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ABSTRACT 

Simple Genetic Algorithms are used to solve optimization 

problems. Genetic Algorithm also comes with a parallel 

implementation as Parallel Genetic Algorithm (PGA). PGA 

can be used to reduce the execution time of SGA and also to 

solve larger size instances of problems. In this paper, 

different implementations for PGA have been discussed with 

their frameworks. In this implementation, all PGA are based 

on a single SGA framework. These are executed on a parallel 

machine and tested on some benchmark problem instances of 

Traveling Salesman problem (TSP) from TSPLIB. TSPLIB 

is a well known library for data set of benchmark problem 

instances. A basic framework has been proposed for 

implementing PGA on today’s parallel computers.  
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1. INTRODUCTION 

Genetic Algorithm is a population based meta-heuristic 

search technique consisting of following operators: 

Initialization, Selection, Reproduction and Replacement [1] 

[2] [3] [4]. Firstly, the population is generated randomly to 

begin with. Then selection operator finds the fittest members. 

This operator follows the “survival of the fittest” principle. 

These fit members are used in reproduction to create new 

offspring’s. Crossover and Mutation are used in reproduction 

phase. Crossover creates new child from parents and 

mutation is used to alter the chromosomes to remove the 

problems of genetic drift etc. Finally replacement is used to 

manage the old and new set of chromosomes to iterate for 

further generations. GA is good to arrive at basins of 

attraction in a large solution space. And to reduce the large 

amount of computation time PGA can be used.  

Traveling Salesman Problem is a routing problem with many 

possible solutions. But the problem must adhere the 

optimality of solutions. This optimality leads to the curse of 

dimensionality. It is a well known NP-Hard combinatorial 

optimization problem [5]. It can be described as a collection 

of N number of cities and one salesman, which needs to visit 

every city exactly once and return to the starting city from 

the collection of cities. The goal is to find the 

optimal/minimum cost path. The number of solutions in an 

N-city problem will vary from (N-1)! To N!, which becomes 

worse soon with large values of N. 

This paper is organized in following sections. Section 2, 

details about Simple Genetic Algorithm is provided. In 

section 3, Parallel Genetic Algorithm has been discussed. 

The implementation details of SGA and PGA are provided in 

section 4. Finally, section 5 presents the conclusions and 

findings of the paper. 

2. SIMPLE GENETIC ALGORITHM 

GA is an adaptive and heuristic based search technique 

which can be used to search from the search space. GA is 

proposed by John Holland [1] at University of Michigan in 

1975. These are also described as adaptive heuristic search 

algorithms [2] based on the evolutionary ideas of natural 

selection and natural genetics by David Goldberg. GA makes 

progress toward the optimal solution by combining better 

and better solutions in each generation to create more better 

solutions [5] [7]. Each single solution is represented by 

chromosomes, which will be evaluated for the fitness of that 

solution. This fitness is used as a guide about the solution 

quality. This process continues to achieve the optimal 

solution. General structure of genetic algorithm is:  

Procedure SGA (fitness, pop_size, pc, pm, 

no_of_generations)  

// fitness is the fitness function used to evaluate 

chromosomes in population  

// pop_size is the population size in each generation (say 

500)  

// pc is the probability of crossover (say 0.90)  

// pm is the mutation rate (say 0.001)  

// no_of_generations is total number of generations  

pop = generate pop_size individuals randomly to 

start with 

gen_number =1   //denotes current 

generation   

while gen_number <= no_of_generations do { 

L = Select(pop, pop_size, nogen)  

S = Crossover(L, pop_size, pc)  

M = Mutation(S, pop_size, pm)  

pop = M 

gen_number = gen_number + 1;  

 } 

end proc 
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3. PARALLEL GENETIC 

ALGORITHM 

It is hard in general to list the parallel computer architecture, 

as it has a very large history. Starting from Pipelining to 

Vector architectures, from Dual core machines to current i3, 

i5, i7 multi-core architectures and from single CPU to 

distributed systems and cloud computers. There are two 

kinds of parallel GAs that can exploit these kinds of parallel 

architectures very effectively: multiple-population GAs (also 

called coarse grained or island model GAs) and master-slave 

(or global) parallel GAs. 

GA is very complex algorithm that is controlled by many 

parameters and its success depends largely on setting these 

parameters adequately. The problem is that no single set of 

parameter values will result in an effective and efficient 

algorithm in all solutions [3] [6]. For this reason, the fine 

tuning of a GA to a particular application is still an art and 

science. Master-slave GA is a simple GA that distributes the 

evaluation of the population among several processors. 

Whereas island-model GA each processor starts with an 

independent population.  

4. IMPLEMENTATION & RESULTS 

All of the algorithms are implemented on an IBM Xeon Dual 

Core Server with 60GB RAM and 1TB Hard Disk. SGA has 

been implemented as the algorithm stated in section 2. 

Various functions of GA are used as below for implementing 

it to optimize TSP. 

 Population Size: 1000 

 Initialization: Random 

 Selection: Roulette-Wheel Selection 

 Crossover: Partial Matched Crossover with 0.9 

probabilities. 

 Mutation: Swapping with 0.01 probabilities. 

 Replacement: Simple replacement (λ, µ). 

 Termination: When the best solution not improved 

for 100 generations. 

Parallel Genetic Algorithms are implemented using the 

parallel computing toolbox of MATLAB. Parallel 

Computing Toolbox™ allows the sharing of work within 

MATLAB clients. A number of clients can be made with the 

help of matlabpool command. This pool can exploit the 

number of cores in a processor and hyper threading also. It 

will create as many clients of MATLAB execution engine as 

there are virtual processors. These multiple workers can be 

used to do multiple tasks at the same time. A local worker 

can be used to keep MATLAB client session free for 

interactive work, or with MATLAB Distributed Computing 

Server one can take advantage of another computer's speed 

[8] [9] [10]. Also the MATLAB Distributed Computing 

Server allows running as many MATLAB workers on a 

remote cluster of computers as the licensing of MATLAB 

allows. In this implementation, the main for loop of 

generations is replaced with the parfor loop provided by the 

MATLAB toolbox. To interactively run code that contains a 

parallel loop, firstly MATLAB pool must be opened. It 

reserves a collection of workers to run the loop in parallel. 

The MATLAB pool can consist of MATLAB sessions 

running on local machine or on a remote cluster: 

matlabpool open local 3 

It will open a pool of three workers in the machine. When 

you are finished with your code, close the MATLAB pool 

and release the workers: 

matlabpool close 

Secondly PGA is implemented as MapReduce framework. 

MapReduce is a programming technique for analyzing data 

sets that do not fit in memory. MapReduce is a programming 

model to process large datasets and make use of computing 

resources of each server’s CPU. It comprises of two phases: 

Map phase and Reduce phase. In Map phase Mapper must be 

able to ingest the input and process that input record and then 

that processed record is forwarded to Reduce phase, where 

task will be reduced. The Mapper takes in a key/value pair 

and generates intermediate key/value pairs [11]. The reducer 

merges all the pairs associated with the same intermediate 

key and produce the final output that is list of key/values. 

Every job must contain one map function followed by 

optional reduce function, these steps need to follow this 

certain order. 

Large instances of TSP generate lots of data in between the 

solution. MATLAB® provides an implementation of the 

MapReduce technique with the mapreduce function. This 

implementation is however slightly different from Hadoop 

MapReduce. mapreduce uses a special abstract data type 

called datastore. It is used to process data in small chunks 

which fits in computer RAM. Each of these chunks goes 

through the map and reduce functions. These functions are 

available as map and reduce in MATLAB. To solve any 

problem with mapreduce, one has to write these two 

functions for the data and then these are passed as inputs to 

the main mapreduce function. There are endless 

combinations of map and reduce functions to process data, so 

this technique is both flexible and extremely powerful for 

tackling large data processing tasks. 

To implement MapReduce functionality in MATLAB for 

this experiment, following steps are followed: - 

 Data Preparation: Firstly the population is 

evaluated for fitness. 

 Map and Reduce Functions: Selection operator 

finds the best individuals for reproduction. The 

inputs to the map function are data and 

intermKVStore. Where data is the result of a 

call to the read function on the input 

datastore. intermKVStore is the name of 

the intermediate Key-Value-Store object to which 

the map function needs to add key-value pairs.  

 Run MapReduce: After having a datastore, a map 

function, and a reduce function, mapreduce 

function is called to perform the calculation. i.e. 

outpop = mapreduce(ds, @TSPMapFun, 

@TSPReduceFun); 

********************************* 

*      MAP - REDUCE PROGRESS      * 

********************************* 

Map   0% Reduce   0% 

Map  14% Reduce   0% 

Map  34% Reduce   0% 
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Map  58% Reduce   0% 

Map  78% Reduce   0% 

Map  96% Reduce   0% 

Map 100% Reduce 100% 

 View Results: readall function can be used to 

read the key-value pairs from the output datastore. 

i.e. readall(outpop) 

After performing these steps the resultant chromosomes from 

outpop are used for further calculations. 

These three approaches (SGA, PGA with parfor loop & PGA 

with mapreduce) are implemented for 4 TSP instances from 

TSPLIB i.e. Eil51, Eil101, A280, & Oliva30. The results for 

all three are presented in below tables and figures. 

Table 1: Optimum Tour Cost per generation for all 

implementations 

TSP 

Instance 

Known 

Optimum 

SGA PGA 

with 

parfor 

PGA with 

MapReduce 

Eil51 426 768 658 587 

Eil101 629 1045 919 768 

A280 2579 4320 3423 3145 

Oliva30 423 657 611 512 

Table 2: CPU Time (in msec) taken by all 

implementations 

TSP Instance SGA PGA with 

parfor 

PGA with 

MapReduce 

Eil51 5182 4565 3067 

Eil101 7465 6354 5342 

A280 17465 11756 8624 

Oliva30 4375 4165 3546 

 

Figure 1: Optimum Tour cost found by implementations 

 

Figure 2: CPU time (in msec) for all implementations 

The above results show that the implementation of GA in all 

aspects is able to reach close to the known optimum 

solutions for all instances. Further, PGA as MapReduce 

implementation is much better in both quality and efficiency 

terms in comparison to other two implementations.  

5. CONCLUSIONS 

GA is promising algorithm in terms of meta-heuristics and 

global optimization algorithms. They are used to solve many 

complex problems, especially from the NP-Complete 

category. So, it is always a problem to design better and 

better GA to solve a particular class of problems. If GA can 

be implemented in parallel then the hardware architecture 

can be exploited fruitfully. As the inherent nature of GA is 

parallel, so it is more convincing that if SGA works better in 

comparison to other optimization algorithms, then PGA will 

surely do. In this paper, PGA is implemented using two 

approaches with MATLAB on Intel Xeon Quad Core CPU 

and compared with SGA to solve TSP. It has been observed 

that the execution time reduces gracefully with the 

introduction of parallelization in GA. The optimum tour cost 

found by PGA is much less is comparison to SGA. Also 

SGA takes more time to solve the same size problem in 

comparison to PGA as shown in table 2. PGA implemented 

in this work is based on map-reduce architecture, which can 

be further exploited to work with more distributed and cloud 

based architectures. Also other approaches can be combined 

with PGA in its implementation like Local search or other 

global search. 
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