
International Journal of Computer Applications (0975 – 8887)

9th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine-2013)

1

A Simple Technique to Find Diverse Test Cases

Shilpi Singh
Intern, Testing Vertical, CDAC

Noida, R&D Department,

A Scientific Society of DEIT,
Govt. of India

Chetna Sharma
Intern, Testing Vertical, CDAC

Noida, R&D Department,

A Scientific Society of DEIT,
Govt. of India

Udai Singh
Technical Officer,

Testing Vertical, CDAC Noida,
R&D Department,

A Scientific Society of DEIT,
Govt. of India

ABSTRACT
As the software modified, new test cases are added to the test

suits, the test suite grows and the cost of regression testing

increases. This paper defines a technique to solve these

problems and make the testing cost effective. We introduce a

set of test case comparison metrics algorithms which will

quantitatively calculate the diversity between any arbitrary

test case pair of an existing test suite. Our procedure mainly

focuses on branch coverage criteria, control flow of a

program, variable definition-usage and data values. By using

these information’s a signature values is calculated to find

how much the test cases are diverse from each other and

accordingly we can make a cluster of similar test cases

together, that can effectively test under time constraints.

Keywords

Testing, Program Testing, Regression Testing, Test Suite,

Test Case, Test Suite Reduction, FDE.

1. INTRODUCTION
Program testing is the most commonly used method for

demonstrating that a program accomplishes its intended

purpose. It is an opportunity to deliver quality software and to

substantially reduce development cost as much as possible. It

also involves selecting elements from the program's input

domain, executing the program on these test cases, and

comparing the actual output with the expected output [1][5].

Test suite, for testing and validating software program can

contain large number of test cases to execute various part of

the software program code. The main aim is to check for

defect and code compliance. The general size of a test suite

can vary from hundreds of test cases to more than a million

for large and/or evolved software program. Thus, test

execution can take a great deal of time to complete.

Additionally, test cases are often developed and thus one or

more test cases in a test suite may be redundant. In that they

execute the same code path for the same or similar data sets.

Moreover, as the software program is updated and modified,

test cases in a test suite can become duplicative. Thus, it

would be advantageous to identify and eliminate redundant

test cases in a test suite, allowing reduction in the test suite

size which, in turn, can decrease testing time and contribute to

optimize maintenance effort for the test suite. Further, it

would be advantageous to perform test suite clustering of test

cases based on a defined similarity level. Using clustering, the

number of test cases to be executed for any particular test run

can be limited and even minimized. Test case clustering

support an identification of a minimal set of test cases that

maximizes test coverage of the software program while

minimizing the number of tests to be run.

2. TEST SUITE REDUCTION
Regression testing is an important activity to the development

and maintenance of evolving software. Difficulty is that, it

requires large amount of test cases to test new or modified

parts of the software. Test-suite reduction techniques attempt

to reduce the costs of saving and reusing test cases during

software maintenance by eliminating redundant test cases

from test suites. According to Rothermal [3], a Software

contains 10 to 20,000 of LOC (Lines of Codes) requires more

time and effort to run all the test cases. To eliminate duplicate

or redundant test cases in a test suite and to optimize the

testing process, test suite minimization approach is necessary.

The first formal definition of test suite reduction problem

introduced in 1993 by Harrold et al. [2] as follows:

Given:{t1, t2,…, tm} is test suite T from m test cases and {r1,

r2,…, rn} is set of test requirement that must be covered in

order to provide desirable coverage of the program entities

and each subsets {T1, T2,…, Tn} from T are related to one of

ris such that each test case tj belonging to Ti satisfies ri.

Problem: Find minimal test suite T' from T which satisfies all

ris covered by original suite T.

The main aim of test suite reduction is to optimize the testing

process while maintaining Fault Detection Effectiveness

(FDE) [4].

3. PROPOSED TEST CASE

COMPARISON METRICS ALGORITHM
This section introduced four metrics to compare any two test

cases of a test suit in a quantifiable manner. It is also used for

analyzing, comparing & clustering. Quantitative test case

comparison metrics suggest the amount of similarity between

any test case pair, that is being tested on target code. Key

aspects of program execution including code coverage, counts

of execution, data values and def-use of variables are captured.

Program code is divided into parts depending on the metric

(Ex. Control divergence has control statements). Signature

values are calculated for each part based on test execution and

these values are used for comparing pairs of tests.

3.1 Metrics
This section explains the four metrics through which distance

between any two test cases is being calculated i.e. how much

they are different or diverse from each other. Following are the

four metrics:

1. Block coverage equivalence M1

2. Control flow divergence M2

3. DU equivalence M3

4. Data divergence M4

3.1.1 Block Coverage Equivalence Algorithm
Block coverage equivalence measures block testing overlap

between two test cases of a test suit.M1 metric is calculated by

International Journal of Computer Applications (0975 – 8887)

9th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine-2013)

2

adding the number of common blocks tested by a test case pair

and dividing this sum by the total number of unique blocks

tested by both test case pair. In this metric there is no

requirement that the test cases of the pair execute the common

blocks in the same order or the same time frame. See Fig. 1.

Given: N = Total no. of test cases

X = No. of common blocks between Ti& Ti+1

Y = No. of unique blocks tested by both Ti& Ti+1

1. For each test case Ti ≤ N

2. For each test case Ti+1 ≤ N

3. M1(Ti,Ti+1) = X / Y

4. End for

5. End for

Fig. 1: Block coverage equivalence algorithm

3.1.2 Control Flow Divergence Algorithm
Control flow divergence measures the similarity of two test

cases that test the same blocks that have conditional path

within them. For each test case that executes a block with a

conditional branch a control flow (CF) value is calculated that

provides a measurement for the number of times the test case

takes each conditional branch (True and False branch). See

Fig. 2.

Control Flow (CF) is calculated for each test case that

executes block B with a conditional branch.

Given: T= No. of times true branch is executed

F= No. of times false branch is executed

1. For each test case Ti ≤ N

//Calculate sum of the no. of times each branch is executed,

2. SUM (T &F) = T+F

//Calculate Average no. of times each path is executed,

3. AVG (T&F) = SUM (T&F) / No. of Branch’s

//Find the CF value of each block corresponding to test cases,

4. CFB (T i) = ((T-AVG (T&F)) + (AVG (T&F)-F)) /

SUM(T&F)

5. End For

Variance of CF values is calculated for each test case pair

that executes common blocks with conditional statements

Given: N= No. of shared block of test case pair Ti&Ti+1

Calculate, M = MEAN (CFB (Ti) , CFB (Ti+1)

1. For each test case Ti ≤ N

2. For each test case Ti+1 ≤ N

//Calculate the variance of CF value for a common block B of

Ti& Ti+1

3. Variance ∆B(Ti,Ti+1) = Square[CFB(Ti)-M] +

Square[CFB(Ti+1)-M]

//Calculate metric value for each test case pair

4. M2(Ti,Ti+1) = Sum of the variance of common

blocks(∑∆B(Ti,Ti+1)) / No. of common blocks

5. End For

6. End For

Fig. 2: Control Flow Divergence Algorithm

3.1.3 DU Equivalence Algorithm

Our path selection criteria are based on an investigation of the

ways in which values are associated with variables, and how

these associations can affect the execution of the program.

This analysis focuses on the occurrences of variables within

the program. Each variable occurrence is classified as being a

definitional, computation-use, or predicate-use occurrence.

We refer to these as def, c-use, and p-use, respectively [1].

DU equivalence measures def-use (definition or use) path

testing overlap between two test cases in a test suit. A def-use

path is a logic execution sequence in a block that defines and

uses a variable. The du-paths and dc-paths describe the flow

of data across source statements from points at which the

values are defined to points at which the values are used. The

du-paths that are not definition clear are potential trouble

spots. See Fig. 3.

Given: N= No. of test cases

X= No. of common def-use chain tested by test case

pairs Ti& Ti+1

Y= No. of unique def-use chain tested by both test

cases pairs

1. For each test cases Ti ≤ N

2. For each test cases Ti+1≤N

3. M3(Ti& Ti+1) = X/Y

4. End for

5. End for

Fig. 3: DU Equivalence Algorithm

3.1.4 Data Divergence Algorithm
Data divergence measures the similarity or diversity of test

cases with respect to the data values the test cases use for code

variables. Data divergence is computed as the similarity of the

number of times two test cases execute the same conditional

branches, loops and /or blocks. Counts are used to indirectly

represent the data values of variables in the software code

under test. See Fig. 4.

For each test case that executes a block B a data flow DF

value is calculated

Given: N= total no. of test cases

 T=No. of times true branch is executed

 F=No. of times false branch is executed

1. For each test case Ti ≤N

//Calculate data flow DF(Ti , B)

2. DF(Ti , B) = (T-F)/2

3. End For

For each test case pair calculate the variance of DF value for

a common block B with loop statements executed by Ti&Ti+1

1. For each test case Ti ≤ N

2. For each test case Ti+1≤N

3. M=Mean (DFB(Ti), (DFB(Ti+1))

4. Variance ∆B(Ti,Ti+1)=Square (DFB(Ti) - M)+

Square(DFB(Ti+1) - M)

//Calculate metric value is for each test case pair

5. M4 (Ti, Ti+1) = Sum of the variance of common

blocks/No. of common blocks

6. End For

7. End For

Fig. 4: Data Divergence Algorithm

International Journal of Computer Applications (0975 – 8887)

9th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine-2013)

3

3.2 Calculation of Signature Values for

Each Test Case Pair
This section describes how signature values are calculated for

each test case pair. For each test case pair two signature

values are generated. These are:

1. Equivalence Signature Value

2. Divergence Signature Value

Each test case signature is an aggregate quantifiable metric

that is used to identify the amount of similarity or

dissimilarity of the test cases of a test case pair.

A signature is a weighted average of a subset of the K metric

generated for a test case pair.

Thus, once a set of metric value are established for a test case

pair each metric is weighted, a subset of the weighted metrics

are summed, and the result is divided by the number of added

metrics, to define signature for the test case pair.

Each metric is given equal weight, or importance, and thus the

weight assigned each metric is one. A metric can be disabled

by assigning it a weight of zero.

Equivalence Signature = (1)

Where, P1 = P3 = 1 (Px is the weight for the xth metric),

Mx is the xth metric value for test case pair,

 M1= Block coverage equivalence metric value,

M4 = DU equivalence metric value.

Divergence Signature = (2)

Where, P2 = P4 = 1 (Px is the weight for the xth metric),

Mx is the xth metric value for test case pair,

M2 = Control Flow Divergence metric value,

M4 = Data Flow Divergence metric value.

Calculated signature values for each test case pair of a test

suite are stored and used to group the test cases into one or

more cluster.

4. EXPERIMENTAL STUDY
In this section an experiment is done on the small program

(written in C++ language) which is shown in fig. 5. Here B

and D represents block/branch and decision block

respectively.

Table 1 shows the developed test cases inputs for the sample

program mention in the fig 5 and table 2 shows the blocks or

branch covered by each test case. Similarly for the control

flow divergence, a matrix is created which shows number of

times true and false branch is covered by all the test cases.

Remaining is also created accordingly. With the help of these

information’s, four metrics M1, M2, M3 and M4 are calculated

int main()

 {

char ch;

 B1: int num i ;

 B21: cout<< “enter a number \n”;

 cin>>num;

 D1: if(num%2==0)

 B22 cout<< “even\n”;

 else

 B23 cout<< “odd\n”;

 D2 if(num==1)

 B24 cout<< “prime\n”;

 B25 else

 {

 for(i=2;i≤num/2;++i)

 D3 if(num%i==0)

 {

 B251 cout<< “not prime\n”;

 gotolb;

 }

 B252 cout<< “prime\n”;

 }

 lb;

 RETURN 0;

}

Fig. 5: Sample Program

Table 1. Test Cases

Test Case
Value of

N

T1 7

T2 2

T3 6

T4 15

T5 1

T6 10

Table 2. Block Coverage Matrix

Test

Cases
Blocks Covered by Test Cases

T1 B1 B21 B23 B25 B252

T2 B1 B21 B22 B25 B252

T3 B1 B21 B22 B25 B251

T4 B1 B21 B23 B25 B251

T5 B1 B21 B23 B24

T6 B1 B21 B22 B25 B251

5. EXPERIMENTAL RESULT
By applying the metrics value on equation 1 and 2 the

signature values are calculated. These values represent how

much the test cases are similar or distinct from each other. For

this threshold values for equivalence signature and divergence

signature are defined. According to these threshold values,

weather two test cases are allowed to make a group (cluster)

or not can be easily defined. Two test cases are deemed

similar to group or cluster if the divergence signature value

for the test case pair is less than or equal to a pre-defined

divergence threshold and the equivalence signature value for

the test case pair is greater than or equal to a pre-defined

equivalence threshold.

International Journal of Computer Applications (0975 – 8887)

9th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine-2013)

4

Threshold values are chosen according to the user’s need.

Larger the divergence threshold value and smaller the

equivalence threshold value, larger the cluster will be. Larger

cluster results in less test cases that may need to be run,

reducing test time and effort. Here, rigid threshold values 1

and 0 are chosen for equivalence and divergence signature to

check identical test cases.

Table 3 shows the calculated signature values for each test

case pair of the above program. Each cell contains signature

values for corresponding test case pair. Upper and lower value

represents divergence signature value and equivalence

signature value respectively. For making a group or cluster of

similar test cases threshold values of divergence and

equivalence as 0.5 and 0.98 are assumed. Signature values of

test case pair T3-T6 are 0 and 1, it means they are identical

and we can remove one of them. We can also make a group of

T1-T5 because it approximately satisfies the given condition

as compare to others. See Figure 6.

6. CONCLUSION AND FUTURE WORK
In this paper we presented the four test case comparison

metrics algorithms that are simple and easy to understand. By

using these algorithms we can easily capture the diversity

level in terms of signature values between two test cases.

Accordingly clustering or grouping of test cases is processed

which reduces the testing time as well as cost. Currently we

are working on effective prioritization of test cases in a

cluster. In future we would like to run similar experiments on

programs from a broader range of programming languages,

sizes and problem domains.

Table 3. Signature Matrix for Test Case Pair

Test

Cases

T1 T2 T3 T4 T5 T6

T1 0.69

0.83

0.36

0.58

0.17

0.70

0.00

0.58

0.36

0.58

T2 1.00

0.70

1.06

0.58

0.00

0.47

1.00

0.70

T3 0.06

0.83

0.00

0.39

0.00

1.00

T4 0.00

0.50

0.06

0.71

T5 0.00

0.39

T6 ---

7. ACKNOWLEDGMENTS
The authors wish to thanks Udai Singh, Technical officer,

CDAC Noida for supporting this work and for his valuable

suggestions. We are also grateful to an anonymous reviewer

who made several very helpful suggestions and detailed

comments that improved the paper.

Figure 6: Clustering Process

8. REFERENCES

[1] Sandra Rapps, Elaine J. Weyuker, “Selecting software

test data using data flow information”, IEEE

Transactions on Software Engineering”, Vol.SE-1l, No.

4, April 1985.

[2] Gregg Rothermel, Mary Jean Harrold, Jeffery von

Ronne, Christie Hong, “Empirical Studies of Test-Suite

Reduction,” Journal of Software Testing, Verification,

and Reliability. 12(4):219-249, 2002.

[3] G. Rothermal, R. H. Untch, C. Chu, M. J. Harrold,

“Prioritizing test cases for regression testing”, IEEE

Transcations on software Engineering, 27 (10)(2001)

929-948Tavel, P. 2007 Modeling and Simulation Design.

AK Peters Ltd

[4] D. Jeffrey and N. Gupta, “Improving fault detection

capability by selectively retaining test cases during test

suite reduction”, IEEE Transcations on software

Engineering, 33(2):108–123, 2007.

[5] Boris Beizer,”Software Testing Technique”, Second

Edition International Thomson Computer 1990 ISBN 1-

85032-880-3

