
International Journal of Computer Applications (0975 – 8887)

Recent Innovations in Computer Science and Information Technology

12

Genetic Algorithm: Simple to Parallel Implementation

using MapReduce

Girdhar Gopal
Research Scholar

DCSA, KUK
Haryana, India

Rakesh Kumar
Professor

DCSA, KUK
Haryana, India

Naveen Kumar
Research Scholar

DCSA, HPU
Shimla, India

ABSTRACT

Simple Genetic Algorithms are used to solve optimization

problems. Genetic Algorithm also comes with a parallel

implementation as Parallel Genetic Algorithm (PGA). PGA

can be used to reduce the execution time of SGA and also to

solve larger size instances of problems. In this paper,

different implementations for PGA have been discussed with

their frameworks. In this implementation, all PGA are based

on a single SGA framework. These are executed on a parallel

machine and tested on some benchmark problem instances of

Traveling Salesman problem (TSP) from TSPLIB. TSPLIB

is a well known library for data set of benchmark problem

instances. A basic framework has been proposed for

implementing PGA on today’s parallel computers.

General Terms

Genetic Algorithm, Parallel Genetic Algorithm, Traveling

Salesman Problem

Keywords
Optimization, Parallel Genetic Algorithm, Simple Genetic

Algorithm, Traveling Salesman Problem

1. INTRODUCTION

Genetic Algorithm is a population based meta-heuristic

search technique consisting of following operators:

Initialization, Selection, Reproduction and Replacement [1]

[2] [3] [4]. Firstly, the population is generated randomly to

begin with. Then selection operator finds the fittest members.

This operator follows the “survival of the fittest” principle.

These fit members are used in reproduction to create new

offspring’s. Crossover and Mutation are used in reproduction

phase. Crossover creates new child from parents and

mutation is used to alter the chromosomes to remove the

problems of genetic drift etc. Finally replacement is used to

manage the old and new set of chromosomes to iterate for

further generations. GA is good to arrive at basins of

attraction in a large solution space. And to reduce the large

amount of computation time PGA can be used.

Traveling Salesman Problem is a routing problem with many

possible solutions. But the problem must adhere the

optimality of solutions. This optimality leads to the curse of

dimensionality. It is a well known NP-Hard combinatorial

optimization problem [5]. It can be described as a collection

of N number of cities and one salesman, which needs to visit

every city exactly once and return to the starting city from

the collection of cities. The goal is to find the

optimal/minimum cost path. The number of solutions in an

N-city problem will vary from (N-1)! To N!, which becomes

worse soon with large values of N.

This paper is organized in following sections. Section 2,

details about Simple Genetic Algorithm is provided. In

section 3, Parallel Genetic Algorithm has been discussed.

The implementation details of SGA and PGA are provided in

section 4. Finally, section 5 presents the conclusions and

findings of the paper.

2. SIMPLE GENETIC ALGORITHM

GA is an adaptive and heuristic based search technique

which can be used to search from the search space. GA is

proposed by John Holland [1] at University of Michigan in

1975. These are also described as adaptive heuristic search

algorithms [2] based on the evolutionary ideas of natural

selection and natural genetics by David Goldberg. GA makes

progress toward the optimal solution by combining better

and better solutions in each generation to create more better

solutions [5] [7]. Each single solution is represented by

chromosomes, which will be evaluated for the fitness of that

solution. This fitness is used as a guide about the solution

quality. This process continues to achieve the optimal

solution. General structure of genetic algorithm is:

Procedure SGA (fitness, pop_size, pc, pm,

no_of_generations)

// fitness is the fitness function used to evaluate

chromosomes in population

// pop_size is the population size in each generation (say

500)

// pc is the probability of crossover (say 0.90)

// pm is the mutation rate (say 0.001)

// no_of_generations is total number of generations

pop = generate pop_size individuals randomly to

start with

gen_number =1 //denotes current

generation

while gen_number <= no_of_generations do {

L = Select(pop, pop_size, nogen)

S = Crossover(L, pop_size, pc)

M = Mutation(S, pop_size, pm)

pop = M

gen_number = gen_number + 1;

 }

end proc

International Journal of Computer Applications (0975 – 8887)

Recent Innovations in Computer Science and Information Technology

13

3. PARALLEL GENETIC

ALGORITHM

It is hard in general to list the parallel computer architecture,

as it has a very large history. Starting from Pipelining to

Vector architectures, from Dual core machines to current i3,

i5, i7 multi-core architectures and from single CPU to

distributed systems and cloud computers. There are two

kinds of parallel GAs that can exploit these kinds of parallel

architectures very effectively: multiple-population GAs (also

called coarse grained or island model GAs) and master-slave

(or global) parallel GAs.

GA is very complex algorithm that is controlled by many

parameters and its success depends largely on setting these

parameters adequately. The problem is that no single set of

parameter values will result in an effective and efficient

algorithm in all solutions [3] [6]. For this reason, the fine

tuning of a GA to a particular application is still an art and

science. Master-slave GA is a simple GA that distributes the

evaluation of the population among several processors.

Whereas island-model GA each processor starts with an

independent population.

4. IMPLEMENTATION & RESULTS

All of the algorithms are implemented on an IBM Xeon Dual

Core Server with 60GB RAM and 1TB Hard Disk. SGA has

been implemented as the algorithm stated in section 2.

Various functions of GA are used as below for implementing

it to optimize TSP.

 Population Size: 1000

 Initialization: Random

 Selection: Roulette-Wheel Selection

 Crossover: Partial Matched Crossover with 0.9

probabilities.

 Mutation: Swapping with 0.01 probabilities.

 Replacement: Simple replacement (λ, µ).

 Termination: When the best solution not improved

for 100 generations.

Parallel Genetic Algorithms are implemented using the

parallel computing toolbox of MATLAB. Parallel

Computing Toolbox™ allows the sharing of work within

MATLAB clients. A number of clients can be made with the

help of matlabpool command. This pool can exploit the

number of cores in a processor and hyper threading also. It

will create as many clients of MATLAB execution engine as

there are virtual processors. These multiple workers can be

used to do multiple tasks at the same time. A local worker

can be used to keep MATLAB client session free for

interactive work, or with MATLAB Distributed Computing

Server one can take advantage of another computer's speed

[8] [9] [10]. Also the MATLAB Distributed Computing

Server allows running as many MATLAB workers on a

remote cluster of computers as the licensing of MATLAB

allows. In this implementation, the main for loop of

generations is replaced with the parfor loop provided by the

MATLAB toolbox. To interactively run code that contains a

parallel loop, firstly MATLAB pool must be opened. It

reserves a collection of workers to run the loop in parallel.

The MATLAB pool can consist of MATLAB sessions

running on local machine or on a remote cluster:

matlabpool open local 3

It will open a pool of three workers in the machine. When

you are finished with your code, close the MATLAB pool

and release the workers:

matlabpool close

Secondly PGA is implemented as MapReduce framework.

MapReduce is a programming technique for analyzing data

sets that do not fit in memory. MapReduce is a programming

model to process large datasets and make use of computing

resources of each server’s CPU. It comprises of two phases:

Map phase and Reduce phase. In Map phase Mapper must be

able to ingest the input and process that input record and then

that processed record is forwarded to Reduce phase, where

task will be reduced. The Mapper takes in a key/value pair

and generates intermediate key/value pairs [11]. The reducer

merges all the pairs associated with the same intermediate

key and produce the final output that is list of key/values.

Every job must contain one map function followed by

optional reduce function, these steps need to follow this

certain order.

Large instances of TSP generate lots of data in between the

solution. MATLAB® provides an implementation of the

MapReduce technique with the mapreduce function. This

implementation is however slightly different from Hadoop

MapReduce. mapreduce uses a special abstract data type

called datastore. It is used to process data in small chunks

which fits in computer RAM. Each of these chunks goes

through the map and reduce functions. These functions are

available as map and reduce in MATLAB. To solve any

problem with mapreduce, one has to write these two

functions for the data and then these are passed as inputs to

the main mapreduce function. There are endless

combinations of map and reduce functions to process data, so

this technique is both flexible and extremely powerful for

tackling large data processing tasks.

To implement MapReduce functionality in MATLAB for

this experiment, following steps are followed: -

 Data Preparation: Firstly the population is

evaluated for fitness.

 Map and Reduce Functions: Selection operator

finds the best individuals for reproduction. The

inputs to the map function are data and

intermKVStore. Where data is the result of a

call to the read function on the input

datastore. intermKVStore is the name of

the intermediate Key-Value-Store object to which

the map function needs to add key-value pairs.

 Run MapReduce: After having a datastore, a map

function, and a reduce function, mapreduce

function is called to perform the calculation. i.e.

outpop = mapreduce(ds, @TSPMapFun,

@TSPReduceFun);

* MAP - REDUCE PROGRESS *

Map 0% Reduce 0%

Map 14% Reduce 0%

Map 34% Reduce 0%

International Journal of Computer Applications (0975 – 8887)

Recent Innovations in Computer Science and Information Technology

14

Map 58% Reduce 0%

Map 78% Reduce 0%

Map 96% Reduce 0%

Map 100% Reduce 100%

 View Results: readall function can be used to

read the key-value pairs from the output datastore.

i.e. readall(outpop)

After performing these steps the resultant chromosomes from

outpop are used for further calculations.

These three approaches (SGA, PGA with parfor loop & PGA

with mapreduce) are implemented for 4 TSP instances from

TSPLIB i.e. Eil51, Eil101, A280, & Oliva30. The results for

all three are presented in below tables and figures.

Table 1: Optimum Tour Cost per generation for all

implementations

TSP

Instance

Known

Optimum

SGA PGA

with

parfor

PGA with

MapReduce

Eil51 426 768 658 587

Eil101 629 1045 919 768

A280 2579 4320 3423 3145

Oliva30 423 657 611 512

Table 2: CPU Time (in msec) taken by all

implementations

TSP Instance SGA PGA with

parfor

PGA with

MapReduce

Eil51 5182 4565 3067

Eil101 7465 6354 5342

A280 17465 11756 8624

Oliva30 4375 4165 3546

Figure 1: Optimum Tour cost found by implementations

Figure 2: CPU time (in msec) for all implementations

The above results show that the implementation of GA in all

aspects is able to reach close to the known optimum

solutions for all instances. Further, PGA as MapReduce

implementation is much better in both quality and efficiency

terms in comparison to other two implementations.

5. CONCLUSIONS

GA is promising algorithm in terms of meta-heuristics and

global optimization algorithms. They are used to solve many

complex problems, especially from the NP-Complete

category. So, it is always a problem to design better and

better GA to solve a particular class of problems. If GA can

be implemented in parallel then the hardware architecture

can be exploited fruitfully. As the inherent nature of GA is

parallel, so it is more convincing that if SGA works better in

comparison to other optimization algorithms, then PGA will

surely do. In this paper, PGA is implemented using two

approaches with MATLAB on Intel Xeon Quad Core CPU

and compared with SGA to solve TSP. It has been observed

that the execution time reduces gracefully with the

introduction of parallelization in GA. The optimum tour cost

found by PGA is much less is comparison to SGA. Also

SGA takes more time to solve the same size problem in

comparison to PGA as shown in table 2. PGA implemented

in this work is based on map-reduce architecture, which can

be further exploited to work with more distributed and cloud

based architectures. Also other approaches can be combined

with PGA in its implementation like Local search or other

global search.

6. REFERENCES
[1] Holland J., (1975), Adaptation in natural and artificial

systems, University of Michigan Press, Ann Arbor.

[2] Rakesh Kumar, Girdhar Gopal, Rajesh Kumar, (2013),

“Hybridization in Genetic Algorithms”, International

Journal of Advanced Research in Computer Science and

Software Engineering (IJARCSSE), Vol-3, Issue-4, pp

403-409.

[3] Goldberg D. E., (1989), Genetic algorithms in search,

optimization, and machine learning, Addison Wesley

Longman, Inc., ISBN 0-201- 15767-5.

[4] Rakesh Kumar, Girdhar Gopal, Rajesh Kumar, (2013),

“Novel Crossover Operator for Genetic Algorithm for

Permutation Problems”, International Journal of Soft

Computing and Engineering (IJSCE), Vol. 3, Issue-2,

pp 252-258.

[5] Moscato P., Cotta C., (2003), “A gentle introduction to

memetic algorithms”, Handbook of Metaheuristics, pp

105-144.

International Journal of Computer Applications (0975 – 8887)

Recent Innovations in Computer Science and Information Technology

15

[6] P. Jog, J. Y. Suh, and D-, Van Gucht, "The effects of

population size, heuristic crossover and local

improvement on a genetic algorithm for the traveling

salesman problem," 3rd Int'l Conference on Genetic

Algorithms, july 1989, pp. 110-115

[7] Bosworth Jack, Foo Norman, and Zeigler Bernard P.

(1972), “Comparison of Genetic Algorithms with

Conjugate Gradient Methods”. Technical Report

00312-1-T, University of Michigan: Ann Arbor, MI,

USA.

[8] Bethke Albert Donally. (1980), “Genetic Algorithms as

Function Optimizers”. PhD thesis, University of

Michigan: Ann Arbor, MI, USA.

[9] Brady R. M. (1985), “Optimization Strategies Gleaned

from Biological Evolution.” Nature, 317(6040): 804–

806, doi: 10.1038/317804a0.

[10] Sinha Abhishek and Goldberg D.E. (2003), “A Survey of

Hybrid Genetic and Evolutionary Algorithms”. IlliGAL

Report 2003-2004, Illinois Genetic Algorithms

Laboratory (IlliGAL), Department of Computer

Science, Department of General Engineering,

University of Illinois at Urbana-Champaign: Urbana-

Champaign, IL, USA.

[11] Dean J., Ghemawat S., “MapReduce: simplified data

processing on large clusters”, Communications of

ACM51 (2008) 107–113.

IJCATM : www.ijcaonline.org

