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ABSTRACT 

This article is a Mathematical Study of oxygen transport in 

human body. We can clearly see that diffusion is an 

inefficient means of oxygen transport. We also observe the 

role of blood in the transport of the oxygen in the human body 

in the form of that erythrocyte which is the main carrier of 

transport of oxygen. We also modeled an expression for 

partial pressure as well as pressure gradient.   
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1. INTRODUCTION 
Mathematical Modeling plays an important role in every field 

of knowledge viz. Ecology, Physiology, Sociology, Biology 

etc., we consider here an application of Mathematical 

Modeling to oxygen transport in the human body. 

Symbolically basic Mathematical Modeling may be 

represented in figure-1. [1] 

Real World Problem (Physical Problem) 

↓ 

Mathematical Problem 

↓ 

Mathematical Solution 

 

Figure-1: Basic Mathematical Modeling 

 

 Mathematical Modeling in terms of differential equations 

arises when the situation modeled involves some continuous 

variable(s) varying with respect to some other continuous 

variable(s) and we have some responsible hypothesis about 

the rates of change of dependent variable(s) with respect to 

independent variable(s). If there are a number of dependent 

continuous variables and only one independent variables and 

only one independent variable, the hypothesis may give a 

mathematical Model in terms of system of first or higher order 

ordinary differential equations [2]. This study also generates 

the system of ordinary differential equations. The purpose of 

this paper is to study mathematical model of human blood. In 

order to develop a mathematical model it is necessary to 

model many aspects of the blood in the human body. The 

interdisciplinary field of applied mathematical modeling in 

human physiology has developed tremendously during the last 

decade and continues to develop. One of the reasons for this 

development is researchers‟ improved ability to gather data. 

The amount of physiological data obtained from various 

experiments is growing exponentially due to faster sampling 

methods and better methods for obtaining both invasive and 

non-invasive data. In addition, data have a much better 

resolution in time and space than just a few years ago. For 

example, some of the non-invasive measurements using MRI 

(magnetic resonance imaging) can provide information of 

blood velocity as a function of time and three spatial 

coordinates in both the heart and in arteries with a diameter of 

only a few millimeters. This large amount of data obtained 

from advanced measurement techniques constitutes a giant 

collection of potential insight. Statistical analysis may 

discover correlations, but may fail to provide insight into the 

mechanisms responsible for these correlations. However, 

combined with mathematical modeling of the dynamics new 

insights into physiological mechanisms may be revealed. The 

large amount of data can make the models give not only 

qualitative but also quantitative information of the function 

they predict and they may also be used to suggest new 

experiments. We think that such models are necessary for 

improving the understanding of the function of the underlying 

physiology, and in the long term mathematical models may 

help in generating new mathematical and physiological 

theories. 

 

Figure2: The apparent viscosity as a function of 

the shear rate in human blood. When the shear rate is 

about 1000 s−1 the non-Newtonian behavior becomes 

insignificant, and the apparent viscosity approaches an 

asymptotic value ranging from 0.03–0.04 g/ (cm s) (= 3-4 

mN s m−2).[4] 
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Figure 3: The relationship between the apparent 

viscosity of blood relative to the plasma viscosity and the 

diameter of the tube in which the blood is flowing. The 

tube is assumed to be cylindrical. [4]. 

 

Liepsch, D. and Moravec, S. [5] Investigated the flow of a 

shear thinning blood, analog fluid in pulsatile flow through 

arterial branch model and observed large differences in 

velocity profiles relative to these measured with Newtonian 

fluids having the high shear rate viscosity of the analog fluid. 

Rodkiewicz et al. (1990)[6]used several different non-

Newtonian models for simulations of blood flow in large 

arteries and they observed that there is no effect of the yield 

stress of blood on either the velocity profiles or the wall shear 

stress. Out of these a large number of numerical studies 

concentrate on the transport phenomena in the 

microcirculation. Tang, D. et al [7] Analyzed blood flow in 

carotid arteries with stenosis. Sharma, G.C. et al [8] 

considered a mathematical analysis of blood flow through 

arteries using finite element Galerkin approaches. Khaled and 

Vafai [9] Studied flow and heat transport in porous media 

using mass diffusion and different convective flow models 

such as Darcy and the Brinkman models, Energy transport in 

tissue is also analyzed.  In the micro-circulation, it is no 

longer possible to think of the blood as a homogeneous fluid; 

it is essential to treat it as a suspension of red cells in plasma. 

The reason being that even the largest vessels of the micro-

circulation are only approximately 15 cells in diameters. Also, 

as discussed earlier in this chapter, viscosity starts dominating 

the mechanical behavior, leading to low Reynolds numbers. 

Typical Reynolds numbers in 100 μm arteries are about 0.5. 

We can conclude that blood is generally a non-Newtonian 

fluid, but it is reasonable to regard it as a Newtonian fluid 

when modeling arteries with diameters larger than 100 μm. 

For very small vessels it is not easy to reach conclusions as to 

the Newtonian nature of blood because some effects tend to 

decrease the viscosity and others tend to increase the 

viscosity. The latter influence on viscosity is due to a small 

flow, which increases the viscosity significantly, as well as to 

the fact that cells often become stuck at constrictions in small 

vessels. However, a cell becoming stuck happens most often 

in the capillaries. The net effect of all these influences on 

blood viscosity is that it is reasonable to assume that the 

overall viscous effects in the small vessels are approximately 

equivalent to those that occur in the larger vessels. The 

diameters of blood vessels range over several orders of 

magnitude. This variation may impose a problem for 

modeling purposes, but that problem can be overcome by 

dividing the arteries into several groups: large arteries, small 

arteries, arterioles and capillaries. This distinction is 

somewhat arbitrary, but can be justified by the different 

properties of the vessels as they gradually become smaller. 

The main purpose of the respiratory system is to transport 

oxygen and carbon dioxide between the atmosphere and the 

tissue and organs in the body. Oxygen is a necessity for life 

and a human being consumes approximately 260 ml/min at 

rest [10]. The oxygen is delivered from the atmosphere to the 

organs and tissue via the lungs and the blood circuit. Carbon 

dioxide is a waste product of oxidative metabolism, and is 

carried by the blood in the opposite direction, from the tissue 

to the lungs, where it is removed by ventilation. The carbon 

dioxide elimination rate at rest is about 160 ml/min [10]. 

Since carbon dioxide dissolved in blood forms carbonic acid, 

which affects the pH value of the blood, the removal of 

carbon dioxide plays an important role in the acid-base 

balance in the blood. The respiratory cycle starts in the 

atmosphere outside the body. By inspiration oxygen enters the 

lungs, as 21% by volume of atmospheric air consists of 

oxygen. During inspiration air enters the lung where it mixes 

with the air already in the lung. The upper airways and the 

lungs form a tree structure, i.e. the pulmonary tree, connecting 

the atmosphere with the alveoli, which are small air-filled 

sacs. From the alveoli oxygen diffuses across a membrane 

into the blood of the pulmonary capillaries, by this diffusion 

the content of oxygen in the alveoli is reduced, and hence the 

expiratory air contains only 16% oxygen. 

 

2. MATHEMATICAL MODELING 

PROCESS 
We all know that oxygen is a very important for human life 

and if oxygen transport breaks in the human body this leads to 

very fatal stage and may cause death. Oxygen transport in the 

human body evolves a complex networks of small capillaries 

as many studies reveals in the literature as described in the 

introduction part of the paper. Many theories have been 

arrived. This capillaries network is as complex as the traffic 

transport in a metro city. Like roads in city capillaries have 

their different names as shown in Figure-4, some may be long 

and some small in their size, length etc. A study has been 

done by Rushmer, R. F. [11] in which describes the shape and 

size of different capillaries evolves in the human body for 

oxygen transport.  We, model the oxygen transport 

phenomenon in the body via diffusion process i.e. micro 

circulation. According the Merriam-Webster Diffusion may 

be written in simple way as follows “the process whereby 

particles of liquids, gases, or solids intermingle as the result of 

their spontaneous movement caused by thermal agitation and 

in dissolved substances move from a region of higher to one 

of lower concentration.” We use this basic concept of 

diffusion in this paper. In this direction Fick's First Law of 

Diffusion is 

x

C
DJ





dx

dC
DJ   

Eq. (1) 

Where C is the concentration, x is the position, and D is the 

diffusivity, or diffusion constant, of the substance. As 

described above that erythrocyte is the main carrier of oxygen 

and erythrocyte is the main component of blood therefore one 

may consider that blood is main component in the transport of 

oxygen in the human body. In the study of oxygen transport 

the concept of partial pressure is equally important. Again 

Merriam-Webster describes the partial pressure as “the 

pressure exerted by a (specified) component in a mixture of 

gases.” In this direction, Henry‟s Law 

PC   Eq. (2) 
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Defines the concentration, C, of a gas in some medium, like 

tissue, in terms of partial pressure, P, the solubility of the 

medium   and Hills equation for total saturation is given by  

nn

n

PP

P
PS




2/1

)(   Eq. (3)  

Where, 2/1P
  denotes the partial pressure when the saturation 

is exactly ½. We will use these basic laws i.e. Henry‟s Law 

and Hills equation for further modeling process. 

 

Figure 4: Cross-sections of arteries and 

veins. The vessels have an inner layer of 

endothelial cells and an outer layer 

composed of fibers with a varying degree 

of muscle and elastic fibers. The figure 

shows the relative content for each group 

of vessels [11] 

For Human Tissue we can take in general, the values of 

Diffusion constant and the solubility of the medium   

respectively as follows-   

ondscmD sec/100.2 35  

mmHgcm

O
cm

.
101.3

3

235  

Now we have, the Three Dimensional Poisson equation is as 

follows: 

 
D

M
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P
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P





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
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


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 Eq. (4) 

Where M is a suitable parameter. Now, if we take M=0, then, 

we have: 

  0
22

2

2

2
















z

P

y

P

x

P
 Eq. (5)  

If, we consider one dimensional case, then   Eq. (5) converted 

to: 

0
2

2


dx

Pd
 21 dxdP   Eq. (7) 

Where 1d
 and 2d

 are integration constants.  For human 

tissue we can impose the initial conditions 0x  cm and 

P=100 mmHg. and x=0.1cm, P=0 mmHg. These initial 

conditions give us 
10001 d

 and 
1002 d

 Eq. (2) 

gives 
)( 21 dxdC  

 

1d
dx

dc
 unit

dx

dc 2101.3 
,  

hence diffusion flux in this one dimensional case is 

sec
102.6 27 cmO

J x


.  

It means if the initial partial pressure is P=100 mmHg Oxygen 

diffuses 0.0062 

1secm
. This is a very short distance, 

hence one may conclude that diffusion is an inefficient means 

of transport, it is a clear-cut picture of relation between 

diffusion and transport. Using Poisson's equation again, with 

M = 1/600 cm3O2/cm3.s, given an initial partial pressure 

of100 mmHg at x = 0 cm, we can easily calculate the distance 

that oxygen will diffuse until the diffusion flux and the partial 

pressure are both zero. The microcirculation is so important in 

supplying nutrients to the body. Vessels must always be 

extremely close to each other, or diffusion will not be an 

adequate means of supplying oxygen to all the necessary parts 

of the body. In order to formulate a model of oxygen transport 

that is more representative of actual phenomenon in the 

human body, we must consider three dimensions.  As shown 

in figure 4 the different cross sections arteries and veins and 

consider the cylindrical shape of the capillaries of the body 

through which the oxygen transport takes place. 

In one dimensional model, we know that-       
222 / rCC   

In three-dimensions, in polar co-ordinates, we have 

 
2

2

22

2
2 1
















C

rrr

C

r

C
C

  Eq. (8)           
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
                       Eq.(9), Or, 

1

2

2
c

D

Mr

r

P
r 





                     Eq. (9a)     

Where 1c
 is integration constant. Eq. (9) is an 

expression for pressure gradient. Integration of 

Eq. (9) will lead to expression,  

21

2

log
4

crc
D

Mr
P 


                  Eq. (10), 

Where 2c
  is again integration constant. I. In 

general, we must have the P as the form 
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                                                      Eq. (12) 

In this equation, we assume, p0is the initial partial pressure at 

the center of the cylinder,r0  is the radius of the capillary, rt is 

the radius of the tissue surrounding the capillary and r is the 

total radius of the cylindrical capillary. The parameters viz. 

initial pressure, radius of the capillary, radius of the tissue 

surrounding the capillary etc. are in general variables so the 

this type of transport phenomenon is to complicated to 

formulate however, we have derived in general an expression 

for partial pressure as well as pressure gradient. For one set of 

values this may work.  From the preceding models, we can 

clearly see that diffusion is an inefficient means of oxygen 

transport. This is why the microcirculation is so important. 

Without it, oxygen could not be transported to all parts of the 

body.           

3. CONCLUSION 
In this paper, we only analyzed models of oxygen transport 

with initial partial pressure of 100 mmHg and an oxygen 

consumption rate of either 0 or 1/600 cm3O2/cm3. Really, 

these values can change depending on certain conditions. For 

example, the partial pressure of oxygen will be less in people 

with lung disease or people at high altitudes. Oxygen 

consumption can change significantly depending on where 

oxygen is being supplied or how much work a person is 

doing. In skeletal muscle M ≈ 1/6000 at rest but increases to 

1/600 at moderate exercise, and to 4/600 or high levels of 

exercise. Mathematical models of oxygen transport can be 

much more sophisticated than the models analyzed above. 

Obviously, oxygen transport in the human body is much more 

complicated than simple diffusion. In this paper we also give 

the basic properties of human blood. Micro-vascular networks 

often change their structure when they are growing and in 

response to functional demands, such as changes in metabolic 

requirements. From the preceding models, we can clearly see 

that diffusion is an inefficient means of oxygen transport. We 

also observe the role of blood in the transport of the oxygen in 

the human body in the form of that erythrocyte is the main 

carrier of transport of oxygen. We also modeled an expression 

for partial pressure in the form of Eq. (11) or Eq. (12) pressure 

gradient in Eq.  (9) 
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