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ABSTRACT 
A relation between Shannon entropy and Kerridge inaccuracy, 
which is known as Shannon inequality, is well known in 
information theory. In this communication, first we generalized 
Shannon inequality and then given its application in coding 
theory. 
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1. INTRODUCTION 
Let  
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2n  be a set of n-complete probability distributions. 

For P n , Shannon's measure of information [14] is defined 

as  
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The measure (1.1) has been generalized by various authors and 
has found applications in various disciplines such as economics, 
accounting, crime, physics, etc. 

 
Havrda and Charvat [6] generalized (1.1) in the following form:  

   10,>,1
12

1
=;

1=
1














 

 k

n

k

pPH    (1.2) 

later on it studied by Vajda [20], Daroczy [4] and Tsallis [19]. 

For P,Q ,n Kerridge [7] introduced a quantity known 

as inaccuracy defined as:  
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There is well known relation between H(P) and H(P,Q) which is 

given by  

 ).,()(H QPHP                                         (1.4) 

The relation (1.4) is known as Shannon inequality and its 
importance is well known in coding theory. 

 
In the literature of information theory, there are many 

approaches to extend the relation (1.4) for other measures. Nath 

and Mittal [10] extended the relation (1.4) in the case of entropy 

of type  . 

Using the method of Nath and Mittal [10], Lubbe [21] 
generalized (1.4) in the case of Renyi's entropy. On the other 

hand, using the method of Campbell, Lubbe [21] generalized 

(1.4) for the case of entropy of type  . Using these 

generalizations, coding theorems are proved by these authors for 
these measures. 

The objective of this communication is to generalize (1.4) 
for (1.2) and give its application in coding theory. 

 

2. GENERALIZATION OF SHANNON 

INEQUALITY 
 

For P,Q ,n  Sharma and Autar [16] and Nath [9] defined a 

measure of inaccuracy, denoted by H(P, Q; ) as  
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 Since    ,;;,  PHQPH   we will not interpret 

(2.1) as a measure of inaccuracy. But  ;,QPH  is a 

generalization of the measure of inaccuracy defined in (1.2). In 

spite of the fact that  ;,QPH  is not a measure of 

inaccuracy in its usual sense, its study is justified because it 
leads to meaningful new measures of length. In the following 
theorem, we will determine a relation between (1.2) and (2.1) of 

the type (1.4). 
 
Since (2.1) is not a measure of inaccuracy in its usual sense, we 
will call the generalized relation as pseudo-generalization of the 
Shannon inequality. 

 

3. APPLICATION OF HOLDER'S 

INEQUALITY 

Theorem 1:  If P,Q ,n  then it holds that  

    ;,;  QPHPH                                    (2.2)                     

 under the condition  
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and equality holds if 

kk pq =  ; k=1,2,…,n. 

 

Proof : (a) If 1<<0   

 By Holder's inequality [17]  
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 For all niyx kk 1,2,...,=,0>,  and 

  orqp
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 We see that equality holds if and only if there exists a 
positive constant c such that  
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Making the substitutions 
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in (2.4), we get  
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 Using the condition (2.3), we get  
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 Since 1<<0  , (2.5) becomes  
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using (2.6) and the fact that 1<<0  , we get (2.2). 

(b) If 1>  the proof follows on the similar lines.  

 

4. APPLICATION IN CODING THEORY 
We will now give an application of Theorem 1 in coding theory. 
Let a finite set of n-input symbols with probabilities 

nppp ,...,, 21  be encoded in terms of symbols taken from the 

alphabet  naaa ,...,, 21 . 

 

Then it is known Feinstein [5] that there always exist a uniquely 

decipherable code with lengths nNNN ,...,, 21  iff  
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If kk
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=  is the average codeword length, then for a 

code which satisfies (2.7), it has been shown that Feinstein [5] ,  

 PHL                                                     (2.8)  

with equality iff nkpN kDk 1,2,...,=;log=   

 and that by suitable encoded into words of long sequences, the 

average length can be made arbitrary close to  .PH This is 

Shannon's noiseless coding theorem. By considering Renyi's 
[12] entropy, a coding theorem and analogous to the above 

noiseless coding theorem has been established by Campbell [3] 
and the authors obtained bounds for it in terms of 
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It may be seen that the mean codeword length 
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n

k
NpL  1=

=  had been generalized parametrically and 

their bounds had been studied in terms of generalized measures 
of entropies. 

 We define the measure of length  L  by  
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 Also, we have used the condition  



k

n

k

k
N

n

k

pD  


1=1=

                                   (2.10) 

 to find the bounds. It may be seen that in the case when 1= , 

then (2.10) reduces to Kraft Inequality (2.7). 

 

Theorem2: If nkNk 1,2,...,=,  are the lengths of 

codewords satisfying (2.10), then  
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 Proof : In (2.2) choose  nqqqQ ,...,,= 21  where  
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 with choice of Q, (2.2) becomes  
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i.e.,     LPH ;  which proves the first part o (2.11). 

The equality holds iff k
k

N
pD =


, k=1,2,…,n which is 

equivalent to  

.1,2,...,=;log= nkpN kDk        (2.13) 

Choose all kN  such that  

1.log<log  kDkkD
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Using the above relation, it follows that  
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We now have two possibilities: 

 1) If 1> ; (2.14) gives us  
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using (2.15) and the fact 1> , we get right hand side in 

(2.11). 

 2) If 1<<0  , The proof follows on the same lines. 

 

 Particular's cases: 

 (1) Since 2D , we have  
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It follows then the upper bound of  L  in (2.11) is greater 

than unity. 

(2) If 1 , then (2.11) becomes  
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Which is the Shannon [14] classical noiseless coding theorem. 

 

5. CONCLUSION 
We know that optimal code is that code for which the value 

 L  is equal to its lower bound. From the result of the 

theorem 2, it can be seen that the mean codeword length of the 

optimal code is dependent on parameter , while in the case of 

Shannon's theorem it does not depend on any parameter. So it can 
be reduced significantly by taking suitable values of parameter. 
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