
National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing (RTMC) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

29

An Efficient Technique for Software Coverage using
Metaheuristic Algorithm

Nupur bajaj

Student,M.Tech(CSE)

Meha Khera

Student,M.Tech(CSE)

Vikram

A.P. in IT Deptt.

Vijay Chahar

A.P. in CSE Deptt.
JCDV,Sirsa TITS,Bhiwani

ABSTRACT
Software Testing is one of the most important parts of the

software development lifecycle. Functional and structural testing
are the most widely used testing methods to test softwares.
Testing effectiveness can be achieved by the State Transition
Testing (STT) which is commonly used for carrying out
functional testing of software systems. The tester is required to
test all the possible transitions in the system under built.
Structural testing relies on identifying effective paths of the
code. Aim of the current paper is to present a strategy by

applying ant colony optimization technique, for the generation
of test sequences for state transitions of the system as well as
path generation for the Control Flow Graph of the software code
using the basic property and behavior of the ants. This Proposed
strategy gives maximum software coverage with minimal
redundancy.

Keywords
Software Testing, Ant Colony Optimization (ACO), State

Transition Testing (STT) Control Flow Graph (CFG)

1 INTRODUCTION

Software Engineering [1] is an engineering discipline which
focuses on developing high-quality software systems which are
very cost effective. It is a profession wherein designing,
implementation, and modification of software are involved.
Software Development Life Cycle [1] (SDLC) or systems
development life cycle is a process of developing a system

which involves different steps like investigation, analysis,
design, implementation and maintenance. Software testing is the
primary technique, since always, used to gain consumers‟
confidence in the system. Software testing is a labour intensive
and very expensive task. It accounts almost 50 % of software
development life cycle [2]. Selection of the test data for testing
software is the crucial part of software testing. The appropriate
amount of test data can minimize unnecessary execution time of
the testing Process.

However, thorough testing is often unfeasible due to the
potentially infinite execution space or high cost within tight

budget limitations. Many testing tools and methodologies have
been emerging in the field of software testing. Code coverage

analysis is one such methodology which helps in discovering the

instructions in a software program that have been executed
during a test run and also helps in discovering how the testing
can be further improved to cover more number of instructions
during testing of a software program [2]. Measuring the code
coverage is important for testing purpose and also for validation
of the code during both the development and porting it to new
platforms. Code coverage [3] analysis helps in finding dead code
that was written considering it would be useful in near future,

but no longer is necessary. When such code is discovered, it has
been removed from the software, hence reducing the memory

 JCDV,Sirsa JCDV,Sirsa

requirements for storing the program and freeing up space for

other useful information. The main goal of any Software
organization [1] is to provide a good quality software product to
the customer within the estimated budget. In order to achieve
this goal, the key concept used by any organization is software
coverage thus gaining the confidence of the clients.

2 CODE COVERAGE ANALYSIS

Code coverage analysis is one such methodology which helps in
discovering the instructions in a software program that have
been executed during a test run and also helps in discovering
how the testing can be further improved to cover more number
of instructions during testing of a software program. Measuring
the code coverage is important for testing purpose and also for
validation of the code during both the development and porting
it to new platforms. Code coverage analysis is the process of

finding areas of a program not exercised by a set of test cases,
creating additional test cases to increase coverage, and
Determining a quantitative measure of code coverage, which is
an indirect measure of quality. An optional aspect of code
coverage analysis is identifying redundant test cases that do not
increase coverage.

A code coverage analyzer automates this process. Coverage
analysis is to assure quality of some set of tests, not the quality
of the actual product. We do not generally use a coverage
analyzer when running the set of tests. Coverage analysis is one
of many testing techniques; we should not rely on it alone. Code

coverage analysis is sometimes called test coverage analysis.
The two terms are synonymous. The academic world more often
uses the term "test coverage" while practitioners more often use
"code coverage". Likewise, a coverage analyzer is sometimes
called a coverage monitor.

3 STRUCTURAL TESTING AND

FUNCTIONAL TESTING

Code coverage analysis is a structural testing technique (glass
box testing and white box testing). Structural testing compares

test program behavior against the apparent intention of the
source code. This contrasts with functional testing (black-box
testing), which compares test program behavior against a
requirements specification. Structural testing examines how the
program works, taking into account possible pitfalls in the
structure and logic. Functional testing examines what the
program accomplishes, without regard to how it works
internally.

Structural testing is also called path testing since we choose test
cases that cause paths to be taken through the structure of the
program. At first glance, structural testing seems unsafe.

National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing (RTMC) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

30

Structural testing cannot find errors of omission. However,
requirements specifications sometimes do not exist, and are
rarely complete. This is especially true near the end of the
product development time line when the requirements
specification is updated less frequently and the product itself

begins to take over the role of the specification. The difference
between functional and structural testing blurs near release time.

Code coverage analysis helps in finding dead code that was
written considering it would be useful in near future, but no
longer is necessary. When such code is discovered, it has been
removed from the software, hence reducing the memory
requirements for storing the program and freeing up space for
other useful information. The main goal of any Software
organization is to provide a good quality software product to the
customer within the estimated budget. In order to achieve this
goal, the key concept used by any organization is software

coverage thus gaining the confidence of the clients.

 4 COMBINATORIAL OPTIMIZATION

ALGORITHMS

4.1 ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is a paradigm for designing

meta-heuristic algorithms for combinatorial optimization
problems. A Meta heuristic is a set of algorithmic concepts that
can be used to define heuristic methods applicable to a wide set
of different problems. In other words, a Meta heuristic is a
general-purpose algorithmic framework that can be applied to
different optimization problems with relatively few
modifications. Examples of meta-heuristics include simulated
annealing, tabu search, iterated local search, evolutionary

computation, and ant colony optimization. Meta heuristic
algorithms are algorithms which, in order to escape from local
optima, drive some basic heuristic: either a constructive heuristic
starting from a null solution and adding elements to build a good
complete one, or a local search heuristic starting from a
complete solution and iteratively modifying some of its elements
in order to achieve a better one. The first algorithm which can be
classified within this framework was presented in 1991 by

Marco Dorigo with his PHD thesis “Optimization, learning, and
Natural Algorithms”, modeling the way real ants solve problems
using pheromones. The main idea is that the self-organizing
principles which allow the highly coordinated behavior of real
ants can be exploited to coordinate populations of artificial
agents that collaborate to solve computational problems. Several
different aspects of the behavior of ant colonies have inspired
different kinds of ant algorithms. Examples are foraging,

division of labor, brood sorting, and cooperative transport. In all
these examples, ants coordinate their activities via stigmergy, a
form of indirect communication mediated by modifications of
the environment. For example, a for-aging ant deposits a
chemical on the ground which increases the probability that
other ants will follow the same path. Real ants are capable of
finding the shortest path from a food source to their nest. While
walking ants deposit pheromone on the ground and follow

pheromone previously deposited by other ants, the essential trait
of ACO algorithms is the combination of a priori information
about the structure of a promising solution with a posteriori
information about the structure of previously obtained good
solutions. In ACO, a number of artificial ants build solutions to
an optimization problem and exchange information on their
quality via a communication scheme that is reminiscent of the
one adopted by real ants.

4.1.1The ACO system contains two rules:
1. Local pheromone update rule, which applied whilst
constructing solutions.

2. Global pheromone updating rule, which applied after all ants
construct a solution

Furthermore, an ACO algorithm includes two more mechanisms:
trail evaporation and, optionally, daemon actions. Trail
evaporation decreases all trail values over time, in order to avoid
unlimited accumulation of trails over some component. Daemon
actions can be used to implement centralized actions which
cannot be performed by single ants, such as the invocation of a
local optimization procedure, or the update of global information
to be used to decide whether to bias the search process from a

non-local perspective.

ACO: Path Construction

• When ant k is located at a node vi the probability pjk of

Choosing vj as the next node is:

With:
• Ni: the set of nodes that ant k can reach from v (tabu list)

• hij: the heuristic desirability for choosing edge (i,j)
• tij: the amount of pheromone on edge (i,j)
• a and b : relative influence of heuristics vs. pheromone

4.1.2ACO: Pheromone updates (1)

The pheromone on each edge is updated as:

With:
• r : the evaporation rate of the „old‟ pheromone

• Δtij : the „new‟ pheromone that is deposited by all ants on edge
(i,j) calculated as:

ACO: Pheromone updates (2)

The pheromone that is deposited on edge (i,j) by ant k is

calculated as:

With:
• Q : a heuristic parameter
• Tk: the path traversed by ant k

National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing (RTMC) 2011
Proceedings published in International Journal of Computer Applications® (IJCA)

31

Table 1: Comparison of Tools

• Lk : the length Tk calculated as the sum of the lengths of all
the edges of Tk.

5 DISCUSSION

Figure 1: Control Flow Graph

In the above graph different numbers of paths are generated, that
shows the code coverage in it. Four different paths are generated
when the tool is applied, but from our strategy only 3 different
paths are generated giving the total coverage with minimum
redundancy.

Comparison is given in Table 2 as follows:

Therefore, it shows the technique provides minimal number of
repetitions producing maximum coverage.

6 CONCLUSION

This paper proposes a technique for test sequence generation for
state based testing and optimal path generation for structural
testing using ant colony optimization. The result that is produced
by applying proposed method is very encouraging. To model
the system state chart diagram and CFG are taken and the
algorithm is applied over them. After successful execution of
algorithm, it shows path sequence which gives maximum
coverage and minimum redundancy. This may be very useful

and helpful for the testers in the software industry. A number of
extensions and applications of this model may be possible by
using the different meta-heuristic techniques.

7 REFERENCES

[1] Ian Sommerville,” Software Engineering”, eight Edition,
Pearson Edition, 2009.

[2] Aditya P. Mathur “Foundation of Software Testing”, First
Edition, Pearson Education, 2007.

[3] Myers, G., The Art of Software Testing. 2 edition: John
Wiley & Son. Inc. 234 pages, 2004.

[4] Marco Dorigoa and Thomas Stutzle, “Ant colony
optimization, The Knowledge Engineering Review",

Cambridge University Press New York, NY, USA. ,
Volume 20, Pp: 92 – 93,2005.

[5] DI´AZ E., TUYA J., BLANCO R.: „Automated software
testing using a meta-heuristic technique based on tabu
search‟. ASE-2003.

[6] Marco Dorigo and Thomas Stutzle, “Ant Colony
Optimization”, phi publishers, 2005.

[7] S.D.Shtovba,”AntAlgorithms: Theory and

Applications”,programming and computing software,vol
31,issue 4,pp167-178, 2005.

[8] Praveen Ranjan Srivastava, K M Baby, “An Approach of
Optimal Path Generation using Ant Colony Optimization”,
ISBN-978-1-4244-4546-2, pages 1-6, IEEE-TENCON,
Singapore, 2009.

TOOL Paths Generated

Old

start,1,2,3,4,end

start,1,2,3,4,5,6,7,8,9,end
start,1,2,3,4,5,6,10,11,4,5,6,7,8,9,end

start,1,2,3,4,5,6,10,12,4,5,6,7,8,9,end

New

start,1,2,3,4,end

start,1,2,3,4,5,6,10,11,4,end
start,1,2,3,4,5,6,10,12,4,5,6,7,8,9,end

