
National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing (RTMC) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

19

Software Product Line Testing

Sajeta, Neha

Research Scholar in
Maharishi Markendeshwar University, Mullana(Ambala)

ABSTRACT

The software product line approach to the development of
software intensive systems has been used by organizations to
improve quality, increase productivity and reduce cycle time.
These gains require different approaches to a number of the
practices in the development organization including testing.
The objective is to analyze the existing approaches to testing

in software product lines. A suitably organized and executed
test process can contribute to the success of a product line
organization. Testing is used to identify defects during
construction and to assure that completed products possess the
qualities specified for the products.

Test-related activities are organized into a test process that is
designed to take advantage of the economies of scope and
scale that are present in a product line organization. These
activities are sequenced and scheduled so that a test activity
occurs immediately following the construction activity whose
output the test is intended to validate. Test-related activities

that can be used to form the test process for a product line
organization are described. Product line organizations face
unique challenges in testing.

Keywords
Software Product line, Testing, SPL Architecture Testing.

1 Introduction:

A software product line (SPL) is a set of software intensive
systems sharing a common, managed set of features that

satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core
assets in a prescribed way .
Testing has two main functions: (1) helping to identify faults
that lead to failures so they can be repaired and (2)
determining whether the software under test can perform as
specified by its requirements. In certain domains and styles of
development, testing has been performed to estimate the

reliability of software. Different types of testing, such as unit,
integration, and system testing, are carried out during the
development process. Regardless of the type of testing, each
task involved is organized around three basic activities:
Analysis: The material to be tested is examined using specific
strategies to identify appropriate test cases. Analysis

techniques that involve structured artifacts such as
architecture description languages and programming
languages can be automated to reduce the test resources
needed for a project.
Construction: The artifacts needed to execute the tests
specified in the test plan are built. These artifacts usually

include test drivers, test data sets, and the software that
implements the actual tests.
Execution and Evaluation: The tests are conducted, and the
results are analyzed. The software is judged to have passed or
failed each test. This information guides decisions about what
the next step will be in the development process.
 “The process of operating a system or component under
specified conditions, observing or recording the results, and

making an evaluation of some aspect of the system or
component”[1]

2 SOFTWARE PRODUCT LINE TESTING

 2.1 Unit Testing (UT)
 2.2 Integration Testing (IT)
 2.3 Functional Testing (FT)

 2.4 SPL Architecture Testing (AT)
 2.5 Embedded Systems Testing (ET)
 2.6. Testing Effort in SPL (TE)

Basic software product line

National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing (RTMC) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

20

2.1 Unit Testing

Unit testing is a software development process in which the
smallest testable parts of an application called units , are
individually and independently scrutinized for proper
operation. The primary goal of unit testing is to take the
smallest piece of testable software in the application, isolate it

from the remainder of the code, and determine whether it

behaves exactly as you expect. Each unit is tested separately

before integrating them into modules to test the interfaces
between modules. Unit testing has proven its value in that a
large percentage of defects are identified during its use. The
most common approach to unit testing requires drivers and
stubs to be written. The driver simulates a calling unit and the
stub simulates a called unit.

2.2 Integration Testing

Integration testing is a logical extension of unit testing. In its
simplest form, two units that have already been tested are
combined into a component and the interface between them is
tested. You can do integration testing in a variety of ways but
the following are two common strategies:

The top-down approach to integration testing requires the
highest-level modules be test and integrated first.
The bottom-up approach requires the lowest-level units be

tested and integrated first.

2.3 Functional Testing

Functional testing is a type of black box testing that bases its
test cases on the specifications of the software component
under test. Functions are tested by feeding them input and
examining the output, and internal program structure is rarely
considered .Functional testing differs from system testing in

that functional testing "verif[ies] a program by checking it
against ... design document(s) or specification(s)", while
system testing "validate[s] a program by checking it against

the published user or system requirements”. Functional testing
typically involves five steps
The identification of functions that the software is expected to
perform
The creation of input data based on the function's

specifications
The determination of output based on the function's
specifications

 Software Product Line

 Testing

 Unit

 Testing

 Integration

Testing Functional

Testing

SPL Arch.

Testing Embedded systems

Testing

Testing effort

in SPL

National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing (RTMC) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

21

The execution of the test case The comparison of actual and expected outputs.

2.4 SPL Archieture Testing

Product line architecture is a single specification capturing the
overall architecture of a series of closely related products. Its

structure consists of a set of mandatory elements and a set of
variation points. Whereas mandatory elements are part of the
architecture of every product in the product line architecture,
variation points precisely define the dimensions along which
the architectures of individual products differ from each other.
New testing

techniques are needed to be able to test product line
architectures. A first option could be to build new, ad hoc

techniques from scratch. In particular, we believe unit testing,
integration testing and functional testing are architectural
testing techniques form the basis for our approach. Finally, a
SA-based regression testing approach is proposed, based on
an adaptation of traditional code-based selective regression
testing techniques.

2.5 Embedded System Testing:

Embedded systems are in every intelligent device that is
infiltrating our daily lives: the cell phone in our pocket and all
the wireless infrastructure behind it; the Palm Pilot on our
desk. The works found for testing in embedded systems

are generally specific to a particular domain and have been
tested in artificial

environments or industries Kim et al[2] present a tool that

supports the development of SPL for embedded systems of
control, using FORM (Feature-Oriented Reuse Method) and
using simulation for testing. Kishi et al. [3] apply formal
verification techniques (model checking) to verify the design
of embedded systems in SPL. They represent the variability in
UML models and present a tool that supports this approach.
Pesonen et al.[4]use aspects to implement specialisations at
the core assets level in embedded systems for smoke testing

the devices.

.

 2.6 Testing Effort

Effort estimation consists in predict how many hours of work
and how many workers are needed to develop a project. In

software development Test Ajila [5]

good effort refers to the expenses for (still to come) tests.
There is a relation with test costs and failure costs (direct,

indirect, costs for fault correction
 make a study of the changes in the product line architecture
of a large
telecommunications equipment supplier. They conclude that
code size is not a

predictor of testing effort at either
product or product line levels and that
testing effort does not seem to depend on
the product‟s target market

.

3 Conclusion

This paper has presented an analysis of the current state of the

art in software product lines testing .In general, SPL in
Software Engineering is a young discipline, but a very
promising one, proving that most of the results and benefits
obtained from SPL can be

extrapolated to other methodologies or development

paradigms. In the case of testing, Bertolino (Bertolino, 2007)
has pointed out a transversal challenge to the development of
testing techniques and their reuse from emerging paradigms,
as product lines may well be.

4 References

[1] Institute of Electrical and Electronics Engineers.
„IEEEStandard Glossary of Software Engineering

Terminology‟ IEEE Std. 610.121990. New York, NY:
IEEE, 1990.

[2] Kim, K., Kim, H., Ahn, M., Seo, M., Chang, Y., and
Kang, K, „Asadal: a tool system for co-development of

software and test environment based on product line
engineering‟(2006).

[3] Kishi, T. and Noda, N.„Formal verification and software
product lines. Communications of the ACM‟(2006).

[4] Pesonen, J., Katara, M., and Mikkonen, T. „Production-
testing of embedded systems with aspects‟(2006).

[5] Ajila, S. and Dumitrescu, R. „Experimental use of code
delta, code churn, and rate of change to understand software
product line evolution‟ The Journal of Systems and
Software(2007).

