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ABSTRACT 

Board games are very simple games and easy to learn. It has 

simple rules to move dice or discs. Though they are simple to 

learn, differences in experiences, skills and strategies make 

master-level players and naive players. To teach these 

properties to machine is a daunting task. Researchers attempt 

to develop evolutionary game player who like humans needs 

time to start the board game and will improve its performance 

at each passing game. Evolutionary algorithms simulate this 

learning procedure and genetic approach helps to find diverse 

fitter players. With respect to checkers, the evolutionary 

algorithm was able to discover genetic algorithm that can be 

used to optimize the move selection in play to near-expert 

level. Evolutionary approach develops machine player that 

generates solutions which does not often dominates in the last 

generation. In real world board game problems, diversity is 

very useful which can be attained by having a number of 

machine learning algorithms.This paper highlights, 

evolutionary genetic algorithm to improve the diversity of a 

population. From the last generation, representative checkers 

player fitness values are chosen to carry them to next 

generation from each species(population member) and 

combine them in current generation to play the checkers 

game. There are many high fitness solutions in a search space. 

Fitness selection techniques can find diverse strategies that 

survive in genetic search. In this paper, diverse evolutionary 

checkers players found by such techniques are combined. The 

evolved move of game player is compared with the fittest 

player evolved using a simple evolutionary algorithm.   
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1. INTRODUCTION 
Since centuries games serve the main goal of food for brain 

development across all ancient civilizations. Game playing 

skill is an important fascination domain for people across all 

generations and geographic boundaries. It has one unique 

nature of intellectual challenge and satisfaction which is 

derived from playing well. Many board games have too many 

possibilities to explore for a human to understand before 

making any valid–sharp move at any given stage of the game. 

Since last five decades due to enormous efforts put in by 

budding researchers and game professionals in the area of 

computer games, many  

powerful learning methods have evolved to explore and use 

„knowledge‟ and „search‟ methodologies to make game 

playing decisions on the board, thus the „evolved‟ human or 

computer “player” with the best game playing program or 

algorithm wins in the long run. By experience it is noted that 

without perfect board rules, knowledge and decision making 

skill, mistakes are made and which ultimately results in game 

loss for experts also.[1] Since dawn of AI research evolution, 

many expert researchers have concluded that the first and 

foremost very easy path to achieve result driven high 

performance in game playing is nothing but to imitate the 

human approach. As humans are comfortably playing 

majority of board game since centuries in various minutely 

modified several versions. These versions vary in terms of 

board configuration, playing rules and game strategies. 

Though attaining human expertize is weighed down with 

difficulty of acquiring, interpreting and encoding human 

knowledge. It is learnt that human-like game playing or 

“intelligent” move making strategies are not necessarily the 

best computational strategies in terms of implementing and 

collecting results.[2][3] To make any intelligent board game 

playing programs, there is a lot to “learn” and “understand” 

through algorithms and programs while implementing any 

problem domain which requires “knowledge” and “decision 

making process”. In fact, the realization that a search-

intensive (“brute-force”) approach is needed is result of where 

one such leading contributions of applying AI expertise to 

develop game-playing programs. Such developments can pave 

new path which has potential of producing high-quality 

performance using minimal domain specific knowledge. Due 

to consistent efforts made by AI research groups all over the 

world, very powerful and result providing search techniques 

and algorithms have been developed and successfully 

deployed to variety of problems areas like optimization, 

planning, and bioinformatics.It is very much evident that the 

application domain of game learning and move making 

programs are primarily an optimization problem. Where each 

program or algorithm  module carries out a search, with a 

consideration that current board position serves as root 

node(s) for a search tree which provides next moves with due 

consideration of search depth. Every layer or level in game 

tree adds one depth to it. The degree of sophistication is well 

measured by gauging efficiency of search algorithms which in 

turn evaluates current power of its evaluation function in very 

large search space. The game playing programs have two 

major search centric dimensions consideration. [4] 

 Decision complexity, the difficulty of making 

correct move decisions  

 Space complexity, the size of the search space. 

Game of Checkers is considered to have high decision 

complexity as it requires extensive skill to make strong move 

choices and moderate space complexity. [5]  

1.1 Game Introduction 
Opening board in a Checkers game is shown in Figure 1. 

Checkers board has 8 columns and 8 rows and each player has 

12 pieces (Fig.1).Each player can move forward diagonally 

one square at a time. If possible, jumping over an opposing 

player into an empty square is allowed. In this case, opposing 

player is captured. When a player advances to the last row of 

the board, it becomes a king who can move forward or 
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backward diagonally. If there is no available player or 

movable player, the game is over. A draw may be declared 

upon mutual agreement of the players or in tournament play at 

the discretion of a third party under certain circumstances. 

[6][7] 

 

Fig 1: The Initial Board of Game of Checkers  

1.2 Game Complexity 
The game of checkers has roughly 500 billion- billion 

possible positions (5 × 1020). So task itself is very daunting to 

solve the game keeping the space complexity in mind. It 

determines the finishing result in a game with no error made 

by either of the player. Many researchers in Game of 

Checkers are applying state-of-the-art soft computing based 

techniques to improve the learning process. Game of 

Checkers represents one of its kind of most computationally 

challenging game to be solved to date. Evolutionary Learning 

challenges in Game of Checkers are:  

(1) The space to be searched is huge. It is estimated that there 

are up to 5 × 1020 possible positions that can be searched. So 

any search algorithm based methods that aim to have 

exhaustive search for the problem space is infeasible.  

(2) The search space bulk is not smooth and straight forward. 

Game of Checkers evaluation function‟s parameters which are 

game feature centric and their board construction are highly 

inter-dependent. Some typical cases give us worse 

performance when the values of optimization parameters are 

increased. On  

the other hand the controlled set of evolutionary parameter 

increases performance through which an improved overall 

performance could be obtained. [8] 

(3) The problem is not completely well understood by 

researchers. Even though all top performing Checkers playing 

programs parameters are formulated – derived and hand tuned 

by their program designers in close consultation with 

Checkers champions, finding the best possible „move‟ value 

for each parameter is mostly based on operational genetic 

alternatives. 

2. EVOLUTIONARY ALGORITHM 
Evolutionary algorithm is very long-standing approach to 

machine learning program domain. It offers the potential for 

exploring any possible solution corridor presented by a 

computational compound problem. It has a very distinct 

feature of not having any aim to complete an exhaustive 

search, but it has power to quickly identify and converge on 

useful proximate solutions. Thus it provides an effective 

solution dimension for going beyond the structured 

conventional engineering approach which is very common to 

many forms of human design. The resolution search process is 

inherently parallel and can be accelerated significantly by 

utilizing an evolutionary search algorithmic to find fitter and 

better solutions through strong moves. Almost at every game 

tree or solution stage all that is required is to be able to 

compare two solutions and indicate which is better. [9] 

Evolutionary algorithms explore a large number of points 

simultaneously in a search space at every game stage. This 

phenomenon eludes the chances of poor local optima quickly, 

which results in a quicker and fruitful search. It also makes 

fruitful search faster and better which helps in finding the 

better move in accordance with space and time complexity 

parameters.In evolutionary algorithm, the proposed solution 

does not aim to find global optimum. Evolutionary program‟s 

main objective lies in tuning an evaluation function to adjust 

its parameters so that the overall game performance of the 

program is enhanced. For a large set of high complexity board 

games‟ problems, a unique global optimum does not exist. So 

automatic tuning of the evaluation function appears like the 

much sought for optimization assignment. Such solution 

philosophy is very well suited for Evolutionary algorithms 

like GA. The many game feature centric parameters 

associated with the board game become basis for the 

evaluation function.(fig 2) They are basically nothing but the 

mirroring of the playing strategies correlated features 

associated with the game. They can be encoded as a bit-string. 

[10] 

This initial set of bit-string (initial population) can be 

randomly initialized in form of “chromosomes”. Each one 

representing one evaluation functions for the generations or a 

set of generations. This very first population is evolved 

through many generations until a highly tuned “fit” evaluation 

function gets emerged. This evolutionary process has one 

major obstacle in  the form of the fitness function that deters 

the application of GA For a given a set of evaluation function 

derived parameters, encoded as a chromosome, the foremost 

objective is to calculate the fitness value. For many initial 

research years, firsthand solution was to let the individuals in 

each generation get allowed to play against each other a series 

of program or algorithmic operations. Then subsequently, take 

the fitness score of each individual in each of the generations. 

The main deficiency of this approach is the unacceptably 

large amount of time needed to evolve each generation. Thus 

it imposes severe limitations on the length of the iterations 

played after each generation, and also on the size of the 

population involved. [11][12] 
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Fig.2 Checkers Game Centric Board Features 

3. EVOLUTIONARY CHECKERS 
Game of Checkers relies on features that were very well 

chosen using human expertise and weighted by evaluation 

function tuning. It has its own dependence on volume of game 

moves‟ database for all possible exposable moves explored 

through extensive game board possibilities. It is believed, 

once the best move exploration is reached, Computer 

Checkers will never make a mistake because the final 

outcome can be achieved from these states have already been 

evaluated. Game of Checkers aim to improve its play through 

better game rule understanding and perfect board positions 

information. It helps high-speed evolutionary computation to 

look ahead as many ply (search depth) as possible. [13] 

The evolved evolutionary program exhibits a very stimulating 

flexibility that can be achieved with Checkers playing 

program which is heavily dependent on all of their 

“intelligence” being pre-programmed. One major adverse 

advantage is that evolutionary algorithm is also capable of 

adapting its game play to meet more demanding challenges 

from better-quality Fig. 3 opponents. It can also conceive new 

and untraditional procedures. [14] 

By coding a given Checkers game playing problem algorithm 

into an Evolutionary computation framework, these clever 

algorithms are able to "evolve" solutions to real world 

problems. The game of checkers has space complexity of 

roughly 500 billion-billion possible positions (5×1020).The 

task itself  is very daunting to solve the game which 

determines  the finishing result in a game with no error made 

by either of the player. Since many years as long as thirty 

years, almost relentlessly, dozens of high end computing 

systems have been working on solving Game of Checkers by 

applying contemporary soft computing based techniques to 

improve the learning process. [15] 

4. GAME IMPLEMENTATION THEMES 
These basically describe the idea and the implementation in 

evolutionary checkers. The game passes through many stages. 

The goal of this approach is to improve the performance of 

the game in each of the stages. Evolutionary process helps in 

building better Checkers program which helps in playing and 

maximizing winning return in every move of each stage. 

Genetic algorithm is used for the speciation of population and 

it is easily implemented for a specified number of generations. 

A min-max algorithm with alpha beta pruning is used to 

implement to find the associated fitness values. [16] 

4.1 Game Tree 
To find the next move of a player, a game tree is constructed 

with a limited depth. Each node in a game tree represents the  

configuration of the board at some stage of the game. The 

quality of the terminal nodes (leaf nodes) in terms of fitness 

weight is measured with the evaluator like min max 

algorithm. The evaluated values using the evaluation function 

of the terminal nodes propagate upward using min/max 

operations. The max operation chooses the max value of all 

children nodes and the min operation chooses the min value 

among all the children at their level. The current configuration 

of the board is represented as a root node and the arc 

represents a move. At an odd number level, the max operation 

is used and vice versa. [17] 

4.2 Evaluation Function Configuration 
Generally, an evaluation function is the linear sum of the 

values of relevant features selected by experts. The input of 

the evaluation function is the bit value derived from the 

current configuration of the board and the output of the 

function is a value of quality. Evaluation function can be 

designed by two approaches. Either manually that requires 

game expertise along with tedious process of trial-and-error 

tuning the coefficient weights of the board square values and 

their functional co-efficient. These co efficient are derived 

from the positional significant of the board squares. These 

values are key values in determining some features of the 

board evaluation function, that can be modeled using various 

machine learning techniques such as automata, neural 

networks, and genetic algorithm. The board games are very 

important problem domain for learning the evaluation 

function such as determining the architecture of the board 

game model and transformation of the board configuration 

into numerical form.[18][19] 

4.3 Evolutionary Genetic Algorithm 
A collaborative theory of evolutionary genetic algorithm can 

perform better than the single and individual best school of 

thought. In the Game playing research community nowadays, 

on-line matches and tournaments between a professional 

player and a number of amateur players are interesting 

events.[20] Each move of the inexpert players can have voting 

option for selection. It is very natural for a professional player 

to defeat an inexpert player in a one-to-one match. However, 

the combination of opinions of multiple players can be as 

powerful as single professional player. It picks the move that 

has the greatest number of votes. If there is no clear winner, 

one of the moves that have the greatest votes is selected 

randomly. [21][22]  

In initial play of the program, a tournament-style league is 

conducted to select the best player in generations. The moves 

are selected on the fitness values and games are played 

accordingly generations by generations. The values tend to get 

better as better as „good‟ moves have the tendency to give 

better moves- winning moves. Good individuals are kept as 

for next generations and select-crossover-mutate genetic cycle 

functions in its totality and gives genetically evolutionary 

values. [23][24] 
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5. GAME EXECUTION 
The estimated quality of the board is calculated using the co 

efficient weights of the board squares to evaluate the leaf 

nodes of the tree Games. This attracts considerable interest 

from AI researchers. The field of evolutionary algorithms is 

no exception to this rule. Over the years many games have 

been tackled with the evolutionary approach. A GA with 

genetic string representing board game features and having 

evaluation weights as their co-efficient in evaluation function 

is been used for the game of Checkers playing program 

resulted in a competent player program that employed 

sophisticated mobility play. [25][26] 

5.1 Chromosome Structure 
The genetic representation is initialized as a sequence of 32 

genes, one per occupied board square (Fig. 3). Each gene is a 

real value in the range [0, 1]. The gene is decoded into a move 

by multiplying the real value by the total number of moves 

based calculated evaluation value. This is based on 

“goodness” of board square which gets calculated on basis of 

game features‟ significance, calculated min-max algorithm 

value and current status values available. This is used as an 

index for a single move from the list of available moves. 

Although this prototype with future moves dependent on the 

current move choice (the number of available moves at each 

node in the game-tree will vary significantly), it serves to 

examine whether the co-evolutionary approach can produce 

useful game-play. [27][28] 

After each move is made, the first gene is cropped from all 

chromosomes, resulting in a chromosome structure that 

shortens as the game progresses. 

 

Fig 3: Board Squares of Game of Checkers  

6. RESULTS 
The results are collected for 50 game generations of Games 

for Checkers game as shown in figure 4. Evolutionary weight 

behavior is visible even with this relatively small population 

size and chromosome size also. The board square fitness 

values maximum (series 2) and minimum (series 1) for each 

game generation shows the evolutionary rise as the game 

generation progresses. The fitness value gains for maximum 

values are high and increasing. Whereas, minimum fitness for 

board squares are either steadily low or decreasing. This can 

be interpreted as evolving behavior of Genetic approach on 

Checkers learning. 

 

Fig 4: Checkers Collected Fitness for 50 Game 

Generations   

7. CONCLUSIONS 
The game of Checkers is conceived and implemented using 

evolutionary themes and genetic string manner. Based on the 

collected and analyzed results, the paper concludes that 

Genetically Implemented Evolutionary algorithm for a board 

game like Checkers enhances the power of the board game-

playing computer program by grasping the potentiality of 

better board square move selection. This results in providing a 

reasonable chance to play the game of Checkers more 

proficiently and worthy.  

This board game domain implementation shows a novel path 

of evolutionary learning through genetic algorithm for other  

group of problem domains also where optimization is one 

important domain to arrive at a better  solution. Evolutionary 

algorithm enhances the effectiveness of learning 

momentously. The genetic optimization can be improvised 

further by devising better fitness function drafting techniques 

in order to calculate the board state fitness more precisely and 

make noteworthy progress to improvise the computer board 

games. 
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