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ABSTRACT

The Fibonacci sequence are well known and widely
investigated. The Fibonacci and Lucas sequences have
enjoyed a rich history. To this day, interest remains in the
relation of such sequences to many fields. In this paper, we
obtain some identities for common factor of Fibonacci-Like
and Lucas numbers. The new identities for even and odd both
numbers are obtained.
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1. INTRODUCTION

Mathematics can be considered as the underlying order of the
universe, and the Fibonacci numbers is one of the most
fascinating discovery made in the mathematical world.
Among numerical sequences, the Fibonacci sequence has
achieved a kind of celebrity status and has been studied
extensively in number theory, applied mathematics, physics,
computer science, and biology [2].

The Fibonacci sequence in each next term is the sum of
previous two terms with two specific initial values, is a source
of many nice and interesting identities. A similar
interpretation also exists for Lucas sequence. The Fibonacci
numbers have been studied both for their applications and

the mathematical beauty of rich and interesting identities that
they satisfy. The Fibonacci numbers given by the recurrence
relation,

F..=F+F,_. where n>1 .9

with initial conditions F, =0, F, =1.

The Lucas numbers are given by the recurrence relation:

L., =L,+L,,, where n>1 1.2) Th
e

with initial conditions L, =0, L, =1.

Fibonacci-Like numbers [1] is defined by the recurrence
relation:

Spy=S,+S, ;, where n>1
with initial conditions S, =2, S, =2.

@3) The

associated initial conditions So and Sl are the sum of initial

conditions of Fibonacci and Lucas numbers respectively.

ie. SO=F0+LOand 51=F1+L1.

The general form of Lucas numbers can be written by Binet’s
formula given as

_@+V9)" +(1—V5)"

L, -
2

, wheren>1 (1.4)

The Binet’s formula for Fibonacci-Like numbers is given by

n+l n+l
S, = (1+5) A—5) ,where n>1 (1.5)
2"\'5
The value of Fibonacci-Like and Lucas number are presented
in the following table:
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There are a lot of identities about Fibonacci and Lucas
numbers. In [3],

F4n +1’ F4n+1 +1, F4n+2 +1, F4n+3 +1, F4n+1 -1
L4n+1 —1, L4n+1 +1’ F4n+3 _1’ L4n+3 —1, L4n+3 +1
are defined in the form of the relation between Fibonacci

and Lucas numbers. In [4], the identities F

on and

F2n + lare presented. In this paper we obtain some

identities for even and odd Fibonacci-Like and Lucas
numbers.

2. SOME IDENTITIES FOR FIBONACCI-
LIKE AND LUCAS NUMBERS

Theorem(1). S, L,,., =S,,,.,Where n>1.

Proof. S, L,..=

[(1+ NS —(1—x/§)m]_[(1+ N +(1—V5)Z“*1}

22n\/§ p2n+l
B (1+ \/5)4n+2 _(1_\/5)4n+2
24n+1 \/5
= S4n+1 .

Theorem(2). S,, L, =S,,,,Where n>1.
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Proof. S, ,L,, =

[(u JB)" - (1-+B)” ]_|:(1+ 5y +(1—«/5)Z"}

-s,, +—(1+\/522iiff/j5)zn [(1+v5)-@2-v5)],

22n—1’\/§ 22n B on
IS
@By —(1-v5)" V5 2
- 2145
1 2n
s =Si +7:(-1) [2V5],
4n-1 *
Theorem(3). S,,,,L,,., = S,y.5.Where n>1. =S *2.
Proot. Saalam: = Theorem(6). S,,.,L,, = S,y,, +4,Where n>1.
(1+ \/g)zm - (17 ﬁ)zmz [(1+ VB2 4 (1—~/5)n2 } Proof. S,.,,L,, =
2 2 (L4+V5)" (=5 | (2+V5)" + (1-5)"
4an+4 4n+4 22’”2 \/5 o2n ’
|l (@+NB)"™ —(1-+5)
- 2425 {(1+ \/5)4;125/1;\/5)%4}
=S, - {(u V5)"3(1-V5)" —(1-V5)"3(1+ d5)2"}
24n+2 \/5 !

Theorem(4). S,,,L,, =S,,., +2,where n>1.

2n 2n
Proof. S,,.,L,, = _s, ,+d¥5a-vs)"

[(@+V5)' —(1-V5)],

24n+2\/5
[(lJr\E)zmz(1£)2n+2]-|:(1+\/5)2n+(l_\/5)2n:| .
PEEN3 2 54n+2+1{(1+\/5)(21_\/5)} [16\/5},
45 2

:|:(l+\/5)4n+2 7(17\/5)4n+2:|+

24n+1 \/5 = S4n+2 + 4( _1)2ﬂ ’

[(1+ V5)M 2 (1-V5)" —(1-V5)"*(1+ V5)2"}

24 g =S, +4.

(L V5" (1 N5)" Theorem(7). S, ,L,,,,=S,, —2,where n>1.

=S, W [(@+5y —(1-V5)],
Proof. S, L, =
s, 4L (1”5)(21‘V5) [aV5]. (L+V5)%" —(1-V5)™ [ (1+V5)™ +(1-V5)™"
25 2 921,/ 920+ '
|i(1+\/5)4n+l_(1_\/5)4n+1:|+
1 " = n
=Spat5 = (1) [4Vs5], 2*"\5

{(1+ V5)" (=5 )" —(1-V5)*"(1+ \/5)2'”1}

:SAn+1+2' 24?1\/5

Theorem(5). S, L,, =S,, +2,where n>1. ( \/) 5T

_ 1 | (1++5)(1-+5)
Proof. S, L,, = :S“”+x/5[22] [(1-x/5)—(1+\/5)],

(A+5)>™ —(1-+5)** || (1+V5)*" +(1—-5)*"
22" 5 2% '
1

[@a+sy ™ —(1-v5) =S, +——(-1)""| 25/,
7|: 24n\/5 :|+ ¢ \/5 [ :|

(A+V5)PH(1-V5)" —(1-V5)™ (1 +5)" =S —2.
25 '



Theorem(8).
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S,n1lon s =S4, — 2,Where n>1.

Proof. S, .L,.,=

{

22145

{(1+V5)2" —(1-V5)"
22n—1

} {(1+d5)2"1+(1—V5)2“

I

|

(1+V5)" 1 —(1-+5)n .
2245

(1+V5)™"(1-+5)** —(1-V5)"(1+~5)**

|

2245
I 1 [(avs)a-vs) [ 1 1
RPN 2 (1-V5) (1+15) |’
| 275
4n 2+\/5( 1) |: 4:|
:SAan_Z'
Theorem(9). S,,,,L,,,; = Syp.. —2,Where n>1.

Proof. S,.;L,., =

=S,0.0 +&(2i) (1+B) " (1-4B) " [(1+ ) - (1-5)]

22n+1

(l+ \/5)2n+2 _(1_\/5)2n+2
22n+1\/5

} {(1+ V5)# 4 (1-+/5 )

|

=S

=S

=S

Theorem(10).

(1+\/§)4n+3_(1_\/§>4n+3
24n+2£ +

(1+\E)Zn+z(17\/§)2n+17(17£)2n+2(1+£)2n+1
24n+2%

435{(1@(1@] T8 e-E 2]

o + 4V5( -1y [-4][2V5],

an+2 T

—2,where n>1.

Sonizbonin =S

4n+3

[1]

[2]

3]

(4]

Proof. S, L, =

{(1+\/5)2n+3 _(1_\/5)2n+3:| |:(1+\/5)2n+1+(1_\/5)2n+1

22n+2 \/5 22n+1
l+«/_ \/—)4n+4
24n+3f +
1+’\/= 2n+3 f)2n+1 7(17\/§)2n+3 (l+£)2n+1
24n+3% !
o BB oy
145)(1-B) |
=Sns +8\/§|:(lg)] |:(1+ \/g)(l—’\/g)}[4\/§:|y
:S4ﬂ+3 8\/ ( 1)2n[ 4][4\/5]
S 2.

T O4n43 T

3. CONCLUSION

This paper describes identities for Fibonacci-Like and Lucas
numbers by their Binet’s formula. These identities can be used
to develop new identities of Fibonacci and their associated
sequences.
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