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ABSTRACT 

A new measure ,L  called average code word length of order 

  is defined and its         relationship with Renyi’s entropy of 

order   is discussed. Using ,L some coding theorems are 

proved under the condition .
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1. INTRODUCTION 

Throughout the paper N  denotes the set of the natural numbers 

and for NN  we set  
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In case there is no rise to misunderstanding we write NP   

instead of   NNpp ,...,1 . 

In case NP   the well-known Shannon entropy is defined 

by  
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where the convention 0=(0)log0  is adapted, (see Shannon 

[13]). 

Throughout this paper,   will stand for 
N

i 1=
 unless 

otherwise stated and logarithms are taken to the base 

 1>DD . 

Let a finite set of N input symbols  

 

  ...,,,= 21 NxxxX  

 

be encoded using alphabet of D symbols, then it is shown in 

Feinstein [5] that there is a uniquely decipherable code with 

lengths Nnnn ,...,, 21  if and only if the Kraft inequality holds, 

that is,  
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where D is the size of code alphabet. 

Furthermore, if  
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is the average codeword length, then for a code satisfying (2), 

the inequality  
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is also fulfilled and equality, ),(= PHL  holds if and only if  
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If ),(< PHL  then by suitable encoding of long input 

sequences, the average number of code letters per input symbol 

can be made arbitrarily close to  PH  (see Feinstein [5]). This 

is Shannon's noiseless coding theorem. 
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A coding theorem analogous to Shannon's noiseless coding 

theorem has been established by Campbell [3], in terms of 

Renyi's entropy [12]:  
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Kieffer [10] defined class rules and showed  PH  is the 

best decision rule for deciding which of the two sources can be 

coded with least expected cost of sequences of length n  when 

n , where the cost of encoding a sequence is assumed to 

be a function of length only. Further, in Jelinek [7] it is shown 

that coding with respect to Campbell's mean length is useful in 

minimizing the problem of buffer overflow which occurs when 

the source symbol is produced at a fixed rate and the code words 

are stored temporarily in a finite buffer. Concerning Campbell's 

mean length the reader can consult Campbell [3]. 

Hooda and Bhaker [6] considered  the following 

generalization of Campbell's mean length:  
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and proved  
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under the condition  
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where  PH 
 is generalized entropy of order 

t1

1
=  and 

type   studied by Aczel and Daroczy [1] and Kapur [8]. It may 

be seen that the mean codeword length (3) had been generalized 

parametrically and their bounds had been studied in terms of 

generalized measures of entropies. Here we give another 

generalization of (3) and study its bounds in terms of 

generalized entropy of order  . 

Generalized coding theorems by considering different 

information measure under the condition of unique 

decipherability were investigated by several authors, see for 

instance the papers [Aczel and Daroczy [2], Ebanks et al. [4], 

Hooda and Bhaker [6], Khan et al. [9], Longo [11], Singh et al. 

[14]]. 

In this paper, we study a new measure ,L  called average code 

word length of order   is defined and its relationship with 

Renyi’s entropy is discussed. Using ,L  some coding theorem 

for discrete noiseless channel are proved. 

 

2. CODING THEOREMS 
  

 Definition. Let  10   be arbitrarily fixed, then the 

mean length L  corresponding to the generalized information 

measure )(H P  is given by the formula  
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 where  NpppP ,...,,= 21  and NnnnD ,...,, , 21  are 

positive integers so that  
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 Since (8) reduces to Kraft inequality (3) when 

1,=  therefore it is called generalized Kraft inequality and 

codes obtained under this generalized inequality are called 

personal codes. 

 

APPLICATIONS OF HOLDER'S INEQUALITY IN 

CODING THEORY 

  

In the following theorem, we find lower bound for .L  

 

Theorem 1. Let  10   be arbitrarily fixed real numbers, 

then for all integers 1>D  inequality  

)(H PL                                           (9) 

is fulfilled. Furthermore, equality holds if and only if  

).(log= iDi pn                                  (10) 

Proof: We have two possibilities: 

  

Case 1. Let .1 The Hölder inequality, that is, 
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Putting these values into (11), we get  
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where we used (8), too. This implies however that  
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Taking logarithm on both sides and we obtain the result (9) after 

simplification for .0
1

1
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It is clear that the equality in (9) is true if and only if  
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Which is equivalent to (10). 

From (13) and after simplification, we get  
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it implies  
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Which gives .)(H PL    

  

Case 2. If 1<<0  , the proof follows on the same lines as 

for .1  

 

In the following theorem, we give an upper bound for L  in 

terms of .)(H P  

  

Theorem 2. For   as in Theorem 1, there exist positive 

integers }{ in  satisfying (8) such that  

.log)(H< DPL                            (15) 

 

Proof: Let in  be the positive integer satisfying the inequalities  

 1)(log<)(log  iDiiD
pnp       (16) 

Consider the intervals  

 1)(log),(log=  iDiDi pp         (17) 

of length 1. In every i , there lies exactly one positive number 

in  such that  
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                                                           (18) 

It is easy to see that the sequence Nini 1,2,...,= },{  thus 

defined, satisfies (8). 

From the right inequality of (18), we have  

                                                                            1)(log<  iDi pn
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Now consider two cases: 

  

(i) When 1<<0  , then raising power )(1   to both 

sides of (19), we have  
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Multiplying (20) throughout by ip  and then summing up from 

1=i  to ,= Ni  we have  
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Taking logarithm on both sides and we obtain the result (15) 

after simplification for .0
1

1
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(ii) When ,1  then raising power )(1   to both sides of 

(19), we have  
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Multiplying (22) throughout by ip  and then summing up from 

1=i  to ,= Ni  we have  
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Taking logarithm on both sides and we obtain the result (15) 

after simplification for .0
1

1
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In the following theorem, we give a lower bound of lower bound 

for L  in terms of  PH  for 1.>  

 

Theorem 3. For 1  and for every code word lengths in , 

Ni 1,...,=  of theorem 1, L  can be made to satisfy,  
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 Proof: Suppose  

),(log= iDi pn                                  (25) 

Clearly in  and in  + 1 satisfy `equality' in Holder's inequality 

(11). Moreover, in  satisfies (8). Suppose in  is the unique 

integer between in  and in  + 1, then obviously, in  satisfies 

(8). 

Since 1 , we have  
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Hence (26) becomes  
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which gives (24). 

 

3. CONCLUSION 
 

We know that optimal code is that code for which the value L  

is equal to its lower bound. From the result of the theorem 2, it 

can be seen that the mean codeword length of the optimal code 

is dependent on one parameter  , while in the case of 

Shannon's theorem it does not depend on any parameter. So it 

can be reduced significantly by taking suitable values of 

parameter. 
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