. The static scheduling

approach however, can lead to relatively low system

throughputs and resource utilizations under non-uniform

workloads.

B. Adaptive Partitioning: In this policy, the number of

processors allocated to the job is determined when job arrives

and depart based on the current system state. This approach

outperforms its static counterparts by adapting partitioning

sizes to the current load. However the performance benefits of

adaptive partitioning can be limited due to its inability to

adjust scheduling decisions in response to subsequent

workload changes.

C. Dynamic partitioning: In this policy, the size of the

partition allocated to the job can be modified during

execution, at the expense of increased overhead. The runtime

costs of a dynamic partitioning policy are heavily dependent

upon the parallel architecture and application workload under

consideration. [3],[4]

IV. PERFORMANCE METRICS
As jobs enter and leave the system, the following statistics can

be collected [4]:

A. Load average: The nominal load in the system at any time

is the fraction of processors that are busy (allocated to a job).

The load average is the nominal load averaged over time.

Because the jobs in this workload have sublinear speedups,

the total allocated time, T, exceeds the sequential lifetime, L,

whenever _ > 0 and the cluster size is greater than 1. Thus, the

measured load may exceed the offered load.

B. Utilization: Utilization takes into account not only how

many processors have been assigned to jobs, but also the

efficiency with which those jobs are running. Efficiency is the

ratio of speedup to cluster size; utilization is efficiency

averaged over processors and time. In most real systems the

efficiency of jobs, and therefore the utilization of the system,

are not known.

International Journal of Computer Applications (0975 – 8887)

National Conference on Structuring Innovation Through Quality “SITQ-2013”

37

C. Average turnaround time: The turnaround time is the time

between the arrival and completion of a job; i.e. the sum of its

queue time and its run time.

D. Average slowdown: Slowdown is the ratio of turnaround

time to the shortest possible turnaround time, as if the job had

run on a dedicated machine. In other words,

𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =
𝑞𝑢𝑒𝑢𝑒𝑡𝑖𝑚𝑒 + 𝑅(𝑛)

𝑅(𝑁)

where R(n) is the run time on the allocated cluster size, n, and

R(N) is the hypothetical run time on all N processors.

Slowdown is a useful performance metric because it gives

equal weight to all jobs regardless of length, whereas average

turnaround time tends to be dominated by long jobs. Also,

slowdown may better represent users' perception of system

performance, since it measures delays relative to job duration.

For example, a long queue time is more acceptable for a long

job than for a short one. Slowdown captures this implicit cost

function [5].

V. ALLOCATION POLICIES
A. Fixed Processors Per Job (PPJ): In this policy, the

processor set is divided into a fixed number of equal sized

partitions. When a job arrives, it waits for the next available

free partition and then executes in that partition. The

maximum number of simultaneously executing jobs is equal

to the number of partitions, which is equal to the total number

of processors divided by the partition size. The PPJ policy is

static as the PARTITION_SIZE remains fixed throughout the

lifetime of the system. It achieve good performance under

particular conditions.

B. Equal Partitioning with a Maximum (EPM): In this policy,

the partition size is computed at allocation time instead of at

system configuration time. In EPM policy, the set of currently

free processors is equally divided among the jobs in the

waiting queue. To limit the maximum size of any allocated

partition, an upper bound on the partition size is introduced as

a configuration parameter. For example, if MAX=

TOT_PEs/2, then no single job is allowed to execute on more

than half of the system processors, regardless of the number of

free processors and the number of waiting jobs. This allows a

mechanism to restrict any job from monopolizing the system

by reserving some of the free processors.

The EPM policy is similar to the ASP policy. The difference

is that the value of MAX in ASP is the workload’s maximum

parallelism. The maximum parallelism is defined as the

maximum number of simultaneous busy processors during the

execution of a program when a sufficiently large amount of

processors is available. Here the workload’s maximum

parallelism may not be known; the value of MAX is set at

system configuration time and may be assigned a value

between 1 and TOT_PEs.

C. Adaptive Policies

1. Adaptive Policy 1 (AP1): AP1 [6] is specifically used for

distributed memory systems. The target partition size at a

given time is equal to the total number of processors in the

system divided by the number of waiting jobs. If no

processors are available when a job arrives, it joins a FIFO

queue. Otherwise, it is allocated a number of processors equal

to the minimum of its maximum parallelism, the target

partition size, and the number of available processors. At each

job completion, the same rule is used for the allocation of the

released processors to jobs from the FIFO queue. The last job

activated gets the remaining available processors, even if that

is fewer than either of its maximum parallelism and the target

partition size.

Depending upon the specification of procedure

compute_target_size, which implements specific split and

merge strategies, various adaptive policies are possible.

The compute_target_size specification for AP1 is

𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑖𝑧𝑒 ← 𝑚𝑎𝑥 1,
𝑇𝑂𝑇_𝑃𝐸𝑠

𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ
+ 0.5

In AP1, the split and merge strategies are directly dependent

upon the current value of queue_length. Whenever the queue

length increases, the target size decreases.

The compute_target_size specification for AP2 is

𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑖𝑧𝑒 ← 𝑚𝑎𝑥 1,
𝑇𝑂𝑇_𝑃𝐸𝑠

𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ + 1
+ 0.5

The split strategy of AP2 (when queue length increases) tends

towards premature fragmentation.

2. Adaptive Equipartition: The ideal allocation is to divide the

processors in the system equally among all the running and

waiting jobs [6]. But this cannot be done in a non-preemptive

policy. However, one can use as a target partition size the total

number of processors divided by the total number of jobs in

the system, both waiting and running (whereas both ASP and

AP1 use a target allocation that is a number of processors

divided by only the number of waiting jobs).

If no processors are available when a job arrives, it joins a

FIFO queue. Otherwise, it is allocated a number of processors

equal to the minimum of its maximum parallelism, the target

partition size and the number of available processors. At each

job completion, the same rule is used for allocating the

released processors among the queued jobs, in FIFO order.

D. Dynamic Equipartition Policy: In the Dynamic

Equipatition Policy (DYN-EQUI), the processors are

dynamically partitioned as equally as possible among the

applications. Some provisions are taken so that no application

is given more processor that it can use. When the number of

processors allocated to the application changes, the

application readjust the number of running processes

accordingly.

VI. ANALYTICAL COMPARISON OF

DIFFERENT POLICIES

VII. CONCLUSION
The goal of this paper is to give the brief review of the various

partitioning policies. Usually, different types of parameters

International Journal of Computer Applications (0975 – 8887)

National Conference on Structuring Innovation Through Quality “SITQ-2013”

38

like job type, job size, wait time, service time, processors

allocated and information are used by different policies, so it

is unclear to measure the benefits of each policy under

different workload conditions. Adaptive policies perform

better than fixed-partitioning and variable-partitioning

scheduling policies due to their ability adapt to the current

load on the system while calculating partition-size for jobs.

Adaptive space-sharing scheduling policies to schedule

moldable jobs are widely studied in homogeneous parallel

systems (i.e. multiprocessors and clusters) and to less extent in

heterogeneous cluster computing systems. Therefore, this

paper presents the simple scheduling rules, classification type

and information needs of each policy.

REFERENCES
[1] Nedal Kafri, Jawad Abu Sbeih “Simple Near Optimal

Partitioning Approach to Perfect Triangular Iteration

Space.” Proceedings of the 2008 High Performance

Computing & Simulation Conference ©ECMS

[2] A. Hariprasad Kodancha, “Time Management in

Partitioned Systems” Master’s Thesis, Department of

Computer Science and Automation Indian Institute of

Science Bangalore, October 2007.

[3] Mark S.Squillante, “On the Benefits and Limitations of

dynamic Partitioning in Parallel Computer Systems”

[4] E. Rosti, E. Smirni, L.W. Dowdy, G. Serazzi, B.M.

Carlson, “Robust Partitioning Policies of Multiprocessor

Systems.” Matematical Sciences Section of Oak Ridge

National Laboratory.1993

[5] Stergios V. Anastasiadis and Kenneth C. Sevcik, ”A

parallel workload model and its implications for

processor allocation” High Performance Distributed

Computing, 1997, Proceedings. The Sixth IEEE

International Symposium on Aug, 1997.

[6] J.H. Abawajy,”An efficient adaptive Scheduling policy for

high performance computing” Future Generation

Computer systems, Vol. 25, 364-370, (2009).

[7] Srividya Srinivasan, Vijay Subramani, Rajkuman

Kettimuthu, Parveen Holenarsipur and P. Sadayappan,”

Effective Selection of Partition sizes for Moldable

Scheduling of Parallel Jobs” Proceeding in – HiPC ’02

Proceedings of the 9th International Conference on High

Performance Computing Springer-Verlag London,

UK ©2002

[8] Allen B. Downey,”A parallel workload model and its

implications for processor allocation” Report No.

UCB/CSD-96-922, November 1996.

[9] Amit Chhabra, Gurvinder Singh,” An Improved Adaptive

Space-Sharing Scheduling Policy for Non-dedicated

Heterogeneous Cluster Systems “International Journal of

Computer Applications and Technology Volume 1- Issue

2, 2012, 57-63.

[10] S.P. Dandamudi and Z. Zhou, “Performance of Adaptive

Space-Sharing Policies in Dedicated Heterogeneous

Cluster Systems”, Future Generation Computer Systems,

20(5), 895-906 (2004).

[11] Young-Chul Shim, “Performance evaluation of

scheduling schemes for NOW with heterogeneous

computing power”, Future Generation Computer

Systems. 20(2): 229-236 (2004).

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4902
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4902
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4902

