
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Optimization and On-chip Communication, No.4. Feb.2012, ww.ijcaonline.org

18

Functional Buildup in Board Game Positional

Composition through Evolutionary Genetic Mechanism

Dharm Singh
College of Technology &

Engineering, MPUAT

Udaipur,India

Chirag S. Thaker
Research Scholar

Faculty of Engineering
 SGVU, Jaipur

J. S. Shah
Computer Engg. Dept.,

L. D. College of Engineering,
Ahmedabad, India.

ABSTRACT

Board games are very simple games and easy to learn. It has

simple rules to move dice or discs. Though they are simple to

learn, differences in experiences, skills and strategies make

master-level players and naive players. To teach these

properties to machine is a daunting task. Researchers attempt

to develop evolutionary game player who like humans needs

time to start the board game and will improve its performance

at each passing game. Evolutionary algorithms simulate this

learning procedure and genetic approach helps to find diverse

fitter players. With respect to checkers, the evolutionary

algorithm was able to discover genetic algorithm that can be

used to optimize the move selection in play to near-expert

level. Evolutionary approach develops machine player that

generates solutions which does not often dominates in the last

generation. In real world board game problems, diversity is

very useful which can be attained by having a number of

machine learning algorithms.This paper highlights,

evolutionary genetic algorithm to improve the diversity of a

population. From the last generation, representative checkers

player fitness values are chosen to carry them to next

generation from each species(population member) and

combine them in current generation to play the checkers

game. There are many high fitness solutions in a search space.

Fitness selection techniques can find diverse strategies that

survive in genetic search. In this paper, diverse evolutionary

checkers players found by such techniques are combined. The

evolved move of game player is compared with the fittest

player evolved using a simple evolutionary algorithm.

Keywords

Board Game, Evolutionary Algorithm, Game of Checkers

Evaluation Function, Genetic Algorithm.

1. INTRODUCTION
Since centuries games serve the main goal of food for brain

development across all ancient civilizations. Game playing

skill is an important fascination domain for people across all

generations and geographic boundaries. It has one unique

nature of intellectual challenge and satisfaction which is

derived from playing well. Many board games have too many

possibilities to explore for a human to understand before

making any valid–sharp move at any given stage of the game.

Since last five decades due to enormous efforts put in by

budding researchers and game professionals in the area of

computer games, many

powerful learning methods have evolved to explore and use

„knowledge‟ and „search‟ methodologies to make game

playing decisions on the board, thus the „evolved‟ human or

computer “player” with the best game playing program or

algorithm wins in the long run. By experience it is noted that

without perfect board rules, knowledge and decision making

skill, mistakes are made and which ultimately results in game

loss for experts also.[1] Since dawn of AI research evolution,

many expert researchers have concluded that the first and

foremost very easy path to achieve result driven high

performance in game playing is nothing but to imitate the

human approach. As humans are comfortably playing

majority of board game since centuries in various minutely

modified several versions. These versions vary in terms of

board configuration, playing rules and game strategies.

Though attaining human expertize is weighed down with

difficulty of acquiring, interpreting and encoding human

knowledge. It is learnt that human-like game playing or

“intelligent” move making strategies are not necessarily the

best computational strategies in terms of implementing and

collecting results.[2][3] To make any intelligent board game

playing programs, there is a lot to “learn” and “understand”

through algorithms and programs while implementing any

problem domain which requires “knowledge” and “decision

making process”. In fact, the realization that a search-

intensive (“brute-force”) approach is needed is result of where

one such leading contributions of applying AI expertise to

develop game-playing programs. Such developments can pave

new path which has potential of producing high-quality

performance using minimal domain specific knowledge. Due

to consistent efforts made by AI research groups all over the

world, very powerful and result providing search techniques

and algorithms have been developed and successfully

deployed to variety of problems areas like optimization,

planning, and bioinformatics.It is very much evident that the

application domain of game learning and move making

programs are primarily an optimization problem. Where each

program or algorithm module carries out a search, with a

consideration that current board position serves as root

node(s) for a search tree which provides next moves with due

consideration of search depth. Every layer or level in game

tree adds one depth to it. The degree of sophistication is well

measured by gauging efficiency of search algorithms which in

turn evaluates current power of its evaluation function in very

large search space. The game playing programs have two

major search centric dimensions consideration. [4]

 Decision complexity, the difficulty of making

correct move decisions

 Space complexity, the size of the search space.

Game of Checkers is considered to have high decision

complexity as it requires extensive skill to make strong move

choices and moderate space complexity. [5]

1.1 Game Introduction
Opening board in a Checkers game is shown in Figure 1.

Checkers board has 8 columns and 8 rows and each player has

12 pieces (Fig.1).Each player can move forward diagonally

one square at a time. If possible, jumping over an opposing

player into an empty square is allowed. In this case, opposing

player is captured. When a player advances to the last row of

the board, it becomes a king who can move forward or

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Optimization and On-chip Communication, No.4. Feb.2012, ww.ijcaonline.org

19

backward diagonally. If there is no available player or

movable player, the game is over. A draw may be declared

upon mutual agreement of the players or in tournament play at

the discretion of a third party under certain circumstances.

[6][7]

Fig 1: The Initial Board of Game of Checkers

1.2 Game Complexity
The game of checkers has roughly 500 billion- billion

possible positions (5 × 1020). So task itself is very daunting to

solve the game keeping the space complexity in mind. It

determines the finishing result in a game with no error made

by either of the player. Many researchers in Game of

Checkers are applying state-of-the-art soft computing based

techniques to improve the learning process. Game of

Checkers represents one of its kind of most computationally

challenging game to be solved to date. Evolutionary Learning

challenges in Game of Checkers are:

(1) The space to be searched is huge. It is estimated that there

are up to 5 × 1020 possible positions that can be searched. So

any search algorithm based methods that aim to have

exhaustive search for the problem space is infeasible.

(2) The search space bulk is not smooth and straight forward.

Game of Checkers evaluation function‟s parameters which are

game feature centric and their board construction are highly

inter-dependent. Some typical cases give us worse

performance when the values of optimization parameters are

increased. On

the other hand the controlled set of evolutionary parameter

increases performance through which an improved overall

performance could be obtained. [8]

(3) The problem is not completely well understood by

researchers. Even though all top performing Checkers playing

programs parameters are formulated – derived and hand tuned

by their program designers in close consultation with

Checkers champions, finding the best possible „move‟ value

for each parameter is mostly based on operational genetic

alternatives.

2. EVOLUTIONARY ALGORITHM
Evolutionary algorithm is very long-standing approach to

machine learning program domain. It offers the potential for

exploring any possible solution corridor presented by a

computational compound problem. It has a very distinct

feature of not having any aim to complete an exhaustive

search, but it has power to quickly identify and converge on

useful proximate solutions. Thus it provides an effective

solution dimension for going beyond the structured

conventional engineering approach which is very common to

many forms of human design. The resolution search process is

inherently parallel and can be accelerated significantly by

utilizing an evolutionary search algorithmic to find fitter and

better solutions through strong moves. Almost at every game

tree or solution stage all that is required is to be able to

compare two solutions and indicate which is better. [9]

Evolutionary algorithms explore a large number of points

simultaneously in a search space at every game stage. This

phenomenon eludes the chances of poor local optima quickly,

which results in a quicker and fruitful search. It also makes

fruitful search faster and better which helps in finding the

better move in accordance with space and time complexity

parameters.In evolutionary algorithm, the proposed solution

does not aim to find global optimum. Evolutionary program‟s

main objective lies in tuning an evaluation function to adjust

its parameters so that the overall game performance of the

program is enhanced. For a large set of high complexity board

games‟ problems, a unique global optimum does not exist. So

automatic tuning of the evaluation function appears like the

much sought for optimization assignment. Such solution

philosophy is very well suited for Evolutionary algorithms

like GA. The many game feature centric parameters

associated with the board game become basis for the

evaluation function.(fig 2) They are basically nothing but the

mirroring of the playing strategies correlated features

associated with the game. They can be encoded as a bit-string.

[10]

This initial set of bit-string (initial population) can be

randomly initialized in form of “chromosomes”. Each one

representing one evaluation functions for the generations or a

set of generations. This very first population is evolved

through many generations until a highly tuned “fit” evaluation

function gets emerged. This evolutionary process has one

major obstacle in the form of the fitness function that deters

the application of GA For a given a set of evaluation function

derived parameters, encoded as a chromosome, the foremost

objective is to calculate the fitness value. For many initial

research years, firsthand solution was to let the individuals in

each generation get allowed to play against each other a series

of program or algorithmic operations. Then subsequently, take

the fitness score of each individual in each of the generations.

The main deficiency of this approach is the unacceptably

large amount of time needed to evolve each generation. Thus

it imposes severe limitations on the length of the iterations

played after each generation, and also on the size of the

population involved. [11][12]

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Optimization and On-chip Communication, No.4. Feb.2012, ww.ijcaonline.org

20

Fig.2 Checkers Game Centric Board Features

3. EVOLUTIONARY CHECKERS
Game of Checkers relies on features that were very well

chosen using human expertise and weighted by evaluation

function tuning. It has its own dependence on volume of game

moves‟ database for all possible exposable moves explored

through extensive game board possibilities. It is believed,

once the best move exploration is reached, Computer

Checkers will never make a mistake because the final

outcome can be achieved from these states have already been

evaluated. Game of Checkers aim to improve its play through

better game rule understanding and perfect board positions

information. It helps high-speed evolutionary computation to

look ahead as many ply (search depth) as possible. [13]

The evolved evolutionary program exhibits a very stimulating

flexibility that can be achieved with Checkers playing

program which is heavily dependent on all of their

“intelligence” being pre-programmed. One major adverse

advantage is that evolutionary algorithm is also capable of

adapting its game play to meet more demanding challenges

from better-quality Fig. 3 opponents. It can also conceive new

and untraditional procedures. [14]

By coding a given Checkers game playing problem algorithm

into an Evolutionary computation framework, these clever

algorithms are able to "evolve" solutions to real world

problems. The game of checkers has space complexity of

roughly 500 billion-billion possible positions (5×1020).The

task itself is very daunting to solve the game which

determines the finishing result in a game with no error made

by either of the player. Since many years as long as thirty

years, almost relentlessly, dozens of high end computing

systems have been working on solving Game of Checkers by

applying contemporary soft computing based techniques to

improve the learning process. [15]

4. GAME IMPLEMENTATION THEMES
These basically describe the idea and the implementation in

evolutionary checkers. The game passes through many stages.

The goal of this approach is to improve the performance of

the game in each of the stages. Evolutionary process helps in

building better Checkers program which helps in playing and

maximizing winning return in every move of each stage.

Genetic algorithm is used for the speciation of population and

it is easily implemented for a specified number of generations.

A min-max algorithm with alpha beta pruning is used to

implement to find the associated fitness values. [16]

4.1 Game Tree
To find the next move of a player, a game tree is constructed

with a limited depth. Each node in a game tree represents the

configuration of the board at some stage of the game. The

quality of the terminal nodes (leaf nodes) in terms of fitness

weight is measured with the evaluator like min max

algorithm. The evaluated values using the evaluation function

of the terminal nodes propagate upward using min/max

operations. The max operation chooses the max value of all

children nodes and the min operation chooses the min value

among all the children at their level. The current configuration

of the board is represented as a root node and the arc

represents a move. At an odd number level, the max operation

is used and vice versa. [17]

4.2 Evaluation Function Configuration
Generally, an evaluation function is the linear sum of the

values of relevant features selected by experts. The input of

the evaluation function is the bit value derived from the

current configuration of the board and the output of the

function is a value of quality. Evaluation function can be

designed by two approaches. Either manually that requires

game expertise along with tedious process of trial-and-error

tuning the coefficient weights of the board square values and

their functional co-efficient. These co efficient are derived

from the positional significant of the board squares. These

values are key values in determining some features of the

board evaluation function, that can be modeled using various

machine learning techniques such as automata, neural

networks, and genetic algorithm. The board games are very

important problem domain for learning the evaluation

function such as determining the architecture of the board

game model and transformation of the board configuration

into numerical form.[18][19]

4.3 Evolutionary Genetic Algorithm
A collaborative theory of evolutionary genetic algorithm can

perform better than the single and individual best school of

thought. In the Game playing research community nowadays,

on-line matches and tournaments between a professional

player and a number of amateur players are interesting

events.[20] Each move of the inexpert players can have voting

option for selection. It is very natural for a professional player

to defeat an inexpert player in a one-to-one match. However,

the combination of opinions of multiple players can be as

powerful as single professional player. It picks the move that

has the greatest number of votes. If there is no clear winner,

one of the moves that have the greatest votes is selected

randomly. [21][22]

In initial play of the program, a tournament-style league is

conducted to select the best player in generations. The moves

are selected on the fitness values and games are played

accordingly generations by generations. The values tend to get

better as better as „good‟ moves have the tendency to give

better moves- winning moves. Good individuals are kept as

for next generations and select-crossover-mutate genetic cycle

functions in its totality and gives genetically evolutionary

values. [23][24]

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Optimization and On-chip Communication, No.4. Feb.2012, ww.ijcaonline.org

21

5. GAME EXECUTION
The estimated quality of the board is calculated using the co

efficient weights of the board squares to evaluate the leaf

nodes of the tree Games. This attracts considerable interest

from AI researchers. The field of evolutionary algorithms is

no exception to this rule. Over the years many games have

been tackled with the evolutionary approach. A GA with

genetic string representing board game features and having

evaluation weights as their co-efficient in evaluation function

is been used for the game of Checkers playing program

resulted in a competent player program that employed

sophisticated mobility play. [25][26]

5.1 Chromosome Structure
The genetic representation is initialized as a sequence of 32

genes, one per occupied board square (Fig. 3). Each gene is a

real value in the range [0, 1]. The gene is decoded into a move

by multiplying the real value by the total number of moves

based calculated evaluation value. This is based on

“goodness” of board square which gets calculated on basis of

game features‟ significance, calculated min-max algorithm

value and current status values available. This is used as an

index for a single move from the list of available moves.

Although this prototype with future moves dependent on the

current move choice (the number of available moves at each

node in the game-tree will vary significantly), it serves to

examine whether the co-evolutionary approach can produce

useful game-play. [27][28]

After each move is made, the first gene is cropped from all

chromosomes, resulting in a chromosome structure that

shortens as the game progresses.

Fig 3: Board Squares of Game of Checkers

6. RESULTS
The results are collected for 50 game generations of Games

for Checkers game as shown in figure 4. Evolutionary weight

behavior is visible even with this relatively small population

size and chromosome size also. The board square fitness

values maximum (series 2) and minimum (series 1) for each

game generation shows the evolutionary rise as the game

generation progresses. The fitness value gains for maximum

values are high and increasing. Whereas, minimum fitness for

board squares are either steadily low or decreasing. This can

be interpreted as evolving behavior of Genetic approach on

Checkers learning.

Fig 4: Checkers Collected Fitness for 50 Game

Generations

7. CONCLUSIONS
The game of Checkers is conceived and implemented using

evolutionary themes and genetic string manner. Based on the

collected and analyzed results, the paper concludes that

Genetically Implemented Evolutionary algorithm for a board

game like Checkers enhances the power of the board game-

playing computer program by grasping the potentiality of

better board square move selection. This results in providing a

reasonable chance to play the game of Checkers more

proficiently and worthy.

This board game domain implementation shows a novel path

of evolutionary learning through genetic algorithm for other

group of problem domains also where optimization is one

important domain to arrive at a better solution. Evolutionary

algorithm enhances the effectiveness of learning

momentously. The genetic optimization can be improvised

further by devising better fitness function drafting techniques

in order to calculate the board state fitness more precisely and

make noteworthy progress to improvise the computer board

games.

8. REFERENCES
[1] D. B. Fogel, “Evolutionary entertainment with intelligent

agents,” IEEE Comput., vol. 36, no. 6, pp. 106–108, Jun.

2003.

[2] P. Godefroid and S. Khurshid, “Exploring very large

state spaces using genetic algorithms,” Int. J. Softw.

Tools Technol. Transf., vol. 6, no. 2, pp. 117–127, 2004.

[3] E. Alba, F. Chicano, M. Ferreira, and J. A. Gmez-

Pulido,“Finding deadlocks in large concurrent Java

programs using genetic algorithms,” in Proceedings of

the 10th Annual Conference on Genetic and

Evolutionary Computation (GECCO‟08). ACM, 2008,

pp. 1735–1742.

[4] E. Alba and F. Chicano, “Ant colony optimization for

model checking,” in Proceedings of the 11th

International Conference

[5] on Computer Aided Systems Theory (EUROCAST

2007), vol. 4739. Springer, 2007, pp. 523–530.

[6] “Genetic programming and model checking:

Synthesizing new mutual exclusion algorithms,” in

Proceedings of the

http://cindy.cis.nctu.edu.tw/AI/ai5/popula.htm

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Optimization and On-chip Communication, No.4. Feb.2012, ww.ijcaonline.org

22

[7] 6th International Symposium on Automated Technology

for Verification and Analysis (ATVA ‟08), vol. 5311.

Springer, 2008, pp. 33–47.

[8] C. Johnson, “Genetic programming with fitness based on

model checking,” in Proceedings of the 10th European

Conference on Genetic Programming (EuroGP 2007),

vol. 4445. Springer, 2007, pp. 114–124.

[9] Hauptman and M. Sipper. Evolution of an efficient

search algorithm for the Mate-in-N problem in chess. In

Proceedings of the 2007 European Conference on

Genetic Programming, pages 78–89. Springer, Valencia,

Spain, 2007.

[10] Barone, L., While, L.: Adaptive learning for poker. In:

Proceedings of the Genetic and Evolutionary

Computation Conference. (2000) 566{573

[11] Fogel, D., Hays, T., Hahn, S., Quon, J.: A self-learning

evolutionary chess program. Proceedings of the IEEE 92

(2004) 1947{1954

[12] P. Aksenov. Genetic algorithms for optimising chess

position scoring. Master‟s Thesis, University of Joensuu,

Finland, 2004.

[13] Y. Bjornsson and T.A. Marsland. Multi-cut alpha-beta-

pruning in game-tree search. Theoretical Computer

Science, 252(1-2):177–196, 2001.

[14] O. David-Tabibi, A. Felner, and N.S.

Netanyahu.Blockage detection in pawn endings.

Computers and Games CG 2004, eds. H.J. van den

Herik, Y.Bjornsson, and N.S. Netanyahu, pages 187–

201. Springer-Verlag, 2006.

[15] R. Gross, K. Albrecht, W. Kantschik, and W.Banzhaf.

Evolving chess playing programs. In Proceedings of the

Genetic and Evolutionary Computation Conference,

pages 740–747. Morgan Kaufmann Publishers, New

York, 2002.

[16] Barone, L., While, L.: An adaptive learning model for

simpli¯ed poker using evolutionary algorithms. In:

Proceedings of the Congress of Evolutionary

Computation (GECCO-1999). (1999) 153{160

[17] Chellapilla K. and Fogel D. B.:Evolving an Expert

Checkers PlayingProgram without Using Human

Expertise.IEEE Trans. Evolutionary

Computation,Volume 5, Number 4, 2001, pp. 422-428.

[18] Hauptman and M. Sipper. Using genetic programming to

evolve chess endgame players. In Proceedings of the

2005 European Conference on Genetic Programming,

pages 120–131. Springer, Lausanne, Switzerland, 2005.

[19] Chellapilla K. and Fogel D. B.:Anaconda Defeats Hoyle

6-0A CaseStudy Competing an Evolved

CheckersProgram against Commercially Available

Software. Proc. of CEC, 2000, pp. 857-863.

[20] Galuszka A. and Swierniak A.: Game Theoretic

Approach to Multi-Robot Planning. WSEAS

Transactions onComputers, Issue 3, Volume 3, July

2004, pp. 537-542.

[21] D.N. Allsopp, et al. Coalition agents experiment:

multiagent cooperation in international coalitions, IEEE

Intell. Syst. 17 (2002) 26–35.

[22] G. Kendall and C. Smith, “The evolution of blackjack

strategies,” in Proc. Congr. Evol. Comput., vol. 4, 2003,

pp. 2474–2481.

[23] M. Harman, “The current state and future of search based

software engineering,” in Proceedings of International

Conference on Software Engineering / Future of

Software Engineering 2007 (ICSE/FOSE ‟07). IEEE

Computer Society,2007, pp. 342–357.

[24] Y. Jin, Knowledge Incorporation in Evolutionary

Computation. New York: Springer-Verlag, 2004.

[25] K.-J. Kim and S.-B. Cho, “Evolving speciated checkers

players with crowding algorithm,” in Proc. Congr. Evol.

Comput., vol. 1, 2002, pp.407–412.

[26] Handbook of Evolutionary Computation, Oxford Univ.

Press, London, U.K., 1997. C6.1 S. W. Mahfoud Niching

methods.

[27] Dharm Singh, Thaker Chirag S and Shah Sanjay M.

“Multimedia Game Based Fitness Function Optimization

in Evolutionary Search Process” in IJCA Special Issue

on IP Multimedia Communication in October 2011

ISBN:978-93-80864-99-3.

[28] “Evolving an expert checkers playing program without

using human expertise,” IEEE Trans. Evol. Comput., vol.

5, no. 4, pp. 422–428, Aug. 2001.

[29] D. B. Fogel, “Evolving a checkers player without relying

on human experience,” ACM Intell., vol. 11, no. 2, pp.

20–27, 2000.

