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ABSTRACT 

The satisfiability problem (SAT) is one of the most prominent 

problems in theoretical computer science for understanding of 

the fundamentals of computation. It is first known NP-

Complete problem. Graph k-Colorability (for k ≥ 3) Problem 

(GCP) is also an well known NP-Complete problem. We can 

reduce any NP-Complete problem to/from SAT. Reduction 

from satisfiability problem to graph k-colorability problem or 

vice versa is an important concept to solve one of the hard 

scheduling problem, frequency assignment in cellular 

network. The frequency assignment problem is very similar to 

the graph k-colorability problem. In this paper, we are 

presenting a polynomial reduction from any instance of 3-

CNF-SAT formula to k-colorable graphs. Moret [2] gave an 

reduction approach from 3-SAT to 3-colorable graph. 

According to Moret, reduced 3-colorable graph having (2n + 

3m + 1) vertices and (3n + 6m) edges, where n is the number 

of variables and m is number of clauses contained by 3-SAT 

formula.  Here, we generalized the reduction approach to 

reduce any instance of 3-CNF-SAT formula to a k-colorable 

graph in polynomial time with mathematical proof. Our 

reduction approach generate a k-colorable graph with |V| = (2n 

+ 3m + (k-2)) vertices and |E| = (3n + 6m) edges for k = 3 and 

|E| = (|E| of (k-1)-colorable graph + (|V|-1)) edges for k >3 

corresponding to any instance of 3-CNF-SAT. Further, we 

give the formulation of graph k-colorability to frequency 

assignment problem in cellular network.  

Keywords 
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1. INTRODUCTION 
The satisfiability problem (SAT) is one of the most prominent 

problems in theoretical computer science, which has become 

increasingly popular and important insights into our 

understanding of the fundamentals of computation. SAT is the 

first known NP-Complete problem. It is used as a starting 

point for proving that other problems are also NP-hard. This is 

done by polynomial-time reduction from 3-SAT to the other 

problem. We can reduce any NP-Complete problem to/from 

3SAT. Reduction from satisfiability problem to graph k-

colorability problem or vice versa is an important concept to 

solve one of the hard scheduling problem, frequency 

assignment in cellular network. The frequency assignment 

problem is very similar to the graph k-colorability problem. 

Determining the k-colorability of any graph is also an NP-

Complete problem [3][7]. In a proper graph coloring, if two 

vertices u and v of a graph share an edge (u, v), then they must 

be colored with different colors. The minimum number of 

colors needed to properly color the vertices of G is called the 

chromatic number of G, denoted χ(G). A k-coloring of graph 

G is an assignment of colors {1,2,…,k} to the vertices of G in 

such a way that neighbors receive different colors. Graph 

Coloring Problem is very important because it has many 

applications; some of them are planning and scheduling 

problems such as timetabling, channel assignment in cellular 

network [4][5][6][8] and many others.  

The frequency band has become an important resource for 

communication service. There has been large increase in 

demand for using the frequency bands caused by the fast 

growth in mobile communication, satellite communication 

and mass communication service areas. To maximize 

utilization of frequency band, the limited band of available 

frequency is divided into a number of channels. A channel can 

be reused many times for different transmitters if the 

transmitters are far enough from one another so that the co-

channel interference between them is low enough. If there are 

two close transmitters using the same channel simultaneously, 

they will suffer from severe co-channel interference and the 

quality of communication service will be unsatisfactory.  

Since the available frequency band is limited, we are 

interested in using as small band of frequency as possible 

while satisfying all the frequency demand and the co-channel 

constraints. This can be efficiently done by the proper 

frequency assignment. It is shown that the frequency 

assignment problem is equivalent to an extended version of 

graph coloring problem [8]. A variation of the graph coloring 

problem is the graph k-colorability problem [7]. 

In this paper, we introduce a new framework to represent SAT 

problems, for this, we proceed for the reduction of the 

instance of 3-CNF-SAT formula to k-colorable graph in 

polynomial time. Our reduction formula generate a k-

colorable graph with |V| = (2n + 3m + (k-2)) vertices and |E| = 

(3n + 6m) edges for k = 3 and |E| = (|E| of (k-1)-colorable 

graph + (|V|-1)) edges for k >3 corresponding to any instance 

of 3-CNF-SAT. Previously, in standard reduction approach 

from 3-SAT to 3-Colorable graph [1], the generated graph 

having (2n+5m+3) vertices and (3n+10m+3) edges. Further, 

Moret [2] gave an improved reduction approach from 3-SAT 

to 3-colorable graph. According to Moret, reduced 3-colorable 

graph will have (2n + 3m + 1) vertices and (3n + 6m) edges. 

Here, we generalized the reduction approach to reduce any 

instance of 3-CNF-SAT formula to a k-colorable graph in 

polynomial time with mathematical proof.  

In next section of this paper, we have explored basic detail of 

3-SAT, k-colorable graph and frequency assignment problem. 

Section 3 describes our polynomial reduction approach from 

3-SAT to k-colorable graph. Section 4 explored the 

formulation of graph k-colorability to frequency assignment 

problem. 
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2. BACKGROUND 

2.1 3-Satisfiability (3-SAT) 
The satisfiability problem in conjunctive normal form (CNF) 

consists of the conjunction of a number of clauses, where a 

clause is a disjunction of a number of propositions or their 

negations. Let F be a 3-CNF formula which is conjunctions of 

m clauses say C1 C2 … Cm, where each clauses having at 

most n literals i.e. a clause of length-n (in case of 3-CNF, 

n=3) with disjunctive form say l1l2 ln. Each literal may 

be variables or negation of these variables say x1,x2,…,xn or 

￢x1,￢x2…￢xn where ￢ indicates negation. Every literal 

can take a truth value (0 or false, 1 or true).  In Satisfiability 

problem, a set of values for the literals should be found, in 

such a way that the evaluation of formula should be true; if it 

is true then formula is called satisfiable, and otherwise 

formula is unsatisfiable. Following expression E is an 

example of 3-SAT:  

)()()( 421321321 xxxxxxxxxE 

Here, E has 3 clauses (denoted by parentheses), four variables 

(x1, x2, x3, x4), and clause length n=3 (three literals per clause). 

Here, x1 is a positive literal and ￢x2 is a negative literal.  One 

of the truth assignments for satisfiability of above expression 

is x1 = x3 = true, & x2 = false   or x1 = x2 = true & x3 = false. 3-

SAT is an NP-complete problem and it is used as a starting 

point for proving that other problems are also NP-hard. This is 

done by polynomial-time reduction from 3-SAT to the other 

problem. 

2.2 Graph k-Colorability 
Coloring a Graph with k colors or k-Coloring Problem is as 

follows: Is it possible to assign one of k colors to each vertex 

of a graph G = (V, E), such that no two adjacent nodes be 

assigned the same color? If the answer is positive (or YES), 

we say that the graph is k-colorable and k is the chromatic 

number of graph G. It is possible to transform any SAT 

formula F into k-colorable graph, generate a graph G = (V,E) 

with  number of colors k, such that G is k-colorable only in the 

case of F is satisfiable.The graph k-colorability problem has 

several important real-world applications, including register 

allocation, scheduling, frequency assignment, and many other 

problems. The problem also underlies various popular games, 

including Sudoku and Minesweeper. 

2.3 Frequency Assignment Problem 
The frequency assignment problem is described as follows 

[8]:  Assume that there is a collection of possible channels for 

frequencies to be assigned to a set of transmitters. Two 

transmitters which are close to each other must have two 

different channels to maintain a requested grade of 

communication quality. The minimum difference between 

two assigned frequencies, to be assigned to two close 

transmitters, depends on the interference level between them. 

The objective of the frequency assignment problem is to find 

an efficient assignment using the smallest span of the 

frequency band while satisfying the communication quality 

constraints. 

3. POLYNOMIAL REDUCTION FROM 

3-CNF-SAT TO K-COLORABLE GRAPH  
The method of showing that a problem is NP-Complete by 

polynomial reduction is one of the most elegant and 

productive in computational complexity [9]. To prove that 

problem A is NP-hard, reduce a known NP-hard problem to A. 

Cook [10] defines the following: 

Definition 1: Suppose that Li is a language over ∑i, i =1,2. 

Then L1 ≤ p L2 (L1 is polynomially reducible to L2) iff there is a 

polynomial-time computable function f: ∑1 → ∑2 such that 

xL1 ↔ f (x) L2, for all x∑1. 

Definition 2: A language L is NP-Complete iff L is in NP, and 

L’ ≤ p  L for every language L’ in NP 

Proposition 1: Given any two languages, L1 and L2: 

1) If  L1 ≤ p  L2  and  L2P then  L1P. 

2) If  L1 is NP-Complete, L2NP  and L1 ≤ p L2  then  L2  is  

NP-Complete. 

3.1 3-SAT ≤p 3-Color 
Theorem 1: Graph 3-Colorability is NP-Complete [2]. 

Proof:  First of all we have to proof it as NP then try to proof 

NP-Hard. If it is both then it will be NP-Complete.  

1. First we show that 3-ColorNP. Given a graph G, and a 

coloring assignment of the vertices, simply walk the graph 

and make certain that all adjacent vertices have a different 

color, and make certain that only 3 colors are used. This is 

clearly by O (|V| + |E|), where |V| is the number of vertices 

and |E| is the number of edges of graph G. 

2. Now show that 3-ColorNP-Hard. To do this, we reduce 

from 3-SAT to 3-Color, or show that 3-SAT ≤p 3-Color. Start 

with an instance of 3-SAT formula F with n variables x1, 

x2,…, xn and m clauses c1,c2,…,cm. Create a graph G such that 

G is 3-colorable iff F is satisfiable. Reduced graph G has 

vertices corresponds to variables and coloring of vertices 

corresponding to truth assignment to variables from instance 

of 3-SAT formula.  

Graph Construction: Given a 3CNF formula, we produce a 

graph as follows. The graph consists of a triangle for each 

variable and one triangle for each clause in the formula. All 

triangles for variables have a common vertex B (we can say 

base vertex) which preempts one color, so that the other two 

vertices of each such triangle corresponding to the variable 

and it’s negation (or complement) must be assigned two 

different colors i.e. truth assignment either TRUE or FALSE. 

Then, we connect each vertex of a clause triangle to the 

corresponding literal vertex. Each such edge forces its two 

endpoints to use different colors. 

Correctness: A clause triangle can be colored if and only if 

not all three of its corresponding literal vertices have been 

given the same color, that is, a clause triangle will be proper 

3-colored if and only if not all three literals in the clause have 

been assigned the same truth value. Thus, the transformed 

instance admits a solution if and only if the original 3-SAT 

instance does. 

=> If the 3-SAT formula has a satisfying assignment then the 

graph has 3-coloring. 

<= If the graph has a 3-coloring, then the SAT formula has a 

satisfying assignment. 

Bound: The transformation takes an instance of 3-SAT with n 

variables and m clauses and generated a 3-colorable graph that 

will have the number of vertices and edges as follows: 

|V| = (2n + 3m + 1) vertices and  

|E| = (3n + 6m) edges 

 It is easily done in polynomial time. 
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Example 1: Transform following 3-CNF-SAT formula into 3-

colorable graph: 

( x ˅ y ˅ z’ ) ˄ ( x ˅ y’ ˅ z’ )       

(1) 

Here, number of variable n = 3 and number of clauses m = 2; 

corresponding to this instance of 3-CNF, following fig 1 

generated 3-colorable graph having |V| = 13 vertices and |E| = 

21 edges. 

Fig 1: 3-Colorable Graph 

3.2 3-SAT ≤p 4-Color 
Theorem 2: Graph 4-Colorability is NP-Complete 

Proof:  First of all we have to proof it as NP then NP-Hard. If 

it is both then it will be NP-Complete.  

1. First we show that 4-ColorNP. Given a graph G, and a 

coloring assignment of the vertices, simply walk the graph 

and make certain that all adjacent vertices have a different 

color, and make certain that only 4 colors are used. This is 

clearly by O (|V| + |E|). 

2. Now show that 4-ColorNP-Hard. To do this, we reduce 

from 3-Color to 4-Color, or show that 3-Color ≤p 4-Color. Let 

G3 be an instance of 3-Color. Construct a new graph G4 as 

follows: Add a single extra vertex B1 and connect it to every 

other vertex in the graph. This is clearly polynomial in the 

size of the graph. 

Correctness: Now we must show that G4 is a yes-instance of 

4-Color if and only if G3 is a yes-instance of 3-Color. 

Consider the following proof. 

=> Assume G3 is 3-colorable. Therefore, G4 is 4-colorable 

because the added vertex B1, which is connected to all the 

other vertices in the graph, can be colored with a 4th color, 

and it will always be connected to vertices that are 1 of 3 

other colors. 

<= Assume G4 is 4-colorable. Because B1 is connected to 

every vertex in the graph, B1 must be the only vertex in G4 

that has a certain color. Therefore, all other vertices in the 

graph are colored 1 of 3 colors. Therefore, G3 is 3-colorable. 

Since we have shown that 4-ColorNP and 3-Color ≤p 4-

Color, we have shown that 4-ColorNP-Hard. Therefore, 4-

Color NP-Complete. 

Fig 2: 4-Colorable Graph 

Bound: The transformation takes an instance of 3-SAT with n 

variables and m clauses and generated a 4-colorable graph that 

will have the number of vertices and edges as follows: 

|V| = (2n+3m+2)  vertices and  

|E| = ((3n + 6m) + (2n+3m+1)) = (|E| of 3-colorable graph + 

(|V|-1)) edges 

It is easily done in polynomial time. 

Example 2: Transform (1) into 4-colorable graph: 

( x ˅ y ˅ z’ ) ˄ ( x ˅ y’ ˅ z’ ) 

Here, number of variable n = 3 and number of clauses m = 2; 

corresponding to this instance of 3-CNF, following fig 2 

generated 4-colorable graph having |V| = 14 vertices and |E| = 

21 + 13 = 34 edges.  

3.3 3-SAT ≤p 5-Color 
Theorem 3: Graph 5-Colorability is NP-Complete 

Proof:  First of all we have to proof it as NP then NP-Hard. If 

it is both then it will be NP-Complete.  

1. First we show that 5-ColorNP. Given a graph G, and a 

coloring assignment of the vertices, simply walk the graph 

and make certain that all adjacent vertices have a different 

color, and make certain that only 4 colors are used. This is 

clearly by O (|V| + |E|). 

2. Now show that 5-ColorNP-Hard. To do this, we reduce 

from 4-Color to 5-Color, or show that 4-Color ≤p 5-Color. Let 

G4 be an instance of 4-Color. Construct a new graph G5 as 

follows: Add a single extra vertex B2 and connect it to every 

other vertex in the graph. This is clearly polynomial in the 

size of the graph. 

Correctness: Now we must show that G5 is a yes-instance of 

5-Color if and only if G4 is a yes-instance of 4-Color. 

Consider the following proof. 
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=> Assume G4 is 4-colorable. Therefore, G5 is 5-colorable 

because the added vertex B2, which is connected to all the 

other vertices in the graph, can be colored with a 5th color, 

and it will always be connected to vertices that are 1 of 4 

other colors. 

<= Assume G5 is 5-colorable. Because B2 is connected to 

every vertex in the graph, B2 must be the only vertex in G5 

that has a certain color. Therefore, all other vertices in the 

graph are colored 1 of 4 colors. Therefore, G4 is 4-colorable. 

Since we have shown that 5-ColorNP and 4-Color ≤p 5-

Color, we have shown that 5-ColorNP-Hard. Therefore, 5-

Color NP-Complete. 

Fig 3: 5-Colorable Graph 

Bound: The transformation takes an instance of 3-SAT with n 

variables and m clauses and generated a 5-colorable graph that 

will have the number of vertices and edges as follows: 

|V| = (2n+3m+3) vertices and  

|E| = (((3n + 6m) + (2n + 3m + 1)) + (2n + 3m + 2)) = (|E| of 

4-colorable graph + (|V|-1)) edges 

It is easily done in polynomial time. 

Example 3: Transform (1) into 5-colorable graph: 

( x ˅ y ˅ z’ ) ˄ ( x ˅ y’ ˅ z’ ) 

Here, number of variable n = 3 and number of clauses m = 2; 

corresponding to this instance of 3-CNF, above fig 3 

generated 5-colorable graph having |V|=14+1=15 vertices and 

|E| = 34+14=48 edges. 

3.4 3-SAT ≤p k-Color 
Theorem 3: Graph k-Colorability is NP-Complete 

Proof:  First of all we have to proof it as NP then NP-Hard. If 

it is both then it will be NP-Complete.  

1. First we show that k-ColorNP. Given a graph G, and a 

coloring assignment of the vertices, simply walk the graph 

and make certain that all adjacent vertices have a different 

color, and make certain that only k colors are used. This is 

clearly by O (|V| + |E|). 

2. Now show that k-ColorNP-Hard. To do this, we reduce 

from (k-1)-Color to k-Color, or show that (k-1)-Color ≤p k-

Color. Let Gk-1 be an instance of (k-1)-Color. Construct a new 

graph Gk as follows: Add a single extra vertex Bk-3 and 

connect it to every other vertex in the graph. This is clearly 

polynomial in the size of the graph. 

Correctness: Now we must show that Gk is a yes-instance of 

k-Color if and only if Gk-1 is a yes-instance of (k-1)-Color. 

Consider the following proof. 

=> Assume Gk-1 is (k-1)-colorable. Therefore, Gk is k-

colorable because the added vertex Bk-3, which is connected to 

all the other vertices in the graph, can be colored with a kth 

color, and it will always be connected to vertices that are 1 of 

(k-1) other colors. 

<= Assume Gk is k-colorable. Because Bk-3 is connected to 

every vertex in the graph, Bk-3 must be the only vertex in Gk 

that has a certain color. Therefore, all other vertices in the 

graph are colored 1 of (k-1) colors. Therefore, Gk-1 is (k-1)-

colorable. 

Since we have shown that k-ColorNP and (k-1)-Color ≤p k-

Color, we have shown that k-ColorNP-Hard. Therefore, k-

Color NP-Complete. 

Bound: The transformation takes an instance of 3-SAT with n 

variables and m clauses and generated a k-colorable graph that 

will have the number of vertices and edges as follows: 

|V| = (2n + 3m + (k-2)) vertices and  

|E| = (3n + 6m) edges               for 

k=3 

     = (|E| of (k-1)-colorable graph + (|V|-1)) edges             for 

k>3 

So, it is easily done in polynomial time. 

4. GRAPH K-COLORABILITY TO 

FREQUENCY ASSIGNMENT PROBLEM 
Formulate the frequency assignment problem as a graph k-

colorability problem. Let the vertices correspond to 

transmitters and edges correspond to interference between 

transmitters. Every vertex is labeled with a frequency range 

Fi. The question is whether one can allocate to each vertex a 

frequency from its frequency range so that no vertices are 

connected with an edge having the same frequency. 

For doing this, first of all we have to show that the frequency 

assignment problem is in NP. Guess (non-deterministic) a 

frequency assignment. Go through each vertex and verify that 

its frequency is in the frequency set. Go also through each 

edge and verify that the endpoints of the frequencies are 

different. This takes linear time in the size of the graph. 

In the second step we have to show that the frequency 

assignment problem is NP-hard. For this, reduce graph k-

colorability problem to frequency assignment: 

Graph k-coloring(G, k) = 

  for each vertex vi in the graph G 

   Fi  {1,…,k} 

  return Frequency Assignment (G,{Fi}) 

Finally, check correctness of above as there is a k-coloring of 

graph G iff there is a correct assignment of frequencies to G, 

where every vertex has frequency set {1,…,k}. Suppose we 
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have a k-coloring of G. Number the colors from 1 to k. If a 

vertex has color i, we assign to the corresponding vertex 

(transmitter) in the frequency allocation problem the 

frequency i. This is a correct frequency assignment because 

we have been based on a correct k-coloring. In the other 

direction: assume that we have a correct frequency 

assignment. we get a k- coloring by allowing a vertex to have 

color i if the corresponding transmitter have been assigned 

frequency i. 

5. CONCLUSION 
The primary focus of this paper is to introduce a generalized 

reduction approach from 3SAT to k-colorable graph. Our 

polynomial reduction approach generate a k-colorable graph 

with |V| = (2n + 3m + (k-2)) vertices and |E| = (3n + 6m) edges 

for k = 3 and |E| = (|E| of (k-1)-colorable graph + (|V|-1)) 

edges for k >3 corresponding to any instance of 3-CNF-SAT.  

Then, we give the formulation of graph k-colorability to 

frequency assignment problem in cellular network.   
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