
IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

11

Ensuring Authentication and Integrity of Open Source

Software using Digital Signature

M. Tariq Banday
P.G. Department of Electronics and Instrumentation Technology

University of Kashmir, India

ABSTRACT
A group of programmers participate in the development of Open

Source Software and its source code is publically made available

for review, reporting, fixing bugs and enhancing its

functionalities. The Open Source Software, its patches and new

releases are made available to users through multiple hosts on

the Internet and by distribution on media like on CD‟s and

DVD‟s. A hacker may modify the software and incorporate

virus, spyware, adware or other similar routines into it that may

lead to manifold of security breaches. It is thus essential to

ensure authenticity and integrity of the Open Source Software

before compiling and installing it to avoid falling prey to any

such possible security breach. This paper discussesmethods for

attaining authentication and integrity of Open Source Software

for the purpose of its distribution.

General Terms
Open Source Software, Software Distribution, Cryptography,

PKI, Authentication, Free Software, PAIN.

Keywords
Digital Signature Certificate, Digital Signature, Privacy,

Authentication, Integrity, Non-repudiation, Open Source

Software, OSS.

1. INTRODUCTION
An Open Source Software (OSS) is software for which the

human readable source code is available for use, study, reuse,

modification, enhancement and distribution by the users of that

software. Contrary to OSS, most Commercial Software (CS)

does not allow users others than the developers to view the

source code. Instead only compiled object code is distributed.

The source code is the structured and modularized

representation of the software‟s functionality written in a

programming language targeted for understanding and

changeability by humans. Language translators e.g. compilers

are used to translate source code into object which is machine-

oriented and therefore very hard to read and understand by

humans. In comparison to CS whose source code is closed and

not modifiable by hacker, OSS‟s source code is available for

modification and can be modified by the hacker for illegitimate

purposes. It is thus essential to ensure integrity of the OSS and

the authentication of distributor to avoid security lapses. Public

Key Infrastructure (PKI) ensures privacy, integrity,

authentication and non- repudiation and thus can be used for the

distribution of Open Source Software to public.

The remaining paper is organized as follows: section 2 presents

brief history and definition of OSS and section 3 portrays four

key factors to achieve information security. It also describes

their importance for OSS distribution. Section 4 demonstrates

the application of digital signature to ensure authentication,

integrity and non-repudiation of OSS. Section 5 briefly

introduces CrypTool, an OSS to learn and practice cryptographic

mechanisms which is followed by conclusion.

2. OPEN SOURCE SOFTWARE
Open Source Software originated in early 1970‟s [1] and

evolved from programming hobby to a mainstream commercial

strategy for acquiring and maintaining competitive advantage by

1990‟s [2]. The first collaborative effort towards OSS was GNU

(GNU is not UNIX) project announced by Stallman in 1983 to

create free operating system to replace UNIX. The establishment

of Free Software Foundation (FSF) [3] in 1985 was another

collaborative effort for development of Free and OSS. Open

Source Initiative (OSI) [4] was established in 1998 to promote

OSS on pragmatic rather than ethical or philosophical grounds.

The OSI has become steward of the Open Source Definition

(OSD). OSD has laid down ten criteria [5] for software to be

qualified as Open Source Software. These are: i) free

redistribution of the software, ii) source code to be distributed

with the software or well published access to it, iii) derived

works arising from modification of the software should be

licensed to be distributed, iv) integrity of the author‟s source

code, v) no discrimination against a person or a group, vi) no

discrimination against fields of endeavor, vii) distribution of

license, viii) license must not be specific to a product, ix) license

must not restrict other software, and x) license must be

technologically neutral. For software complying with these

criteria, the OSI introduced the seal „OSI Certified‟. Considered

as open source in a broader sense are license models that differ,

for instance, on the extent to which changes made to an Open

Source program have to comply with the same license as the

original program, or on the extent to which restrictions on the

license to use the program are allowed. Open source software is

generally thought to be free as it has no costs. Though that is

true in some cases but generally the term “free” is used in

reference to the liberty of interested parties to freely distribute

the source code. The definition of free software, as enunciated

by the FSF, states that four essential freedoms should be

contained within its license: i) to run the software for any

purpose, ii) to study how the software works and adapt it, iii) to

redistribute copies of the software, and, iv) to improve the

software, and release those improvements.

3. PAIN
PAIN which collectively refers to Privacy, Authentication,

Integrity and Non-repudiation are four key factors to achieve

information security [6]. Privacy also called confidentiality,

guarantees non-disclosure of information to unauthorized

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

12

persons. Authentication ensures that the document or software is

genuine. Integrity as a concept means that there is resistance to

alteration or substitution of data, and/or that such changes are

detected and provable. The information should not be changed

except by an authorized agent. Non-repudiation is a security

service that prevents a party from falsely denying that it was the

source of data that is did indeed create. Privacy is not considered

for OSS distribution as its distribution is made to public and not

to a particular individual, however, authentication, integrity and

non- repudiation are essential parameters to attain high degree of

reliability and security in Open Source Software distribution.

Authentication is the security process that validates the identity

of a communicating party. In the simplest implementation, this

takes the form of a password. Passwords can be easily

compromised through indiscretion and typically do not address

who is entering the password. Another variant of authentication

is known as strong authentication. In this implementation,

authentication is provided by a digital signature which is an

encrypted value provided by the entity requesting authentication

that can only be decoded by the public key of the signature‟s

owner. Authentication is used to ensure that software

downloaded from the Internet comes from a reputable source.

Integrity ensures security against forgery which include policies

to stop distribution of software contaminated with viruses,

Trojans, Spywares, etc. This usually involves the use of

checksums, one-way hashes, or other algorithmic validation of

the data. Whether the data might be changed by accident or

malice, preventing that change is the foremost concern, and

detecting it is second. Integrity can be maintained at many

levels, from the hardware all the way to the application logic. At

first glance it might seem that authenticity is included in the

concept of Integrity. Integrity is more specifically about the

content of the data itself. Integrity of OSS downloaded from the

Internet can be obtained using digital signature.

Non-repudiation ensures non-denial by the sender ensuring that

an OSS distributor will not be able to disown its software

distribution later. Digitally signing of the OSS using the private

key of the distributor can ensure non-repudiation as breaking of

digital signature is harder than any traditional method.

4. DISTRIBUTING OSS USING DIGITAL

SIGNATURE
A digital signature is identification information encrypted with a

private key and therefore decryptable with the corresponding

public key [7]. Digital signature technology requires the use of

public key cryptography, that is, the use of public and private

key pairs. The process of digitally signing OSS is illustrated in

figure 1.

Signature Verification of Open Source Software

Digital Signing of Open Source Software

Are
Equal

OSS Hashing Digest

Encryption

PriKey (H)

Host
OSS on the

Server

Signature

OSS

Unpack Signature

Hashing Digest
New

Decryption
Digest

Not
Verified

Verified

No
Yes

1

2

4

3

5

PubKey (H)

Signed
OSS

Signed
OSS

PubKey (H)

2

Pack
3

4

Download
OSS from the

Host

1

Figure 1: Digital Signing and Verification of OSS

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

13

Once the publishable release of an OSS is ready, it would be

deposited on the host which would digitally sign the software by

computing a hash (or checksum) over the source code creating a

digest and then encrypt the digest using its private key. The

encrypted digest would be made available to the user as an

accompaniment to the OSS. The user would verify the

authenticity of the OSS by recalculating the digest, decrypting

the transmitted digest using the host‟s public key (which had

been previously obtained and cached, or was obtained from a

public key directory or is included with the OSS) and comparing

the two digests. If they match, then the OSS is authentic and

came from the claimed host, has not been modified since

signing. Various steps involved in signing and verifying the

signature are given hereunder:

A) Digitally Signing of Open Source Software

1. Hashing: Hashing is a one way encryption function used to

calculate OSS digest, which is small and unique

representation of the OSS. The purpose of evaluating a

digest is to ensure OSS integrity. The digital signature is

applied on the OSS digest which is smaller than the

software itself. Further, hashing functions are faster than

symmetric and asymmetric encryption algorithms. Various

hashing algorithms and their characteristics are given in

table 1.

2. Signing: Signing is performed to obtain non-repudiation by

encrypting the OSS digest using the private key of the host.

The message digest can be recovered by decrypting the

encrypted OSS digest called OSS signature using the

corresponding public key (public key of host). Various

signing algorithms and their characteristics are given in

table 2.

3. Packing: The OSS, the signature of the OSS and the host‟s

public key are packed together into single unit.

4. Hosting: The signed and packed OSS is hosted on the host.

B) Signature Verification of Open Source Software

1. Downloading: The signed and packed OSS is downloaded

by the user from the host.

2. Unpacking: The signed OSS is unpacked into OSS,

signature and the public key of the host.

3. Hashing: Hashing function is used to compute OSS digest

from the OSS obtained after decrypting and unpacking the

downloaded OSS.

4. Decryption: In this step, the downloaded OSS signature is

decrypted using the downloaded public key of the host to

obtain the OSS digest computed before uploading the OSS.

5. Digest Comparison: The OSS digest computed from the

OSS obtained after decrypting and unpacking the

downloaded OSS (step 3) is compared to the OSS digest

which is decrypted from the downloaded signature (step 4)

to determine their equality. In case the two are same, the

signature is considered to be verified otherwise not.

Table 1: Characteristics of HashAlgorithms

Name and Characteristics Hash Size

SHA1 (Secure Hash Algorithm 1)[8]:

 It‟s a FIPS approved algorithm; its various other versions include SHA256, SHA384 and SHA512 which

 provide longer hash size.

160 bit

MD5 (Message Digest 5) [9]:

 Potential weakness is that it can be used as a keyed hash.
128 bits

RIPEMD-160(RACE Integrity Primitives Evaluation Message Digest 160) [10]:

 It has been developed as part of the EC‟s Research and Development in Advanced Communications

 Technologies in Europe (RACE).

160 bits

TIGER Hash [11]:

 Tiger Hash has been designed for efficient operation on 64-bit platforms.
192 bits

Table 2: Characteristics of Digital Signature Algorithms

Name, Type and Characteristics Min. Key Size

DSS (Digital Signature Standard) [12]:

 FIPS 186-2 Digital signature based on SHA1 hash, unencumbered (no patents, no licenses).
1024 bits

RSA Digital Signature [13]:

 RSA digital signature (FIPS approved)Previously patented digital signature (expired 2000).
1024 bits

ECDSA (Elliptic Curve Digital Signature) [14]:

 Digital signature based on elliptic curve key technology uses smaller keys than other public key

technologies but may be encumbered by various Certicom intellectual property, licenses, and patents.

Apparently, ECDSA is not covered by any Certicom patents and there are open-source ECC libraries; but

Certicom does have over 300 patents on various aspects of ECC including efficient implementations of ECC

in hardware and software, key agreements, etc.

160 bits

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

14

5. EXPERIMENTS WITH CRYPTOOL
Originally,CrypTool [15] was designed as an internal business

application for information security and training but

subsequently it has transformed into an important open-source

project in the field of cryptology. CrypTool is free e-learning,

open source software, which enables analysis and application of

cryptographic mechanisms. It is available in multiple languages

and includes both classis cryptosystem like the Caesar cipher,

the ADFGVX cipher, the double-column transposition

(permutation), the Enigma encryption algorithm, etc. and

modern cryptosystem like the RSA and AES algorithms, hybrid

encryption, algorithms based on lattice reduction and elliptic

curves, etc. Besides offline versions CrypTool is available

online through a browser without downloading or installing any

kind of software. The offline versions are coded in C++, C# and

Java. CrypTool provides online help, documentation, and

tutorials to ensure that context-sensitive help, explanations of all

basic cryptographic terms, a list of cryptography references, a

chronology of the development of cryptography, scenarios

(tutorials) for an easy introduction, and a well-sorted index of

cryptographic topics. The current version of CrypTool offers

analysis and applications of various classic and modern

cryptographic algorithms (encryption and decryption, key

generation, secure passwords, authentication, secure protocols,

etc.), visualization of several algorithms (Caesar, Enigma, RSA,

Diffie-Hellman, digital signatures, AES, etc.), cryptanalysis of

several algorithms (Vigenère, RSA, AES, etc.), Cryptanalytical

measurement methods (entropy, n-grams, autocorrelation, etc.),

related auxiliary methods (primality tests, factorization, base64

encoding, etc.), number theory tutorial, accompanying script

with additional information about cryptology, etc.

This study has used CrypTool to analyze the use of digital

signature for distribution of Open Source Software. MD5

hashing algorithm was used to encrypt the source code and RSA

digital signature algorithm was used for signing. The signed

software was uploaded on web Host. The hosted signed

software was downloaded and its signature was verified using

the CrypTool. The results obtained have confirmed that the use

of digital signature for distribution of Open Source Software

ensures its integrity and authentication of the host.

6. CONCLUSION
An increasing number of Open Source Software projects are

undergoing and numerous such software packages along with

source code are available in different versions from several OSS

data warehouses. It is as such essential to ensure integrity and

authenticity of such software packages. This paper underlines

the importance of integrity of OSS and authentication of the host

of OSS for its security. Digital signature that contains identity

information along with the hash of the entire software can be

used to prove that the signed OSS has not been modified or

altered by unauthorized person. It has further demonstrated the

application of digital signature in OSS distribution using

CrypTool.

7. REFERENCES
[1] Mohony and Naughton (2004). Open Source Software

Monetized: Out of the Bazaar and into Big. The Computer

& Internet Lawyer, vol. 21, no. 10, October 2004.

[2] Mark Henley and Richard Kemp (2008). Open Source

Software: An introduction, Computer Law & Security

Report, Vol. 24, no. 1, 2008, pp. 77-85.

[3] Free Software Foundation, http://www.fsf.org/.

[4] Open Source Initiative, http://www.opensource.org/.

[5] The Open Source Definition,

http://www.opensource.org/osd.html.

[6] John E. Canava, (2001), Fundamentals of Network

Security, Artech House, London, ISBN 1-58053-176-8.

[7] Subramanya, S.R.; Yi, B.K, (2006). Digital Signatures,

Potentials, IEEE vol. 25, no. 2, 2006.

[8] SHA, (1995). Federal Information Processing Standards

Publication 180-1, available online at:

http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[9] R. Rivest (1992).The MD5 Message-Digest Algorithm,

IETF RFC 1321, available online at:

http://www.ietf.org/rfc/rfc1321.txt.

[10] RIPE (1995). Integrity Primitives for Secure Information

Systems. Final Report of RACE Integrity Primitives

Evaluation (RIPE-RACE 1040)," LNCS 1007, Springer-

Verlag, 1995.

[11] Ross Anderson and Eli Biham (1996). Tiger: A Fast New

Hash Function, Fast Software Encryption, Third

International Workshop Proceedings, Springer-Verlag, pp.

89—97.

[12] FIPS (1996). Digital Signature Standard (DSS), FIPS

PUB 186-3, Information Technology Laboratory, National

Institute of Standards and Technology, Gaithersburg, MD

20899-890, available online at:

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-

3.pdf.

[13] RSA (2002). RSA Cryptography Standard, RSA Security

Inc, available online at:

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf.

[14] ANSI X9.62, (199). Public Key Cryptography for the

Financial Services Industry: The Elliptic Curve Digital

Signature Algorithm (ECDSA), 1999.

[15] CrypTool, http://www.cryptool.org/.

http://www.sciencedirect.com/science/journal/02673649
http://www.sciencedirect.com/science/journal/02673649
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235915%232008%23999759998%23677898%23FLA%23&_cdi=5915&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=37ac515cb6886c732b8ff3c0e00596f0
http://www.fsf.org/
http://www.opensource.org/
http://www.opensource.org/osd.html
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.ietf.org/rfc/rfc1321.txt
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://www.cryptool.org/

