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ABSTRACT 

A robust neural NARX controller design using evolution and 

learning is proposed in this paper. Parameters of neural 

NARX controller are encoded in individual member 

(chromosome) of GA population. Neural NARX controller 

learns stabilizing response at an operating point of plant as 

best fitness reaches large steady value during successive 

generations. Stable operating region of neural NARX 

controller is enlarged by incrementally allowing learn more 

operating points. Best neural NARX controller in last 

generation is saved as designed neural NARX controller. 

Proposed approach is validated on a cart pole nonlinear plant 

model. Optimal stabilizing response with designed neural 

NARX controller over wide range of operating points is 

obtained.  

Keywords 
Non-linear auto regressive with exogenous input (NARX), 

Reinforcement (RF) signal, Performance index (PI) Genetic 

algorithms (GAs). 

 

1. INTRODUCTION 
Most of industrial process control applications require a 

robust controller for satisfactory performance over wide 

operating conditions of the plant. The application domain 

includes magnetic levitation of objects, power system control, 

process control etc. Previous affords for design of robust 

controller are based on neural network [1]-[3], H infinity 

robust control [4], sliding mode controller [5], Adaptive Auto 

centering Control [6] nonlinear control [7, 8], fuzzy controller 

[9]-[10] and hybrid methods using GA [11-14]. Since for most 

plants mathematical model may not be known precisely 

during design process, slight deviation of the plant parameters 

or variation of operating point may result degradation of its 

stabilizing performance. Fuzzy logic based method for design 

of controller enables to include nonlinearity and uncertainty of 

plant model. Nevertheless neural network based design of 

controller incorporate learning component. Controller design 

based on neuro-fuzzy structure [15] includes both advantages. 

Controller design based on learning algorithms has been 

earlier reported [16-20]. A robust neural NARX controller 

design with evolution and learning is proposed in this paper. 

Neural NARX controller learns stabilizing behavior of plant at 

an operating condition as best fitness of GA population 
reaches large steady value during successive generations. 
More operating conditions of plant are allowed learn 

incrementally to enlarge stable operating region of NARX 

controller. A moderate order NARX learns control strategy to 

stabilize response at wide range of operating points. Only 

output state of plant needs to be measured in proposed 

controller. 

 

2. NEURAL NARX CONTROLLER 

DESIGN  
An artificial neural network has ability to learn arbitrary 

complex nonlinear input-output mapping through learning.  

Many neural network structures like multilayer feed forward, 

recurrent network are proposed as controller. A neural 

nonlinear autoregressive with exogenous input (NARX) 

controller design is proposed in this paper. NARX structure 

has ability to learn a dynamic input-output mapping. 

Knowledge about input-output mapping to be performed is 

stored in the form of link weights between layers of neurons. 

Parameters of neural NARX controller are designed using 

evolution and learning.  

 

Evolutionary algorithms (EA), like Genetic algorithms (GA), 

Evolutionary programming (EP), Particle swarm optimization 

(PSO), and Ant colony optimization (ACO) are used in many 

optimization and machine learning tasks [36]-[41]. Generally 

EA work with population of members (individuals). Every EA 

encompasses mechanism of fitness assignment to each 

member, selection of better fit members and genotype 

variation to produce off-springs. Specific features of EA are 

inbuilt parallelism, ability to work with coding of parameters 

of real world optimization problem. It uses only fitness 

information of population members, can work with 

discontinuous fitness (objective) function and able to search 

global optimal solution in large search space. It starts with 

randomly initialized population of its members. Among EA, 

Genetic algorithms (GA) are most popular as it mimics the 

operations involved in natural genetics. Genetic algorithms 

are based on Darwin’s theory of “Survival of fittest”. 

Members of population containing better fitness to the 

environment have more probability of being copied to next 

generation. GA evolves new population members (off-

springs) for next generation using its operators i.e. 

reproduction, crossover and mutation. GA searches the 

solutions for improved fitness value during successive 

generations [11].  

 

Parameters (link weights) of neural NARX controller are 

encoded in a chromosome of genetic population. Output 

variable of NARX controller is a control signal. GA 

population of NARX controller learns stabilizing behavior of 

plant at an operating point as best fitness becomes large 
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steady value during successive generations. The stable 

operating region of neural NARX controller is enlarged by 

incrementally learning more operating points of the plant. 

Genetic evolution process propagates knowledge learned 

during successive generations about the plant behavior up to 

last generation. Best NARX controller in the last generation is 

saved as designed NARX controller. A quantitative analysis 

of incremental learning based on schema processing is given 

below.  

 

2.1 Schema-Processing Theorem and 

Genetic Learning 
A chromosome (string encoded with parameters of NARX 

controller) represents a point in the solution space that is 

mapped to an operating region in the operating space. A 

schema [11] is a similarity template of member chromosomes 

in GA population that represents group of points in solution 

space. Alternatively a schema represents group of operating 

regions in the operating space. 

Schema-processing theorem is given as                              
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Where, 

m(H,n0) is number of chromosomes representing  schema 

H, in n0
th generation. 

f(H) is the average fitness of chromosomes representing  

schema H. 


f
 is the average fitness of population. 

Pc   is the probability of crossover. 

Pm   is the probability of mutation. 

l     is the length of chromosome. 

)(H
 is the defining length of schema. 

)(HO
 is the order of schema. 

For short defining length and low order fit schema 

equation (1) reduces to 
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Where, 
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 is ratio of average fitness of 

chromosomes representing schema H to average fitness of 

population. Let K be nearly same for all generations. After n 

generations we have      
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It implies, short defining length, low order and fit schema (

1K ) receives exponentially increasing number of 

chromosomes in successive generations. Alternatively, GA 

searches solutions for improved fitness value of population 

members during successive generations. Low fit schema (

1K ) receives exponentially decreasing number of 

chromosomes in successive generations. Let n1, n2, n3 …. nr 

are number of generations allowed for learning of 1st, 2nd, 

3rd…rth operating points respectively,   then incrementally 

learning these operating points results 
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An explanation of equation 4 follows. Consider two classes of 

chromosomes in a population having good fitness at initial 

operating point (K1 >1), one covering narrow operating region 

and other covering broad operating region. When next 

operating point that may lie far away from current operating 

point is allowed learn, chromosomes covering narrow 

operating region will have low fitness value at new operating 

point (K2 <1). Chromosomes covering broad operating region 

will have high fitness value at new operating point (K2 >1). 

As more new operating points are successively allowed learn, 

chromosomes covering broad operating region would still 

have high fitness value (Ki > 1 for i=3, …r). Chromosomes 

covering narrow operating region would have low fitness 

value after switching to new operating points (Ki < 1 for i=3, 

…r) and would be successively discarded. Thus genetic 

learning would only propagate chromosomes fit at more 

operating points covering enlarged operating region to 

successive generations. Accordingly knowledge learned 

previously regarding operating points are retained during 

successive generations (not forgetting the acquired 

knowledge) as new operating points are learned. Consider a 

test operating point not seen during learning phase. It is more 

likely that test operating point lie within the operating region 

covered by genetically learned NARX controller. Genetically 

learned NARX controller would show robustness at other 

operating points. 

 

3. ELEMENTS OF GENETIC LEARNING 
Elements of genetic learning are discussed in the following 

subsections. 

3.1 Neural NARX Controller Structure 
A neural NARX is a recurrent network having feedback from 

output neurons with time delays as shown in fig. 1.0. An 

exogenous input signal with time delays is applied. One of 

input signal is a bias signal. NARX structure has ability to 

learn a dynamic input-output mapping. A neural NARX 

network of third order with seven input neurons, three hidden 

neurons and one output neuron is shown in figure. First layer 

consisting of input neurons accepts input signals and pass 

them to second layer through link weights. Second (hidden) 

layer has neurons with a nonlinear activation function 

(tanh(x)). Output of Hidden layer is given as 
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Where, W is link weight matrix between inputs and hidden 

neurons. For n inputs and m neurons in hidden layer W is of 

[m×n] size and xj is jth input signal.  

Signals after nonlinear processing from hidden neurons are 

passed to third layer of output neuron through another set of 

link weights. Output of output layer is given as 
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Where, Wʹ is link weight matrix between hidden neurons 

and output neurons. For m neurons in hidden layer and k 

neurons in output layer Wʹ is of [k×m] size and xj is jth 

output form hidden neuron.  
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Knowledge about input-output mapping to be performed is 

stored in the form of link weights. Output neurons give the 

output at the next sampling instant that is used as control 

signal for plant to be controlled. NARX model is represented 

with the following equation. 

u(n+1)=F( u(n), u(n-1), u(n-2), ….u(n-q+1),   e(n), e(n-1), 

e(n-2), ….e(n-q+1)  )       ……..(7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1:  neural NARX network with three hidden neurons 

 

Where,  

 u(n+1) is output of NARX controller at                                                                                                                                   

(n+1)th sampling instant. 

 e(n) is exogenous input signal at nth sampling 

instant. 

 q  is order of NARX model. 

 F is nonlinear activation function of neurons. 

3.2 NARX Controller Encoding  
Parameters of NARX controller are encoded in a chromosome 

of GA population as real values as shown in fig 2. W[m×k] 

and Wʹ[1×m]  are weight matrices of hidden layer and output 

layer for k number of inputs and m number of neurons in 

hidden layer. Wij and Wʹij are elements of respective weight 

matrices. Each chromosome encoded represents a NARX 

controller. 

Fig 2: A chromosomes encoded with NARX controller 

parameters 

 

 

 

3.3 Genetic Based Learning Procedure 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Flow chart of NARX controller learning with GA 

Procedure for GA learning of NARX controller is shown in 

fig 3. GA parameters like crossover probability Pc, mutation 

probability Pm, population size and maximum generations are 

initialized. A generation counter is also initialized. Initially a 

random population of NARX controller is generated. Real 

number coded chromosome string is used instead of binary 

coding to achieve the computational efficiency in the 

proposed method. Real values in chromosome string represent 

the parameters of NARX controller. Fitness of each NARX 

controller is evaluated for a definite interval of time at an 

operating point of plant. Better fitness members are selected 

for reproduction. Selected member through crossover and 

mutation produces off-springs for next generation. GA 

operators evolve new population and generation counter is 

incremented. GA population of NARX controller learns 

stabilizing behavior of plant at an operating point with 

optimum performance as best fitness becomes large steady 

value during successive generations completing one 

evolutionary cycle. Incrementally GA population of NARX 

controller is allowed learn more operating points. GA is 

computed till the number of generations exceeds maximum 

number of allowed generations. 

A learning cycle is completed when all operating point of 

plant are learned. NARX controller having best fitness value 

in last generation is saved as designed NARX controller. 
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3.4 Fitness Function Evolution 

 

 

 

 

 

 

 

 

 

Fig.4:  Fitness evaluation for neural NARX controller 

 

 

 

 

 

 

 

 

 

Fig. 5: Performance Index calculation 

Each neural NARX controller represented in a chromosome 

string is to be evaluated for progress of GA. Fig. 4 shows 

scheme to calculate fitness value. An interpreter decodes a 

chromosome into a working neural NARX controller. Each 

neural NARX controller in GA population is evaluated by 

applying its output as control signal to plant for a trial. A trial 

completes if the number of time steps exceeds predefined 

value i.e. TRIAL_TIME or a failure of stabilizing control 

results. Control is considered unsuccessful if error between 

reference value and plant output exceeds certain bound i.e. 

MAX_ERROR. During a trial a performance evaluation block 

calculates performance index (PI) by resulting output 

response of the plant and also records elapsed time. Lastly 

fitness value is obtained with the defined fitness function. 

Only output state of the plant needs to be measured. Error in 

reference and plant output signal is used as exogenous input 

signal to neural NARX controller. 

Procedure for GA learning of NARX controller is shown in 

fig 3. GA parameters like crossover probability Pc, mutation 

probability Pm, population size and maximum generations are 

initialized. A generation counter is also initialized. Initially a 

random population of NARX controller is generated. Real 

number coded chromosome string is used instead of binary 

coding to achieve the computational efficiency in the 

proposed method. Real values in chromosome string represent 

the parameters of NARX controller. Fitness of each NARX 

controller is evaluated for a definite interval of time at an 

operating point of plant. Better fitness members are selected 

for reproduction. Selected member through crossover and 

mutation produces off-springs for next generation. GA 

operators evolve new population and generation counter is 

incremented. GA population of NARX controller learns 

stabilizing behavior of plant at an operating point with 

optimum performance as best fitness becomes large steady 

value during successive generations completing one 

evolutionary cycle. Incrementally GA population of NARX 

controller is allowed learn more operating points. GA is 

computed till the number of generations exceeds maximum 

number of allowed generations. 

To stabilize response of controller a performance index is 

defined as 



RF

dtpPI
0

2

||
                  ……… (8) 

Where, p is error between reference signal and plant output 

signal and RF is a reinforcement signal used to enhance better 

actions of NARX controller for stabilizing control for longer 

duration. Reinforcement signal is defined as follows 

RF = TRIAL_TIME, if stable control results. 

RF = Elapsed time in a trial, if unstable control results (error 

> MAX_ERROR).  …… (09) 

To maximize RF signal and minimize PI the fitness function 

is defined as 

PI

RF
Fitness 

      ……… (10) 

Fitness of neural NARX controller is maximized during 

successive generations. Fig. 5 shows the procedure to 

calculate the PI and RF values. Error signal is squared and 

integrated continuously with respect to elapsed time. 

Simultaneously the error signal is passed through a boundary 

value (MAX_ERROR) detector. If its value exceeds the 

boundary value then simulation is stopped and last value 

obtained by output of integrator block and elapsed time (RF 

signal) is saved to workspace. Otherwise these values are 

saved at the end of the TRIAL_TIME. Fitness is calculated by 

equation (10). 

4. CASE STUDY 
Proposed approach for robust design of controller is validated 

on a bench mark control problem. 

4.1 Cart Pole System 
A standard cart pole system is inherently unstable benchmark 

control problem. The aim is to find out sequence of force 

applied to cart so as to maintain pole position vertically up 

over different operating conditions. A nonlinear model of cart 

pole system is considered. States of plant are pole angle 

deviation from vertical, angular velocity, cart displacement 

from mean position, and linear velocity represented in a 

vector as [



xx,,,
]. Output of neural NARX 

controller is horizontal force f applied to cart in either 

direction to balance pole vertically up. Range of force are [-

20N, 20N]. Universe of discourse for other states are θ [-

1,1]rad, 



  [-1,1]rad/sec, x [(-5,5]m, 



x [-1,1] m/sec. Control 

is considered unsuccessful if value of θ exceeds interval [-1, 

1]rad or the cart position exceeds beyond interval [-5, 5]m 

from center. For designing neural NARX controller over 

dynamic plant environment, bounds on pole position and cart 

position from the mean position is considered wide enough. 

Balancing of pole depends on states of the plant and force 

applied. Model of considered cart pole system is represented 

as follows: 

Genetic Algorithm 

Performance 

Evaluation 

Interpreter 

Plant Neural 

NARX 

Controller 

Boundary 
value 

detector 

Save PI and 

elapsed time to 

workspace 

Stop 

Simulation 
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Where,  

)(t
      :      Angular deviation from vertical axis. 

)(t



      :      Angular velocity of the pole. 

)(tx
      :        Position of cart from center. 

)(tx


 :       Linear velocity of the cart. 

 f   :       Force applied to the cart  

mp             :        Mass of the pole. 

m             :        Combined mass of the pole and cart. 

l  :        Length of the pole. 

  :        Sampling period(0.001sec). 

GA parameters used in present study are population size of 

20, crossover probability of 0.6, mutation probability of 0.1, 

with real number encoding of neural NARX controller 

weights. TRIAL_TIME equal to 10sec, MAX_ERROR in 

angular position equal to 1rad, output of neural NARX 

controller is control force f bounded to 20N are considered. 

Neural NARX controller structure as shown in figure 1 is 

used. Error in angular position is used as an exogenous input 

signal to NARX controller. A third order neural NARX 

controller with 3 hidden neurons and one output neuron is 

used in present study.  

 

Fig. 6:  Learning progress of neural NARX controller with 

GA 

 

Fig. 6 shows learning progress of GA evaluation for 200 

generations. First vector in legend entry represents initial 

conditions of state vector [



xx,,,
]. Second vector 

represents operating conditions (plant parameters) [Pole 

length (l), Pole mass (m), Cart mass (M), Acceleration due to 

gravity (g)]. Third vector represent generation interval [start - 

last] for an operating condition. Best fitness of GA population 

improves and reaches large steady value during 80 

generations for first allowed operating conditions (operating 

point) of plant. Same operating point is allowed learn for 

other initial conditions during successive generations [81-

120]. Best fitness change and again reaches steady large 

value. An evolutionary cycle is completed when current 

operating point is learned (best fitness reaches steady large 

value). Plant operating conditions are changed and next 

evolutionary cycle is started form generation number 121. 

Best fitness of GA population improves and reaches large 

steady value up to 200 generations for second allowed 

operating condition of plant. Incrementally more operating 

points of the plant are allowed in successive evolutionary 

cycles up to last generation. A learning cycle is completed 

when all considered operating point are learned. Best NARX 

controller in last generation is saved as designed NARX 

controller. 

Fig. 7 to 10 shows position response of NARX controller for 

different initial conditions of the plant at operating points for 

which it was allowed learn. Fig. 7 shows position response for 

sinusoidal input reference signal. Stabilizing position response 

with optimum performance at various initial conditions shows 

that designed neural NARX controller has learned operating 

environments for which it was allowed learn. 

 

Fig. 7: Response of NARX controller for different 

initial conditions 

 

Fig. 8: Response of NARX controller for sinusoidal 

input signal 
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Fig. 9: Response of NARX controller for different initial 

conditions 

 

Fig. 10:  Response of NARX controller for different 

initial conditions 

 

 

Fig. 11: Response of NARX controller for different 

initial conditions and operating points 

Fig. 11 shows position response of NARX controller for 

different initial conditions of the plant at operating points for 

which it was not allowed learn. Stabilizing position response 

with optimum performance at various initial conditions and at 

different operating conditions shows that designed neural 

NARX controller has extended the stability region for wide 

range of operating conditions for which it was not allowed 

learn showing robust stabilizing performance. 

5. CONCLUSIONS 
A robust neural NARX controller design using evolution and 

learning is proposed. Neural NARX controller contributes 

stabilizing response at wide range of operating points with 

optimal performance. Proposed neural NARX controller 

efficiently extends stability region over wide range of 

operating conditions.  
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