
International Journal of Computer Applications (0975 – 8887)

9th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine-2013)

8

An Algorithm for Enumeration of Terminal and Multi
Terminal Paths in a Reliability Graph of Communication

Networks

Mohd Ashraf Saifi
School of ICT

Gautam Buddha Univesrsity
Greater Noida , India

 Rajesh Mishra
School of ICT

Gautam Buddha Univesrsity
Greater Noida , India

ABSTRACT

The mathematical theory of reliability has grown out of the

demand of modern technology and particularly out of the

experience with complex systems. The main objective is to

enhance the ability of such complex network systems. This

work present an efficient algorithm, which is a novel approach

to generate all the minimal paths of the general flow network

based on the principle of backtracking. It is a general flow

network because, the proposed approach can find the minimal

paths for multiple sources and multiple sinks in the network.

One can further evaluate the network reliability using any

existing SDP (Sum of Disjoint Products) based approach.

General Terms

Enumeration , Backtracking Algorithm, Sum of Disjoint

Product, Multi Terminal, Multi Source

Keywords

Path Sets, Cutsets. Network Reliability, Backtracking,

1. INTRODUCTION
In recent years, network reliability measures have been used

in various real time systems such as computer communication

networks, power transmission, water distribution systems.

Network reliability plays important role in our modern society

[1]. Many research has been realized to evaluate the network

reliability, most of them use are applicable only for single

source and single terminal network based algorithms in terms

of minimal cutset (MC) or minimal pathset (MP).

When network grows in size and complexity increases, they

become more and more prone to failures. So, reliability

analysis is essential. A computer communication network may

have number of vertices and edges in which vertices represent

the physical location of systems (transmitters or receivers) and

edges represent the communication links between them. The

network is dependent upon the vertices or edges, in sense that,

if vertices or edges fail, then the network can be considered to

be failed. In order to avoid failure in network, all the minimal

paths or cuts are considered so that any of the paths can be

used to reach from source to destination.

The paper is mainly divided into five sections. Section 2

presents some preliminaries and assumptions required in the

rest of the paper. Section 3 is devoted to the literature survey.

The proposed algorithm is given in Section 4. Section 5

presents the algorithm with illustration, and finally, Section 6

concludes the paper.

2. PRELIMINARY AND ASSUMPTION
The networks studied here are s-t networks with two special

cases: in first case it has been assumed to one single source

node called s and one target node called t. Another case

referred to multiple source node called s1, s2, s3,…sn and

multiple target nodes called t1, t2, t3,…tn. The success or

failure of these networks depends on whether or not there is a

connection between the source node and destination node.

Meanwhile, as links or nodes are failure free, the networks

can be classified into three categories:

 Networks with node failures only : the obtained

minimal cut sets are node minimal cut sets,

 Networks with link failures only : the minimal cut

sets are link minimal cut sets,

 Networks with both node and link failures: in this

case both node and link failures are considered.

In this paper, only we consider networks in the second

category, where each link is represented by an unordered pair

<v,w> of end nodes. For an link <v,w>, v and w are said to be

adjacent to each other, and the link is said to be incident with

v and w.

A path between v0 and vn in G is a sequence of distinct links

<v0 , v1>,< v1 , v2>,...,<vn-1 , vn>, and n is the length of the

path.

A graph is connected if there is a path between each pair of

nodes in a graph. Henceforth we assume that all graphs

considered here are connected and contain neither multiple

links nor self-loop (i.e., links of the form <v, v>). There are

three important measures to assess the performance of

systems represented by a probabilistic graph: g-terminal

reliability, 2-terminal reliability, and k-terminal reliability.

 The g-terminal reliability is the probability that every

node in the network is able to communicate with each

other.

 The 2-terminal reliability is the probability that a

communication exists between a specified pair of nodes

in network.

 The k-terminal reliability ensures that a specified set of

nodes of the network are able to communicate with each

other.

 The network satisfies the following assumptions:

 Each node is perfectly reliable.

 The graph is connected.

 Each link has two states: working or failed.

 The states of links are statistically independent.

International Journal of Computer Applications (0975 – 8887)

9th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine-2013)

9

3. SURVEY ON PATH/CUT AND

NETWORK RELIABILITY
Mishra and Chaturvesdi [21] provide surveys of the various

definitions of reliability. They identified two distinct classes

of reliability measures: deterministic and probabilistic. The

deterministic criteria make use of discrete measures to define

the reliability of a network. Ever since the application of the

graph theory for terminal reliability (TR) evaluation was

suggested [2, 3] a large number of algorithms have been

proposed in the literature.

The survey of the literature indicates that whole range of the

TR algorithms can be classified into two broad categories [5],

viz.,

 Those which do not use path sets or cut sets (NPOC) but

apply reduction/decomposition or transformation or a

combination of these approaches.

 Those which use path sets or cut sets as the starting point

(POC).

However, NPOC based algorithms tend to be less efficient

and uneconomical as compared to the algorithms based on

POC approach [5].

Yeh [6] proposes using UGFM (Universal Generating

Function Method) to search all minimal paths. To access the

performance of systems there are three important measures

are: g-terminal, 2-terminal and k-terminal reliability. The

probability when each and every node is able to communicate

with each other in the network is said to be g-terminal

reliability and discussed in [7,8,9,10]. The probability when a

specified pair of nodes can communicate in a network with

each other is said to be 2-terminal reliability and when a

specified set of nodes can communicate with each other in the

network is said to be k-terminal reliability. Evaluating the k-

terminal reliability of a telecommunication networks is

discussed in [11]. Luo et al [12] evaluates the k-terminal

reliability using SDP (Sum of Disjoint Products) and MVI

(Multi Variable Inversion) techniques. The k-terminal

reliability evaluation using an algorithm based on

Decomposition Technique is proposed in [13], [14] and using

factoring theorem approach is discussed in [15], [16]. A graph

reduction algorithm for networks with imperfect nodes is

proposed in [17]. Ng-Hierarchical Network Polynomial (N-

HNP) proposed by Tony et al [18] is an efficient algorithm to

compute the k-terminal reliability. To enumerate the k-trees

using SDP approach can be seen in [19]. The MVI-SDP based

method was first proposed in [20]. SDP helps to generate

mutually disjoint terms, which in turn has one-to-one

relationship with the network reliability expression.

4. PROPOSED ALGORITHM AND

APPROACH
A network is represented by a graph G (n, l), where n and l are

number of nodes and branches of network, respectively. A

directed graph is a connected graph, in which every branch

has an orientation, between the specified source and

sink/terminal nodes. Source node has no branch incident to it

and the sink node has no branch incident from the node. Such

a graph can always be represented by a connection matrix or

adjacency matrix. There exists one-to-one correspondence

between the two. Moreover, each nonzero element in each

row is the node that is adjacent to the node represented by the

row. In fact this forms the basis of tracing all path sets from

the source to the sink node of a given network.

Once the connection matrix of the graph is available, the

search starts with the source node, looks for nonzero elements

in the connection matrix in the row corresponding to this

node, and appends each nonzero entry separately in a new

vector, where number of new vectors would be equal to the

number of nonzero elements found in the search. It follows

the same procedure for the last element added in each of these

vectors, by selecting the row of connection matrix

corresponding to these most recent entries till the sink node is

met and thus builds several path sets in an ordered manner.

The highlights of the method presented here can be

summarized as:

 It can find minimal paths for a specified pair of nodes.

 Path sets are obtained in increasing order.

 Terminal Numbering Convention is used, where the

numbering begins at source node and terminates at

terminal node and it is desired to enumerate all the path

sets

The algorithm step are as follows:

Step 1: Mark the arcs in network from 1 to n, source nodes

being S1, S2.....Sn and destination nodes being -1,-2,-3…-n.

Step 2: Create a linked data structure L = {{(Arcs of source

node 1),(Arcs of source node 2)….(Arcs of Source node

N)},{(Outgoing arcs from arc 1),(Outgoing arcs from

arc2),….. (Outgoing arcs from arcN)}} of the network with

the first “n” node of the link representing the outgoing arcs

from each source node S1 to Sn. The remaining nodes form a

link with every arc being linked to its source arc.

Step 3: In order to define the minimal paths in the network,

traverse the linked data structure from the source arc (S1…Sn)

and follow until the destination is reached.

Step 4: Create a working set (R) for pointing to the current

arcs being considered in order to find if the arc is one amongst

the minimal path.

Step 4a: Point to the first arc in the working set (Ri).

Step 4b: Check if the arc being pointed to (p) is the

destination arc. If yes, print the minimal path, pop elements

from stack (S) which has been added during the current

traversal, delete the current set of arcs from queue (W) and

backtrack.

Step 4c: If p is not the destination arc, traverse through the

working set until the node pointed by p is reached.

Step4d: The node being pointed is the current set of arcs

(V1…Vn) being considered for minimal paths.

Step 5: Find if the current set of arcs (V1 to Vn) has already

been visited.

Step 5a: Check if (V1 to Vn) is already present in the queue

(W) which contains the visited set of arcs.

Step5b: If yes, Cycle is detected. Print the cycle, add the set

of arcs (V1 to Vn) to the cycle queue (C), delete the current set

of arcs from queue (W) and backtrack. If not, move to step 6.

Step 6: Push the current arc being considered (p) to Stack (S)

and add the current set of arcs being considered (V1…..Vn) to

the queue (W) and loop to step 4.

Step 7: Loop through 4 to 6 for rest of the arcs in working set

(Ri).

5. ILLUSTARATION
Consider 9-nodes, 13-links network as shown in Figure 1

below. Note that we have numbered to the source node, and to

the terminal node.

International Journal of Computer Applications (0975 – 8887)

9th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine-2013)

10

Figure 1: Two source node and two terminal node network

Step 1: Consider a network with two source (S1 and S2), two

destination (-1 and -2) nodes and 13 arcs. Mark the arcs from

1 to 13.

Step 2: The linked data structure for the example network is

created as follows:

{{(1,2),(11,12)},{(3,4),(5,6),(5,6),(7,8),(7,8),(9,10),(9,10),(-

1),(-1),(-2),(9,10),(13),(-2)}}. Here, the first two nodes

represent the outgoing arcs from source nodes while the rest

of the nodes link each source arc with its outgoing arc.

Step 3: Select the first source node (S1) to find the minimal

path to reach the destination.

Step 4: Working set is the set of arcs being considered for the

first set of source nodes. In this example, the working set for

the first set of source nodes is

R={{(1,2)},{(3,4),(5,6),(5,6),(7,8),(7,8),(9,10),(9,10),(-1),(-

1),(-2),(9,10),(13),(-2)}}.

Point p to the first arc (p=1). Since p doesn’t point to the

destination node, traverse through R to the node pointed by p

i.e. v={3,4}.

Step 5: Since v={3,4} has not been visited and w=NULL,

move to step 6.

Step 6: Add 1 to S and v to W. Currently, S={1} and

W={(3,4)}.

Step 4: Since all arcs are not yet visited in the current

working set, point p to the arc in current working set (3,4). So,

p=3. Since p doesn’t point to the destination node, traverse

through R to the node pointed by p. v={5,6}.

Step 5: Since v={5,6} has not been visited and w={(3,4)},

move to step 6.

Step 6: Add 3 to S and v to W. Currently, S={3,1} and

W={(5,6)(3,4)}.

Step 4: Since all arcs are not yet visited in the current

working set, point p to the arc in current working set (5,6). So,

p=5. Since p doesn’t point to the destination node, traverse

through R to the node pointed by p. v={7,8}.

Step 5: Since v={7,8} has not been visited and

w={(3,4),(5,6)}, move to step 6.

Step 6: Add 5 to S and v to W. Currently, S={5,3,1} and

W={(3,4),(5,6),(7,8)}.

Step 4: Since all arcs are not yet visited in the current

working set, point p to the arc in current working set (7,8). So,

p=7. Since p doesn’t point to the destination node, traverse

through R to the node pointed by p. v={9,10}.

Step 5: Since v={9,10} has not been visited and

w={(3,4),(5,6),(7,8)}, move to step 6.

Step 6: Add 7 to S and v to W. Currently, S={7,5,3,1} and

W={(3,4),(5,6),(7,8),(9,10)}.

Step 4: Since all arcs are not yet visited in the current

working set, point p to the arc in current working set (9,10).

So, p=9. Since p doesn’t point to the destination node,

traverse through R to the node pointed by p. v={-1}.

Step 5: Since v={-1} has not been visited and

w={(3,4),(5,6),(7,8),(9,10)}, move to step 6.

Step 6: Add 9 to S and v to W. Currently, S={9,7,5,3,1} and

W={(3,4),(5,6),(7,8),(9,10),(-1)}.

Step 4: Since all arcs are not yet visited in the current

working set, point p to the arc in current working set (-1). So,

p=-1. Since p has now reached the destination, pop elements

from stack and delete the nodes from W. So, Minimal Path is

{1,3,5,7,9}. Backtrack to the node (9,10) to consider the other

outgoing arcs from the arc 9.

Step 4: Since arc 9 leads to destination, move pointer p to 10.

So, p=10. Since p doesn’t point to the destination node,

traverse through R to the node pointed by p. v={-2}.

Step 5: Since v={-2} has not been visited and

w={(3,4),(5,6),(7,8),(9,10)}, move to step 6.

Step 6: Add 10 to S and v to W. Currently, S={10,7,5,3,1}

and W={(3,4),(5,6),(7,8),(9,10),(-2)}.

Step 4: Since all arcs are not yet visited in the current

working set, point p to the arc in current working set (-1). So,

p=-1. Since p has now reached the destination, pop elements

from stack and delete the nodes from W. So, Minimal Path is

{1,3,5,7,10}. Backtrack to the node (7,8) to consider the other

outgoing arcs from the arc 7.

Loop through for the rest of arcs to get the minimal path for

first source (S1) to be:

{(1,3,5,7,9),(1,3,5,7,10),(1,3,5,8),(1,3,6,9),(1,3,6,10),(1,4,7,9),

(1,4,7,10),(1,4,8),(2,5,7,9),(2,5,7,10),

(2,5,8),(2,6,9),(2,6,10),(11,9),(11,10),(12,13)}.

Step 3 and 4: Once the minimal paths for first source is found

out, move towards the second source and create the working

set.

R={{(11,12)},{(3,4),(5,6),(5,6),(7,8),(7,8),(9,10),(9,10),(-1),(-

1),(-2),(9,10),(13),(-2)}}.

Follow the steps from 4 to 7 for this working set to find the

minimal paths for source (S2) to be:

{(9, 11),(10, 11),(12, 13)}

6. RESULT & DISCUSSION
The proposed algorithm has been implemented and tested

using C language. The results of various bench marks

networks[4] tested on analysis are shown Figure 2. The

experimental results on enumerated multi source - multi sink

pathsets for a given general case networks tested and analyzed

in Table 1.

S1 S2

-1 -2

1 2

3

4 5 6

7

8 9 10

11 12

13

International Journal of Computer Applications (0975 – 8887)

9th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine-2013)

11

 [1] 9N12L [2] 5N8L

 [3] 21N26L [4] 7N11L

 [5] 16N24L [6] 9N13L

 [7] 12N15L [8] 14N21L

 [9] 8N9L [10] 14N18L

Figure 2: Case networks tested on analysis

International Journal of Computer Applications (0975 – 8887)

9th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine-2013)

12

Table: 1 Results for Enumeration of All Multi Source – Multi Sink Pathsets

Fig

No.

Network Source

Node

Number

Terminal

Node

Number

Total

MPs

Number of Minimal Pathset

1 9N12L 1 -1 8 {5, 8, 4, 6, 1} {5, 11, 10, 9, 4, 6, 1}, {12, 10, 9, 4, 6, 1}, {5, 11, 7,

1}, {12, 7, 1}, {5, 8, 3, 2}, {5, 11, 10, 9, 3, 2}, {12, 10, 9, 3, 2}

2 5N8L 1 -1 5 {6, 5, 1}, {8, 1}, {3, 2}, {6, 7, 2}, {6, 4}

3 21N26L 1 -1 18 {20, 16, 12, 7, 3, 1},{20, 23, 21, 17, 13, 8, 3, 1},{26, 25, 24, 22, 19,

18, 13, 8, 3, 1},{20, 16, 12, 7, 14, 10, 9, 4, 1},{20, 23, 21, 17, 13, 8,

14, 10, 9, 4, 1}, {26, 25, 24, 22, 19, 18, 13, 8, 14, 10, 9, 4, 1}, {26,

25, 24, 22, 19, 15, 11, 9, 4, 1}, {20, 16, 12, 7, 3, 5, 2}, {20, 23, 21,

17, 13, 8, 3, 5, 2}, {26, 25, 24, 22, 19, 18, 13, 8, 3, 5, 2}, {20, 16,

12, 7, 14, 10, 9, 4, 5, 2}, {20, 23, 21, 17, 13, 8, 14, 10, 9, 4, 5, 2},

{26, 25, 24, 22, 19, 18, 13, 8, 14, 10, 9, 4, 5, 2}, {26, 25, 24, 22, 19,

15, 11, 9, 4, 5, 2}, {20, 16, 12, 7, 14, 10, 6, 2}, {20, 23, 21, 17, 13,

8, 14, 10, 6, 2}, {26, 25, 24, 22, 19, 18, 13, 8, 14, 10, 6, 2}, {26, 25,

24, 22, 19, 15, 11, 6, 2}

4 7N11L 1 -1 9 {9, 1}, {8, 6, 2}, {10, 11, 6, 2}, {10, 7, 2}, {8, 4, 3}, {10, 11, 4, 3},

{8, 6, 5, 3}, {10, 11, 6, 5, 3}, { 10, 7, 5, 3}

5 16N24L 1 -1 17 {23, 17, 12, 9, 6, 5, 4, 3, 2, 1}, {23, 18, 14, 9, 7, 6, 5, 4, 3, 2, 1},

{24, 20, 14, 9, 7, 6, 5, 4, 3, 2, 1}, {23, 18, 15, 13, 7, 6, 5, 4, 3, 2, 1},

{24, 20, 15, 13, 7, 6, 5, 4, 3, 2, 1}, {24, 21, 19, 13, 7, 6, 5, 4, 3, 2,

1}, {23, 17, 12, 8, 5, 4, 3, 2, 1}, {23, 18, 14, 8, 5, 4, 3, 2, 1}, {24,

20, 15, 13, 7, 6, 5, 4, 3, 2, 1}, {24, 21, 19, 13, 7, 6, 5, 4, 3, 2, 1},

{23, 17, 12, 8, 5, 4, 3, 2, 1}, {23, 18, 14, 8, 5, 4, 3, 2, 1}, {24, 20,

14, 8, 5, 4, 3, 2, 1}, {23, 17, 11, 4, 3, 2, 1}, {23, 17, 10, 2, 1}, {23,

16, 1}, {22}

6 9N13L 1,2 -1, -2 16 {9, 7, 5, 3, 1}, {10, 7, 5, 3, 1}, {8, 5, 3, 1}, {9, 6, 3, 1}, {10, 6, 3,

1}, {9, 4, 7, 1}, {10, 7, 4, 1}, {8, 4, 1}, {9, 7, 5, 2}, {10, 7, 5, 2}, {8,

5, 2}, {9, 6, 2}, {10, 6, 2}, {9, 11}, {10, 11}, {13, 12}

7 12N15L 1,2 -1, -2 9 {13, 7, 2}, {11, 6, 1}, {12, 7, 2}, {12, 7, 3},{13, 7, 3}, {12, 8, 4},

{13, 8, 4} , {14, 9, 4}, {15, 10, 5}

8 14N21L 1 -1 15 {16, 9, 4, 1}, {16, 20, 17, 12, 6, 10, 5, 1}, {21, 17, 12, 6, 10, 5, 1},

{16, 9, 19, 18, 12, 6, 10, 5, 1}, {14, 13, 7, 10, 5, 1}, {16, 9, 19, 15,

13, 7, 10, 5, 1}, {14, 8, 11, 5, 1}, {16, 9, 19, 15, 8, 11, 5, 1}, {16,

20, 17, 12, 6, 2}, {21, 17, 12, 6, 2}, {16, 9, 19, 18, 12, 6, 2}, {14, 8,

3}, {14, 13, 7, 2}, {16, 9, 19, 15, 8, 3}, {16, 9, 19, 15, 13, 7, 2}

9 8N9L 1, 2, 3 -1, -2, -3 7 {6, 1}, {6, 2}, {7, 3}, {8, 3}, {7, 4}, {8, 4}, {9, 5}

10 14N18L 1, 2, 3, 4 -1, -2, -3 16 { 8, 1}, {16, 9, 1}, {17, 10, 2}, {15, 18, 10, 2}, {17, 10, 3}, {15, 18,

10, 3}, {17, 11, 4}, {15, 18, 11, 4}, {16, 12, 4}, {17, 11, 5}, {15,

18, 11, 5}, {16, 12, 5}, {16, 13, 6}, {14, 6}, {16, 13, 7}, {14, 7}

*Here N represent the total number of node in a given network and L represent total links in the given network

7. CONCLUSION
This paper proposes an algorithm to enumerate all multi-

terminal pathsets for evaluating reliability of multi-source and

multi sink communication networks. This work proposes an

algorithm to generate the entire minimal multi source – multi

sink pathsets of the general flow network, which is a new

approach and it is based on the principle of backtracking.

Further, one can evaluated the network reliability using

existing SDP based approach proposed in Chaturvedi and

Misra [1]. For the work presented in this paper, the algorithm

has been translated and implemented in C language.

International Journal of Computer Applications (0975 – 8887)

9th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine-2013)

13

8. REFERENCES
[1] S.K. Chaturvedi and K.B.Misra 2002 “An efficient

multivariable inversion algorithm for reliability

evaluation of complex system using pathsets”

International journal of reliability, quality, safety

engineering, Vol. 9, No. 3 pp 237-259,

[2] Misra K.B. and T.S.M. Rao 1982“Reliability analysis of

redundant network using flow graph ” IEEE Transaction

on Reliability, Vol. R-31, No.2, pp. 174-176,

[3] Misra K.B. (Ed),1993 New Trends in System Relaibility

Evaluation, Elsevier, Amsterdom.

[4] Gebre B. A. and J.E. Ramirez-Marquez, 2007,Element

Substitution Algorithm for Genral Two-terminal Network

Reliability Analyses, IIE Transaction, Vol. 39, No. 3, pp.

265-275.

[5] Misra K.B., Relaibility, 1992, Analysis and Predection:

A Methodology Oriented Treatment, Elsevier,

Amsterdom.

[6] Wei-Chang Yeh, 2009, “A Simple Universal Generating

Function Method to Search for all Minimal Paths in

Network”, IEEE Transactions on Systems,

Vol.39,No.6,November.

[7] S.P.Jain and K.Gopal,1998 “An efficient algorithm for

computing global reliability of a network”, IEEE

Transaction Reliability, Vol.37,No.5,pp.488-492.

[8] H.Feng and S.P.Chang, 1998 “A method of Reliability

evaluation for computer communication networks”,

IEEE International Symposium on Circuits and Systems,.

[9] M.A.Aziz, M.A Sobana and M.A Samad, 1992,

“Reduction of Computations in enumeration of terminal

and multiterminal path set by method of indexing”,

Microelectronics and Reliability, Vol.32, No.8.

[10] .C.Monticone, 1993 “An implementation of buzacott

algorithm for network global reliability”, IEEE

Transaction Reliabiltiy, Vol.42, No.1.

[11] Smail Adjabi and Kahina Bouchama, 2011 “k-terminal

reliability Evaluation of a Telecommunications Network

represented by Discrete and a Dynamic model”

International Journal of Operation Research Vol. 8, No.3.

[12] Tong Luo and K.S Trivedi, 1998 “An improved

algorithm for Coherent System Reliability”, IEEE

Transactions on Reliability, Vol.47, No.1.

[13] A.Satyanarayan and M.K Chang, 1983 “Network

Reliability and Factoring theorem,” Networks, vol.13.

[14] R.K.Wood, 1986 “Factoring algorithm for computing k-

terminal reliability”, IEEE Transaction.Reliability, Vol.

R-35.

[15] L.B. Page and J.E.Perry, 1989 “A practical

implementation of factoring theorem”, IEEE Transaction

Reliability, vol.R-38, No.5.

[16] L.B. Page and J.E. Perry, 1989, “Reliability analysis of

directed networks using the factoring theorem”, IEEE

Transaction. Reliability, Vol. R-38, No. 5.

[17] O.R. Theologou and J.G.Carlier, 1991 “Factory and

Reduction for networks with the imperfect nodes”, IEEE

Transactions Reliability, Vol. 40, No.2.

[18] P.Ng Tony, 1991 “k-terminal Relaibility of hierarchical

networks”, IEEE Transactions Reliability, Vol. 40, No.

2.

[19] D. Rath and K.P. Somam, 1997 “A simple method for

generating k-trees of a network,” Microelectronics and

Reliability, Vol. 46, No. 2.

[20] K.D. Heidtmann, 1989“Smaller sums of disjoint

products by sub product inversion,” IEEE Transactions

Reliability, vol. R-38, no.3, pp. 305-311.

[21] R. Mishra and S.K. Chaturvedi, 2009 “A Cutsets-Based

Unified Framework to Evaluate Network Reliability

Measures” IEEE Transaction on Reliability, Vol. 58,

No.4, pp. 658-666.

