
National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing (RTMC) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

6

Software Risk Evaluation and Assessment using Hybrid
Approach

Sneh Prabha1, R.L.Ujjawal2

Student M.Tech(IT) GGSIPU,Delhi1
Assistant Professor,GGSIPU2

ABSTRACT
The complexity and the associated risk increases as the size of
the project increases. In this paper we have proposed a
technique to evaluate the risk based on the source code as well
as on the changes in the requirements of the user. Because it is
not possible to test exhaustively each and every path in the code

so some of the faults are left which can become the future risks.
The risk assessment is based on the code is calculated by
considering the conditions, variable and predicates in the code.
Because there are always some changes in the project, major or
minor. These changes increase the chances of the risk. So this
proposed model considers the impact of changes on the risk.

Keywords
Software risk, Risk exposure, Risk management, Risk
Assessment.

I. INTRODUCTION

Identification and management of the risk is one of the most

important tasks of software development. As the software size,
complexity, content and changes associated with the project
increases the risk associated with the project also increases.
Software projects are the high risk activities. It will be very
helpful if we can identify all the potential risk at the beginning
of the project .This will be helpful in minimizing the occurrence
and impact of the various risks. The process of risk management
includes set of the activities including identification, analysis,

planning, tracking, controlling the risk. Risk is a probability of
occurrence of some unwanted and harmful event to the project.
These events can result in delay, over budget, wrong
functionality or termination of the project, degradation in
product functionality & quality and high maintainability and
reusability cost. Different techniques have been proposed to
handle various type of risk. Some of these are used in the
various phases of the development while others are applicable

on the code itself. Risk management partly means reducing
uncertainty [1].

There are three dimensions of software risk. (i) Technical Risk
(ii) Organizational Risk (iii) Environmental Risk. The technical
dimension is results of uncertainty in the task and procedure.
The organizational dimension is related to poor communication
and organizational structure. Because of the change in
environment and external factors the environmental risk occurs.

All these factors affect the software in different ways [2]. Risk
management uses the various steps for managing the risk. It
includes the risk identification, risk assessment, risk mitigation,
avoidance, acceptance and transference. Risk avoidance is to
avoid the risk before it occurs to prevent and control the damage
caused by the risk. Risk transference is done by transferring the
responsibility of risk handling to some third party. Risk
transference can be done by outsourcing, contracts, warranties

and insurance. Risk acceptance is to accept the presence of risk

in the software. Further steps can be taken based on the severity

of the risk. Risk identification includes the process of
identifying the risk associated. Risk assessment is used for
rating the various risks and the probability and impact of the
risk. Risk mitigation is used to prepare a plan for handling and
minimizing the adverse effect of the risk. It can be done by
using controlling, avoiding or transferring the risk. Risk
mitigation consist of the various activities including planning
risk control measures, implementing risk control measures,

monitoring the risk, controlling the risk, learning on risk.

II. BACKGROUND AND RELATED

WORK
Various models have been developed for various types of
projects for the risk management based on their different needs
and conditions. Software risk management is not a onetime
activity and it is a continuous process that has to be followed
throughout the life of a project. Approach for the risk
management can be based on the traditional approach or it can
be based on the proactive such that each project is studied
individually to find out the related risk and their management.

In traditional approach focus is on the risks which are common
in all the projects. These are easy to identify and control. SEI
has defined six paradigms of risk management. These are
identification, analyzing, planning, tracking, controlling, and
communicating the risk. Details of these is best describes in [3].
SEI’s software risk management is supported by three groups
Software risk evaluation, Continuous risk management and
team risk management. The objective of risk management

strategies is to prevent, mitigate, correct and ensure system
failure. The goal of this model was to identify and resolve risk
in early stage and to develop risk strategies to handle all these
risk. There is another model called Model of risk assessment of
Software Project based on grey theory defines grey
comprehensive evaluation model of the risk management. It
combines AHP and entropy method to confirm the weight of
risk index and calculates the grey approach degree by using

improved grey correlation degree as decision making unit. Then
software risk can be ranked according to grey approach degree
[4]. Another model for risk assessment and evaluation is for the
projects based on the fuzzy analytical hierarchal process. For
this related risk factors are identified and then expert qualitative
judgments about these factors are acquired. These judgments are
translated into fuzzy numbers and used as a input to FAHP.
After this risk factors are ranked and prioritized by FAHP in

order to make project managers aware of important risk and to
enable them to adopt measures to deal with these highly
devastating risks. It suggested the risk identification. FAHP
establishes the hierarchical structure and creates the fuzzy
judgment matrix using pair-wise comparisons [5]. Various
approaches are used for the risk management. They can be
based on the process model, checklist, analytical framework or
risk response strategies. In checklist method a list of the risks is

mailto:sneh.prabha@gmail.com,%20%2009015439521,Student

National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing (RTMC) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

7

prepared and it is verified for the project. . A checklist is a
referential list of typical risk factors of project failure compiled
from the experiences of some past projects. Checklists usually
have the form of a questionnaire or a risk list. A questionnaire
consists of a set of questions that ask for the current state of the

project. Some questionnaires use only yes-no questions,. It is a
fast, easy and low cost process for risk identification. But
decision about which list to use can be very tough. Qualitative
risk estimation is used to estimate the risk exposure in two
dimensions by considering the likelihood of occurrence, loss
due to the risk. It determines the impact or severity of
consequences).Analytical framework is closely related to the
checklist. It is non-process based analytical framework provides

an alternative way to think and manage software risks. Various
some include closed test questions and some other employ open
questions check list can be some standard list or it can be
project specific framework have been proposed based on the
source of the risk, lifestyle based risk or based on the elements
and their relationships. Process models specify the stepwise task
for managing the risk. Process model specify the activities to
manage the risk. Boehm’s and PMI’s PMBOK Guide are

example of process models. There is another model called
Software Risk Assessment Model (SRAM). This model
considers the nine critical risk elements (i) complexity of the
software; (ii) staff involved in the projects (iii) targeted
reliability (iv) product requirement (v) method of estimation (vi)
method of monitoring (vii) development process adopted (viii)
Usability of software (ix) tools [6].

III. PROPOSED RISK ESTIMATION

STRATEGY
Although so many models have been proposed but no model is

perfect for different circumstances. Each model has its strong
point and its weakness also and each is defined for a particular
category of projects. Risk estimation can be based on the code
of the project or it can be model based. Code based approach is
useful for calculating risk associated with the code. It can be
based on various errors.

In the proposed approach we measure the total phase-wise risk
then it is added to the risk calculated from the source code. So if
there is any change in the code after the completion we can

calculate the risk based on code as well as on the changes that
has been implemented. This model will be more useful and
better as we are considering the impact of the changes. So the
risk calculation will consider the risk due to code as well as the
risk due to changes in the code at each phase of development.

These are the errors affecting the risk measurement in the
project. Risk measurement can be done in different ways. Risk
measurement can be done by considering the various risk

factors and it can also be based on the code. The earlier is
beneficial as it can measure the risk before the coding is done
and it will be very helpful in risk management activities. Risk
can also be measured by using the function point.

Each method has its own benefits and drawbacks. In this paper
we are going to study risk measurement model which takes the
benefits of both code based risk analysis and risk factors based
risk analysis. It will be more suitable to the projects which are

used over a long period of time. These projects require regular
maintenance and updates so the need to keep the record of
various risks is a very important activity. It uses actual values of
parameters and variables. So the result will be more accurate.
These errors can be categorized as follow

1) Measurement Error. The measurement error occurs if

some of the input variable in model has inherent accuracy
limitation. For example, as a result of Chris Kemerer’s work, 3
function points are assumed to be at least 12 percent inaccurate.
Thus, if you estimate a product size of 1,000 function points,
measurement error could mean that the real size is anywhere

between 880 and 1,120 function points. So applying a model of
0.2 person- days per function point means your estimate will
have a range of uncertainty between 176 and 224 person- days,
with a most likely value of 200 person-days [7].

 2) Model Error There are many numbers of factors that

affect the effort for the software project. But all of these cannot
be included in the model. Model errors occur when all the
factors that affect the effort required to produce the project are
not included in the model. Some values in the projects are based
on the data taken from past projects. For Example if we get the
0.3 person per day function point from past project same value

may not be applicable to some another project. So if we are
using some past project data then we should calculate the
associated inaccuracy by using, for example, the mean
magnitude relative error [7]. Thus if estimation model is with
an inherent 20 percent inaccuracy and your product is 1,000
function points in size, estimation will be between 140 and 260
person-days. Measurement inaccuracy and model inaccuracy are
additive.

3) Scope Error. The scope error occurs when the when project
is outside your estimating model’s domain. The estimation
model will be suitable for the same domain. It will not be
applicable to the other domain. If model is used for some
another domain then results will not be accurate. It will be
difficult to quantify the impact of the
scope error. If your estimation models or methods are
completely out of scope, you cannot produce a meaningful

effort estimate. In such circumstances any estimate should not
be done. We can choose some another technique to check
feasibility and risk exposure.

4) Assumption Error. Assumption errors occurs when we

make incorrect assumptions about a model’s input parameters.
For example, if we assess the product size of 1300 function
point by assuming that we have correctly identified all the
customer requirements. If all assumptions are identified then we

can investigate the affect of being invalid by assessing both the
probability that an assumption is incorrect and the resulting
impact on the estimate. This is the form of risk analysis. For
example you believe that there is a 0.3 probability that the
requirement complexity has been underestimated and, if it has,
you estimate another 100 function point. At this point the
concept of risk exposure is used to calculate the effective
current cost of a risk and can be used to prioritize risk that
requires countermeasure [8]. Risk exposure and model error are

independent. Identifying the impact of a wrong assumption does
not increase or decrease the estimate uncertainty due to model
or measurement error. Assumption errors are very helpful in
estimating the risk exposure. Effective current cost of a risk can
be calculated by using the risk exposure and it can be used to
prioritize risk that requires countermeasure. Risk exposure can
be calculated by multiplying the probability with the total loss
due to the risk. These three errors are used to estimate the risk

exposure. The risk can be calculated as there is change in the
requirements like addition of requirements, modification of
requirements, or deletion of the requirements. So total risk can
be computed as

National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing (RTMC) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

8

 (Risk) changes = [b/a] i= 1 to n +K [A [c/b] i +B [d/b]i +G
[e/b] i] (1)

Where [b/a] i= (Number of mission critical requirements)/
(Total number of requirements) at the input of phase number i.
Ki is the penalty for adding, modifying or deleting of

requirements during phase number i [10]. Here A, B, C are
penalty for adding, modifying, deleting the mission critical
requirements. Penalty for adding will be more as compared to
the penalty for modification and deletion. This is because
addition of a requirement will require more efforts. Also the c,
d, e are number of mission critical requirements added,
modified during the phase i and b is the total number of mission
critical requirements. This risk is added to the risk calculated

from the source code. This result will give the total risk after the
each change in the code.

The Source code-based software risk assessing model [9] is a
static and dynamic model in which the risk estimation is based
on the code of the project. The static structure is based on the
metric related to the static structure of the code. It considers
number of c-uses (condition-uses), p-uses (predicate-uses),
definitions, decisions and function calls whereas the dynamic

model uses additional dynamic test coverage of the code such as
decision, c-use and p-use coverage to calibrate the metric values
used in the model. it can be based on the product of the selected
metrics. Risk increases with the complexity of the code. As
code becomes Users can choose all or some of these metric
components with appropriate weighting factors for the
construction. Modeling scheme can be either based on the
summation of the selected metrics or more and more complex

the associated risk also increases. With the rigorous testing of
code the chances of occurrence of risk decreases. Thus while
constructing the risk model these are important factors. If the
summation scheme are selected the corresponding static risk
model can be expressed as

 (Risk) code=V * + F * + D * + C * + P *


Where all five metric components are number of variable
definitions (V), number of function calls (F), number of

decisions (D), number of c-uses (C) and number of p-uses (P))
Here , , , , and are the weighting factors. These
factors are used to give either more or less emphasis to the
metric components in computing the risk. . Weights are given
special values given by experts who have very detailed
understanding of the system being analyzed. If such information
is not available, a possible choice is to use a weighting factor of
1 for all components.

We can now calculate the total risk by adding the risk due to the
source code and risk due to changes in the requirements. The
total risk will include the risk measured from the source code
and the risk measured from the changes in the mission critical
requirements.

Total risk = (Risk) changes + (Risk) code

So this total risk defines the final risk associated. Whenever
there is a change in the code and the change in the requirements

we can use this model. So this approach is applicable to all the

phases of the software as well as to the final code produced. It
will be applicable at every stage of the development.

IV. CONCLUSION
In this paper we have proposed a new approach for risk
measurement. This approach considers the impact of changes
after the project is complete. Risk measurement is based on the
risk measurement based on the source code as well as on the
requirement changes in the project. Because of the changes in
the source code the parameters will change as well as the
associated risk also changes. So we calculate the risk based on

these two factors of code and change in requirements.

V. REFERENCES
[1] Roger L. Van Scoy, “Software Development Risk:

Opportunity, not problem”, Technical report,
September 1992.

[2] Mohd. Sadiq, Mohd. Wazih Ahmad, Md. Khalid
Imam Rahmani, Sher Jung Software Risk Assessment
and Evaluation Process (SRAEP) using Model Based
Approach, IEEE 2010 International Conference on
Networking and Information Technology, pp171-177.

[3] Ray C. Williams, George J. Pandelios, and Sandra G.
Behrens, "Software Risk Evaluation (SRE) method
description (Version-2.o), Technical report

December-I 999.

[4] Pang Qinghua ,”A Model of Risk Assessment of
Software Project Based on Grey Theory”,Proceedings
of 2009 4th International Conference on Computer
Science and Education IEEE ,pp 538-541.

[5] H. Iranmanesh , S. Nazari Shirkouhi ,M. R. Skandari
,”Risk evaluation of Information Technology Projects
Based on Fuzzy Analytical Hierarchical

Process”,World Academy of Science Engineering and
Technology 40 2008.

[6] Say-Wei Foo , Armugam Muruganatham, “Software
Risk assessment Model”, ICMIT 2000, IEEE, pp-536-
544.

[7] 7.BARBARA KITCHENHAMand STEPHEN
LINKMAN, Estimates,Uncertainty, and Risk IEEE
SOFTWARE 1997,pp 69-74.

[8] Daya Gupta, Mohd. Sadiq , Software Risk

Assessment and Estimation Model , International
Conference on Computer Science and Information
Technology 2008 IEEE 2008,pp 963-967.

[9] W. Eric Wong, Yu Qi, and Kendra Cooper,Source
Code-Based Software Risk Assessing, 2005 ACM
Symposium on Applied Computing, pp 1485-1490.

[10] Mohd. Sadiq, Abdul Rahman, Shabbir Ahmad
Mohammad Asim, Javed Ahmad, esrcTool: A Tool to

Estimate the Software Risk and Cost, Second
International Conference on Computer Research and
Development, IEEE 2010, pp 886-890.

