
International Journal of Computer Applications® (IJCA) (0975 – 8887)

National Seminar on Recent Advances in Wireless Networks and Communications, NWNC-2014

36

A Comparison between Different Checkpoint Schemes
with Advantages and Disadvantages

Manoj Kumar Abhishek Choudhary Vikas Kumar

ABSTRACT

It is known that check pointing and rollback recovery are

widely used techniques that allow a distributed computing to

progress in spite of a failure. There are two fundamental

approaches for check pointing and recovery. One is

asynchronous approach, process take their checkpoints

independently. So, taking checkpoints is very simple but due

to absence of a recent consistent global checkpoint which may

cause a rollback of computation. Synchronous check pointing

approach assumes that a single process other than the

application process invokes the check pointing algorithm

periodically to determine a consistent global checkpoint.

Various flavors of these two techniques, their mechanisms,

advantages and drawbacks have been discussed in detail.

Besides an exhaustive study of the implementation issues are

also included. Lastly, some open issues have been addressed

and certain solutions have been proposed by the author.

Keywords

Recovery, Rollback recovery, Synchronous, Asynchronous,

Checkpoint, cp.

INTRODUCTION
Checkpoint and recovery protocols are commonly used in

distributed applications for providing fault tolerance. Check

pointing is one of the fault-tolerant techniques to restore faults

and to restart job fast. Check pointing-based recovery is a

well-known method to allow the current faulty state of a fail-

stop processors system [1] to be rolled back to a globally

consistent state of the system recorded on stable storage

before its failure [2, 3, 4]. It is reasonable to say that the major

source of overhead in check pointing schemes is the stable

storage latency. Communication overhead becomes a minor

source of overhead as the latency of network communication

decreases. In this scenario, the coordinated checkpoint

becomes worthy since it requires less accesses to stable

storage then uncoordinated checkpoints. Furthermore, in

practice, the low overhead gain on uncoordinated check

pointing do not justify neither the complexities of finding the

recovery line after failure and performing the garbage

collection nor the high demand for storage space caused by

multiple checkpoints of each process. Checkpoint and

recovery protocols are commonly used in distributed

applications for providing fault tolerance. A distributed

system may require taking checkpoints from time to time to

keep it free of arbitrary failures. In case of failure, the systems

will rollback to checkpoints where global consistency is

preserved. Check pointing is one of the fault-tolerant

techniques to restore faults and to restart job fast. The

performance of a checkpoint and recovery protocol is judged

by the amount of computation it can save against the amount

of overhead it incurs. This performance depends on different

system and application characteristics as well as protocol

specific parameters. Hence, no single checkpoint and recovery

protocol works equally well for all applications. Given a

distributed application and a system it will run on, it is

important to choose a protocol that will give the best

performance for that system and application. In this thesis, a

Recover Algorithm in conjunction with Check pointing

algorithm which is efficient, decentralized and cost effective

and suitable for cluster federation has been proposed. During

normal computation message transmission, dependency

information among clusters is recorded in the corresponding

cluster head processes. When a check pointing procedure

begins, the initiator from a cluster concurrently informs all the

cluster head processes which further multicast messages to

currently active processes in their corresponding clusters thus

resulting in reduced transmission delay, communication cost,

better bandwidth utilization and faster speed of execution.

Quantitative analysis shows that proposed algorithm

outperforms other check pointing schemes and can provide a

better system performance for cluster federation. Considerable

research has been devoted to checkpoint-based backward

recovery schemes [9, 10]. There have also been techniques

proposed which combine replication with voting and

checkpoint rollback recovery. Recovery from transient

failures is one of the prime issues in the context of distributed

systems. What is desirable is to have transparent yet efficient

techniques to achieve the same. This report contains a

comprehensive study of the existing techniques, namely

Checkpoint-based recovery and Log-based recovery. Various

flavors of these two techniques, their mechanisms, advantages

and drawbacks have been discussed in detail. Besides an

exhaustive study of the implementation issues is also

included. Lastly, some open issues have been addressed and

certain solutions have been proposed by the author.

1. Phases of Check pointing:

Check pointing has two phases:

• Saving a checkpoint

• Checkpoint recovery following the failure.

 To save a checkpoint, the memory and system, necessary

to recover from a failure is sent to storage. Checkpoint

recovery involves restoring the system state and memory from

the checkpoint and restarting the computation from the

checkpoint stored [5].

1.1 Types of Check pointing:

There are following types of check pointing:

 A) Disk based check pointing

 B) Disk less check pointing

 C) Double check pointing

A) Disk Based Check pointing:

In checkpoint based methods, the state of the computation as a

checkpoint is periodically saved to a stable storage, which is

not subject to failures. When a failure occurs the computation

is restarted from one of these previously saved states.

According to the type of coordination between different

processes while taking checkpoints, checkpoint-based

methods can be broadly classified into three categories:

International Journal of Computer Applications® (IJCA) (0975 – 8887)

National Seminar on Recent Advances in Wireless Networks and Communications, NWNC-2014

37

i) Uncoordinated check pointing or asynchronous check

pointing

ii) Coordinated check pointing or synchronous check pointing

iii) Communication-induced or Quasi-Synchronous or Hybrid

Check pointing

B) Diskless Check pointing:

It is a technique for distributed system with memory and

processor redundancy. It requires two extra processors for

storing parity as well as standby. Process migration feature

has ability to save a process image. The process can be

resumed on the new node without having to kill the entire

application and start it over again. It has memory or disk

space .In order to restore the process image after a failure, a

new processor has to be available to replace the crashed

processor. This requires a pool of standby processors for

multiple unexpected failures [6].

The comparison between disk based and disk less check

pointing for distributed and parallel system in certain

parameter is described in table 1 [6].

Table 1: On Disk and Disk less check pointing for distributed

system

 Parameter Disk Based Diskless

 Latency time High Low

CPU Overhead High High

Memory

Requirement

 Low High

Stable Storage

Requirement

 High Low

Toleration of

Wholesale Failure

 Yes No

Reliability High Low

Efficiency Low High

Addition

Hardware

 Not

Required

 Additional

Processors

 Portability High Low

C) Double Check pointing:

Double check pointing targets on relatively small memory

footprint on very large number of processors when handles

fault at a time, each checkpoint data would be stored to two

different locations to ensure the availability of one

checkpoint. In case, one is lost, other can be used since two

buddy processors have identical checkpoints. It can be stored

either in the memory or local disk of two processors. These

are double in-memory check pointing and double in-disk

check pointing schemes. This scheme stores checkpoint in a

distributed fashion to avoid the network bottleneck to the

central server [7]. The comparison between Disk-based and

Memory-based Checkpoint in certain parameter is described

in table 2.

 Double In-memory Check pointing
In this check pointing each process stores its data to memory

of two different processors. It has faster memory accessing

capability, low checkpoint overhead and faster restart to

achieve better performance than disk-based checkpoint. But it

will increase the memory overhead and initiate check pointing

at a time when the memory footprint is small in the

application. This can be applied to many scientific and

engineering applications such as molecular dynamics

simulations that are iterative.
Table 3: Comparison between different checkpoint schemes

 Double In-memory Check pointing
In this check pointing each process stores its data to memory

of two different processors. It has faster memory accessing

capability, low checkpoint overhead and faster restart to

achieve better performance than disk-based checkpoint. But it

will increase the memory overhead and initiate check pointing

at a time when the memory footprint is small in the

application. This can be applied to many scientific and

engineering applications such as molecular dynamics

simulations that are iterative.

 Double In-disk Check pointing
It is useful for applications with very big memory footprint

where checkpoints are stored on local scratch disk instead of

in processor memory. Due to the duplicate copies of

checkpoints it doesn’t rely on reliable storage. It incurs higher

disk overhead in check pointing but does not suffer from the

dramatic increase in memory usage as in the double in-

memory check pointing. Taking advantage of distributed local

disks, it avoids the bottleneck to the central fileserver [8].

Fault tolerant

protocols

 Double in

Memory

 Double in Disk

Shrink/Expand Yes Yes

 Portability Low Low

 Foolproof NO NO

 Diskless Yes No, Local Disk

 Halts job No No

Bottleneck No No

Require Backup

Processors
 Not Necessarily Not Necessarily

Transparent

Checkpoint
 No No

Synchronized

Checkpoint
 Yes Yes

Automatic Restart Yes Yes

International Journal of Computer Applications® (IJCA) (0975 – 8887)

National Seminar on Recent Advances in Wireless Networks and Communications, NWNC-2014

38

Comparisons between Different Checkpoint

Schemes:

It is reasonable to say that the major source of overhead in

check pointing schemes is the stable storage latency.

Communication overhead becomes a minor source of

overhead as the latency of network communication decreases.

In this scenario, the coordinated checkpoint becomes worthy

since it requires less accesses to stable storage then

uncoordinated checkpoints. Furthermore, in practice, the low

overhead gain on uncoordinated check pointing do not justify

neither the complexities of finding the recovery line after

failure and performing the garbage collection nor the high

demand for storage space caused by multiple checkpoints of

each process.

CIC protocol, in turn, does not scale well as the number of

processes increase. The required amount of storage space is

also difficult to predict because of the occurrence of forced

checkpoint at random points of the application execution.

CP

Metho

ds

Para

meter

Uncoo

rdinat

ed CP

Coord

inated

CP

Com

munic

ation

Induc

ed CP

Diskless

CP

Do

ubl

e

CP

Efficie

ncy

High

for

small

proces

s

Low Low High Hig

h

Perfor

mance

 Low Low Low Higher

for

distribute

d

applicatio

ns

Fas

ter

Porta

bility

High High High Low Lo

w

Cost High low,

negligi

ble for

low

memor

y

usage

applic

ation

High

High ver

y

hig

h

Scalab

le

 No minim

al

not

scale

for

large

numbe

r of

difficult

to scale to

large

number

of

processor

Hig

hly

proces

sors

s

Flexib

ility

Low all

proces

ses

save

their

states

at the

same

time

proces

s can

be

moved

from

one

node

to

anothe

r by

writin

g the

proces

s

image

directl

y to a

remote

node

replace

stable

storage

with

memory

and

processor

redundan

cy

han

dle

faul

t at

a

tim

e

and

ava

ilab

ilit

y of

one

che

ckp

oint

in

cas

e

the

oth

er

is

lost

Overh

ead

.

large

storag

e, very

high

log

manag

ement

and

work

in

small

proces

s

minim

um

storag

e

overhe

ad and

negligi

ble

overhe

ads in

failure

free

execut

ions

high

latenc

y and

memor

y and

disk

overhe

ad

High

memory

overhead

for

storing

checkpoi

nts

low

me

mo

ry

ove

rhe

ad

Recov

ery

checkp

oint

of the

faulty

proces

s is

restore

d

proces

ses

stop

regular

messa

ge

activit

y to

take

their

checkp

oints

and

coordi

nated

way to

analyz

needed

large

numbe

r of

forced

checkp

oints

nullify

the

benefit

of

autono

mous

local

checkp

oints

using

Using

parity /

backup

and extra

processor

s for

storing

parity as

well as

replace

failed

applicatio

n

processor

s

Thr

oug

h

aut

om

atic

rest

art

and

syn

chr

oni

z-

atio

n

by

two

ide

Advantages:

Failure free performance overhead is low compared to other

checkpoint based recovery techniques. Recovery from failure

is much simpler as compared to uncoordinated check

pointing. This is because a consistent set of checkpoints need

not be established; instead, a global consistent checkpoint is

maintained in the system at any point of time. Coordinated

check pointing is not susceptible to Domino effect since every

process upon failure always restarts from the most recent

checkpoint. Unlike asynchronous check pointing, the system

does not maintain any useless checkpoints. Each process has

to maintain only one permanent checkpoint on stable storage.

International Journal of Computer Applications® (IJCA) (0975 – 8887)

National Seminar on Recent Advances in Wireless Networks and Communications, NWNC-2014

39

Thus the storage overhead is reduced. Moreover, there is no

need for garbage collection. Different checkpoints

 Uncoordinated CheckPointig: Most convenient

and save their checkpoints individually.

 Coordinated Check pointing: Coordinated

checkpointig are not suffered from rollback

propagations and processes save their state together.

 Communication Induced Check pointing:

Communication Induced Check pointing is

preventing domino effect, piggybacking and

information of regular message exchanged by the

processes.

 Diskless Check pointing: Improve performance in

distributed / parallel applications and process

migration save process image.

 Double check pointing: uses in small memory

footprint on large number of processors. exscientific
applications.

Disadvantages:

A process may take a useless checkpoint that will never be

part of a global consistent state. Furthermore, each process

maintains multiple checkpoints and has to periodically invoke

a garbage collection algorithm to reclaim the checkpoints that

are no longer useful. Besides,this method is not suitable for

applications with frequent output commits because

theserequire global coordination to compute the recovery line.

Determining a consistent global checkpoint may involve lot of

overhead, especially in large systems, and the processes may

have to be restarted from the beginning due to the non-

existence of a consistent global checkpoint other than the

initial state.

Different checkpoints.

 Uncoordinated CheckPointig: Unsuitable, domino

effect, wastage memory, unbounded & complex

garbage collection.

 Coordinated Check pointing: Consistent

checkpoint and large latency for saving the

checkpoints storage.

 Communication Induced Check pointing:
Deteriorated parallel performance & requires

standby processors.

 Diskless Check pointing: Communication

bottleneck.

 Double check pointing: depend on a central

reliable storage and required additional hardware.

Conclusion:
It is reasonable to say that the major source of overhead in

check pointing schemes is the stable storage latency.

Communication overhead becomes a minor source of

overhead as the latency of network communication decreases.

In this scenario, the coordinated checkpoint becomes worthy

since it requires less accesses to stable storage then

uncoordinated checkpoints. Furthermore, in practice, the low

overhead gain on uncoordinated check pointing do not justify

neither the complexities of finding the recovery line after

failure and performing the garbage collection nor the high

demand for storage space caused by multiple checkpoints of

each process. Check pointing protocols require the processes

to take periodic checkpoints with varying degrees of

coordination. At one end of the spectrum, coordinated check

pointing requires the processes to coordinate their checkpoints

to form global consistent system states. Coordinated check

pointing generally simplifies recovery and garbage collection,

and yields good performance in practice. At the other end of

the spectrum, uncoordinated check pointing does not require

the processes to coordinate their checkpoints, but it suffers

from potential domino effect, complicates recovery, and still

requires coordination to perform output commit or garbage

collection. Between these two ends are communication-

induced check pointing schemes that depend on the

communication patterns of the applications to trigger

checkpoints. These schemes do not suffer from the domino

effect and do not require coordination. Recent studies,

however, have shown that the nondeterministic nature of these

protocols complicates garbage collection and degrades

performance.

References:
[1] R. D. Schlichting and F. B. Schneider, “Fail-stop

processors: an approach to designing fault-tolerant

distributed computing systems”, ACM Transactions

on Computer Systems, 1 (1985).

[2] H. F. Li, Z. Wei and D. Goswami, “Quasi-atomic recovery

for distributed agents”, Parallel Computing, 32 (2006).

[3] Y. Luo and D. Manivannan, “FINE: A Fully Informed

aNd Efficient communication-induced check pointing

protocol for distributed systems”, J. Parallel Distrib.

Comput., 69 (2009).

[4] J. T. Rough and A. M. Goscinski, “The development of an

efficient check pointing facility exploiting operating

systems services of the GENESIS cluster operating

system”, Future Generation Computer Systems, 20, 4

(2004).

[5] Bhargava, B. and Shu-Renn, L. ,”Independent Check

pointing and Concurrent rollback for recovery in

distributed Systems-an optimistic approach”,n

proceedings of The 17th Symposium on Reliable

Distributed Systems, pp. 3-12. Columbus, USA, October

1988.

[6] Partha Sarathi Mandel, Krishnendu Mukhopadhaya, “

Performance analysis of different check pointing and

recovery schemes using stochastic model” Journal of

Parallel and Distributed Computing , 66(1), pp. 99-107,

January 2006

[7] Y.Manable. “A Distributed Consistent Global Checkpoint

Algorithm with minimum number of Checkpoints”,

Technical Report of IEICE, COMP97-6 April, 1997

[8] S.Monnet, C.Morin, R.Badrinath, “Hybrid check pointing

for Parllel Applications in Cluster Federations”, In 4th

IEEE/ ACM International Symposium on Cluster

Computing and the Grid, Chicago, IL, USA, pp. 773-

782, April 2004

[9] P. A. Lee and T. Anderson, Fault Tolerance: Principles

and Practice. Springer-Verlag/Wien, 1990.

[10] A. Duda.(1983): The effects of check pointing on

program execution time. Information Processing Letters,

16, pp. 221-229.

