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ABSTRACT 
In this paper the method of vector functions is introduced in 
association with the propagator matrix method to solve the 
deformation of transversely isotropic and layered elastic 
materials under surface loads. It is shown that the equilibrium 
equations are reduced to the two sets of simultaneously linear 
differential equations which are called type I and type II. The 
general solutions and the layer matrices are then obtained 
from the two sets of differential equations. 
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1. INTRODUCTION 
[1] [2] solved the general problem of three-dimensional 
deformation of a transversely isotropic and homogeneous half 
–space using the potential function method. However that 
method requires the solution of a system of simultaneous 
linear equations with an order proportional to the number of 
layers and the introduction of auxiliary variables and 
coordinates transformations for the three dimensional 
problems [4] solved the problem by assuming axially 

symmetric deformation of a transversely isotropic and layered 
half-space by surface loads using propagator matrix method 
[9] and the generalized love’s strain potential. 

The propagator matrix method is used to solve the problem of 
the static deformation of a transversely isotropic and layered 
elastic half-space under the action of general surface loads. 
The general solutions and the layer matrices are then obtained 
from the two sets of differential equations. By using the 

continuity conditions at the layer interfaces and the boundary 
conditions at the surfaces, the displacement and stress 
components at any point of the medium are obtained by 
multiplication of matrices. As the solution is obtained for 
different cases of characteristic roots determined by the elastic 
constants of the media, the present formulation avoids the 
complicated nature of the problem on the one hand [8] and on 
the other hand can be reduced directly to the solutions of the 

corresponding two-dimensional deformation [7] and axially 
symmetric deformation [4] and also to the solution of the 
corresponding isotropic case [3] 

2. BASIC EQUATIONS 

2.1 Stress strain relation  
We choose the axis of symmetry of a homogeneous and 
transversely isotropic elastic medium as the Z- axis. The 
generalized Hooke’s law in Cartesian coordinates (x, y, z) can 
be expressed as [10]  

           

          

            (1.1) 

Where  (1.2) σxx,,σyyetc.,are the components 

of stress ; exx, eyy, etc are the components of strain. The   
parameters A11, A12, A13, A33 and A44 are the five elastic 
constants of medium. In the case of an isotropic medium  

                        

                  

(1.3) 

Where E is the Young’s modulus and v is the Poisson’s ratio. 

2.2  Equilibrium equations 
In the absence of body forces  

 
 

            (1.4)     

   

The strain-displacement relations 

             

             

                         (1.5) 

Where (ux, uy, uz) are the components of the displacement 

vector. We now introduce a system of vector functions [6] 
  

 
 

       (1.6) 

Where (ix, iy, iz) are the unit vectors in (x, y, z) direction of 
Cartesian coordinates. The scalar function S(x, y, α, β) given 
as 

                 (1.7)                                                         
 

Satisfy the Holmholtz equation    

                   (1.8) 

                               (1.9)      

  In equations (1.6) - (1.8) α, β and λ are parameter variables. 
Owing to the orthogonality of the system (1.6), any vector 

functions may be expressed in terms of them. In particular, for 
the unknown displacement and ‘surface’ stress vectors , we 
may have  
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              (1.10) 

 
                                                                     (1.11) 
In equations, (1.10)-(1.11) the dependences of vector 
functions L, M and N on the parameters α and β or λ have 
been omitted for simplicity. 
It is of interest to note from (1.6) and (1.10) that while the 

displacement solutions expressed in terms of N have zero 
dilatation, the solution expressed in term of L and M gives 
zero z component of the curl of the displacement vector.  

 
Fig 1.1 Scheme of a layered elastic system under surface 

loads 

3. GENERAL SOLUTIONS & 

LAYER MATRICES 
The problem that we analyse  is shown schematically in 
Fig.1.General surface loading P(x, y) is applied to the surface 
z=0 of a layered elastic system, which is composed of parallel, 
homogeneous and transversely isotropic p layers lying over a 
homogeneous half-space. The layer interfaces are assumed to 
be in welded contact with the exception to the layer interface 
z = zp. Since the layers are in welded contact, so continuity of 
displacements and stresses at the interface z=zk (k =1, 2,……., 

p-1) holds. Substituting equation (1.10) into (1.5) we get the 
following strains: 

               

               

 

              (1.12) 

 
                

                      

        

      

    Where            
           

                                         

                     (1.13)             

 
          
  Using the stress-strain relations given in equation (1.1) in 
equation (1.12), we get the fallowing   stresses: 

 

 

 
 

 

 

 

 
                                                                         (1.14) 
Except for special cases, we will omit the subscript k and the 

notations . 

Also from equations (1.11) and (1.6) surface stress vector is 
given as: 

   

 Where    

 

 
                                  (1.15) 

Comparing equation (1.14) and (1.15), we get 

  

 

 

 (1.16) 

Solving above equations, we obtain the fllowing relations 
between the expansion coefficients. 

 

 

                                              (1.17) 

Substituting the expressions of stresses from equations (1.14) 
into the equations of equilibrium (1.4) and by making use of 
(1.17), we obtain the other three relations between TL, TM, TN  

 

 

                (1.18) 

Equations (1.17) and (1.18) can be cast into two independent 
sets of simultaneous linear differential equations. They are 
called type I and type II respectively.     

A.For type I  
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            (1.19)                    

 B.For type II 

   

 

                                       (1.20) 

For general solution for type I, we write equation (1.19) in the 
form 

 

 

 

 
To solve the above system of simultaneous equations, writing 
them in matrix form as  

 

 Where            

(1.21) 
And V is the coefficient matrix  

      V =  

                

                

We solve above system of differential equations by eigen 
value   method [5]. 
The characteristic equation is  
  

   Or =0 

 Expanding the determinant, we get the characteristic equation  

  

 
 This can be written as  

                                                                           

(1.22) 
This is quadratic in x2  and gives two values of x2 and hence 
four values of x i.e. ±x1, ±x2 (say) known as characteristic 
roots. Thus solution of a system of differential equations 
depends on the different cases of characteristic roots. 

 Case I: When characteristic roots are distinct (x1≠x2)  
For x1 the corresponding eigen-vector can be obtained by 
solving the equations  

 
 

Where 

 
Where values of c(x) and d(x) are 

 

                      (1.23) 

Another eigen-vector [z2] can be obtained by replacing x1 by –
x1. The remaining two are obtained by replacing x1 by x2 in 
[z1] and [z2] respectively. This solution of equation (1.22) 
when eigen-values are not equal is given by 

 
                                                                        (1.24) 
Where 

 

 
 [z3] and [z4] are obtained by replacing x1 by x2 in [z1] and [z2] 
respectively. 
Case II:  When characteristic roots are equal (x1 = x2) 
In this case first eigen-vector will be same as in case I i.e 

 
Where 

 
And the other vector will be 

 
Or 
                                                                                                                          

 

 Solving the matrix multiplication, we get 

     

  

 
  

 
  

 
Solving this system of simultaneous equations for A2, B2, C2 
and D2, we get 

      

           

 
Taking D2=z, we have 
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                             (1.25) 

The other two are obtained by replacing x1 by –x1 in α1 and β1 

respectively. Thus the solution of equation (1.22) when eigen-
values are equal is given by 

                                                                            (1.26)             

Where       

 

 is given by equation (1.25),  

and  are obtained by replacing x1 by –x1 in  

and  respectively. From equations (1.24) and (1.26), we 

see that solution of type I can be written as 

                                   (1.27)                          

 Where the elements of solution matrix [Z(z)] are given in 
Table-1, 

                             (1.28)                         

 A1, B1, C1 and D1 are the arbitrary functions of λ. From 
equation (1.27), we have the relation for nth layer as,                                         

                                                                                            

Similarly, for (n-1)th  layer   
    

Eliminating [K] from above two equations, we get 

 . 

Finally, we get the propagating relation for ak layer as 

    (1.29) 

Where [ak] is the propagator matrix of layer k.                                                                       

For general solution for type II, we solve the simultaneous 
equations given by equation (1.20) and its solution is given as 

 

                (1.30)                   

Where                                                                                                                                         

.                                                                                                                                

This general solution can be written in the matrix form as 

  

Or     (1.31)                           

Where AL and BL are the arbitrary functions of λ and the 
solution matrix          

(1.32) 

Rewriting equation (1.31) as                                                                          

 

 

  (1.33)                         

 Due to continuity of UN, TN at (k-1)th layer                                                     

           

 Similarly for kth layer 

               

 Eliminating AL, BL we get 

 

where 

 
Thus 

 
 
Therefore, the propagating relation is  

 

  (1.34) 

Where 

  

    (1.35) 
[ak

L] is the layer matrix or the propagator matrix of the layer 
k.          

Table-1 

The elements of the solution matrix [Z(z)]in equation (1.27) 
are:- 

 
Case (1) when characteristic roots are not equal 

          

Z11= C(X1)                  Z12 = C(X1)  
Z21 = d(X1)                 Z22 = -d(X1)     

Z31 =              Z32 =-                     

Z41 =                   Z42 =               (A1) 
Where  are the characteristic roots of the following 

equation 

(A44 2-A11)  (A33 2-A44) + (A13=A44)2�2 = 0 

Zi3 & Zi4 are obtained from Zi1 & Zi2 respectively on 
replacing �1 by �2 (i=1, 2, 3, 4) 
Case (2) when characteristic roots are equal (�1 = �2)  

Z13 =                  (A2) 

Z23 =                   (A3) 

Z33 =            

Z43 = Z         

While Zi1 and Zi2 are same as those in equation (A1), Zi4 are 
obtained from Zi3 on replacing �1 by –�1 (i = 1, 2, 3, 4) in 
equation (A2) and (A3). The dash denotes the derivation with 
respect to �1.   
 

4. CONCLUSIONS 
The method of vector functions is introduced in association 
with the propagator matrix method to solve the deformation of 
transversely isotropic and layered elastic materials under 
surface loads. The formulation is presented so that it can be 

used directly to perform practical calculations. As the solution 



National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing (RTMC) 2011 

Proceedings published in International Journal of Computer Applications® (IJCA) 

is given in Cartesian system of vector functions, one can 
easily solve problems for different types of surface loading. It 
is shown that the formulation given is especially suitable for 
two-dimensional [7] and axially symmetric [4] deformation. 
Since the general solution and the propagator matrix for 

different cases of characteristic root are also given, which 
includes the isotropic case [3] the present formulation 
provides a complete solution of deformations by surface loads 
of transversely isotropic and layered elastic half-space. 
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