
IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

30

Detecting Zero-Day Attack Signatures using

Honeycomb in a Virtualized Network

Reshma R. Patel
Information Technology

Department,
L.D.College of Engineering,

Ahmedabad, India.

Chirag S. Thaker
Information Technology

Department,
L.D.College of Engineering,

Ahmedabad, India.

Hemant B. Patel
Software Engineer-Team

Leader,
Alferez Pvt. Ltd Vadodara,

India.

ABSTRACT

Self-propagating malware, such as worms, have prompted cyber

attacks that compromise regular computer systems via

exploiting memory-related vulnerabilities which present threats

to computer networks. A new generation worm could infect

millions of hosts in just a few minutes, making on time human

intrusion impossible. The new worms are spread over the

network on regular basis and the computer systems and network

vulnerabilities are growing enormously. Here we also facing the

problem of automatically and reliably detecting previously

unknown attacks which are known as zero-day attack.In this

paper, I have described the use of the Honeycomb to detect

Zero-day attack in Virtualized network. A method to

automatically generate signatures using the proposed detection

system is presented. The attack signatures are detected and

scanned through the system. Honeycomb is a host-based

intrusion detection system that automatically creates signatures.

It uses a honeypot to capture malicious traffic targeting dark

space, and then applies the Longest Common Substring (LCS)

algorithm on the packet content of a number of connections

going to the same services. The computed substring is used as

candidate worm signature. Honeycomb is well suited for

extracting string signatures for automated updates to a firewall.

General Terms

Zero-Day Attack Signatures detection.

Keywords

Zero-Day attack, Honeycomb, Malware, Automatic Signature

Generation

1. INTRODUCTION
Self-propagating malware, such as worms, have prompted a

wealth of research in automated response systems. We have

already encountered worms that spread across the Internet in as

little as ten minutes, and researchers claim that even faster

worms can be realised. For such outbreaks human involvement

is too slow and automated response systems are needed.

Important criteria for such systems in practice are: (a) reliable

detection of a wide variety of zero-day attacks, (b) reliable

generation of signatures that can be used to stop the attacks, and

(c) cost-effective deployment [1]. Wikipedia defines „zero-day

virus‟ as „a previously unknown computer virus or other

malware for which specific anti-virus software signatures are not

yet available‟. Security should protect a computer from the

effects of any malicious attack while staying completely

invisible. Honeypots and Intrusion detection systems offer

different tradeoffs between accuracy and scope of attacks that

can be detected. A honeypot is a device or service that operates

in a network and waits for any form of wicked or malicious

interaction to be initiated with it.All interaction with a honeypot

is closely monitored, as analysis of the interaction can provide

information concerning vulnerabilities, worm propagation,

targeted ports and a detailed attack model in the event of a full

compromise. Intrusion detection is a set of techniques and

methods that are used to detect suspicious activity both at the

network and host level. Intruders have signatures, like computer

viruses, that can be detected using software. Based upon a set of

signatures and rules, the detection system is able to find and log

suspicious activity and generate alerts.

2. PROBLEM
CPU, memory, and storage have improved significantly by the

time. Software has not attached the full latent of available

hardware, but it has grown in size and complexity. Hence,

complex software frequently contains programming errors that

reveal themselves as crashes or unexpected behavior. Fault

distribution studies show that there is a correlation between the

number of lines of code and the number of faults. To quantify

this, it is approximated that code contains 6-16 bugs per 1000

lines of executable code. Attackers are often able to utilize

certain types of program faults to evade security measures to

protect a system. Reports by organizations such as SANS, and

various CERT show that there is large number of such

vulnerabilities.

Zero-day worms are a serious wide-scale threat among large

numbers of replicated vulnerable systems. If any standard

signature-based detector is unsighted to a zero-day attack, than

all installations of that same detector are also blind to the same

attack. Here one has to consider the problem of accurately

detecting these “zero-day” attacks upon their very first

appearance. Some attacks exploit the vulnerabilities of a

protocol; others seek to survey a site by scanning and probing.

These attacks can often be detected by analyzing the network

packet headers, or monitoring the connection attempts and

traffic volume.

2.1 Malware
Software Errors

Software errors, commonly referred to as bugs, have been the

primary cause of most security vulnerabilities. They mainly

arise from mistakes made by developers when coding programs,

or can be the result of faulty designs. Less frequently, bugs can

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

31

be introduced by a compiler that produces incorrect binary code

even when given sound source code.

Buffer Overflows

A frequently encountered memory access error that results in

storing data in a different location than the one intended by the

programmer is a buffer overflow. Such errors usually occur

when copying data between buffers without checking their size.

Format String Errors

A less common memory error can occur when an invalid format

string is used with the printf(format, ...) family of functions.

These functions produce string output that can be printed in

standard output, or written to a string buffer or a file. The output

is created according to the string in the format argument. The

function accepts a variable number of arguments, which are

stored in the stack. As the format string is processed, the

arguments are retrieved from the stack to produce the output.

Worm

A worm is a program that propagates across a network by

exploiting security awes of machines in the network. The key

difference between a worm and a virus is that a worm is

autonomous. That is, the spread of active worms does not need

any human interaction. As a result, active worms can spread in

as fast as a few minutes. The propagation of active worms

enables one to control millions of hosts by launching distributed

denial of service (DDOS) attacks, accessing confidential

information, and destroying/corrupting valuable data. Accurate

and prompt detection of active worms is critical for mitigating

the impact of worm activities.

A worm is a program that propagates across a network by

exploiting security awes of machines in the network. The key

difference between a worm and a virus is that a worm is

autonomous. That is, the spread of active worms does not need

any human interaction. As a result, active worms can spread in

as fast as a few minutes. The propagation of active worms

enables one to control millions of hosts by launching distributed

denial of service (DDOS) attacks, accessing confidential

information, and destroying/corrupting valuable data. Accurate

and prompt detection of active worms is critical for mitigating

the impact of worm activities.

Self-propagating Malware

A particularly malicious threat against computer systems is that

of self-propagating malware or worms. Internet worms such as

CodeRed, Blaster, and Sasser have created havoc in the past,

while recently the Conficker worm has also made the news on

various occasions by infecting various high-profile targets.

Worms are malicious code that use various infection techniques

to compromise systems, and are able to self-replicate by locating

and compromising new targets without the user taking any

action. Table 1 shows GFI Software has announced the top 10

most prevalent malware threats for the month of February

2011as detected by scans performed by its anti-malware

solution, VIPRE Antivirus, and its antispyware tool,

CounterSpy.

Payload The program that implements the desired functionality

of any malware, besides the infection of the target, is the

payload. The payload of an attack is also called shellcode for

historical reasons, as it was frequently used by attackers to

acquire a remote shell on the compromised system.

2.2 Zero-Day Attack
Wikipedia defines „zero-day virus‟ as „a previously unknown

computer virus or other malware for which specific anti-virus

software signatures are not yet available‟. According to

Wikipedia, „a zero-day attack or threat is a computer threat that

tries to exploit computer application vulnerabilities that are

unknown to others or undisclosed to the software developer‟.

There is also a notion of a vulnerability window which is the

time between the first exploitation of vulnerability and when

software developers start to develop a countermeasure to that

threat. These definitions evaluate time points such as the attack

release and the moment when the very first easing is available.

In the field of Anti-Virus products the test of zero-day protection

is usually performed by using so-called proactive testing

methodology (also known as retrospective testing). This

involves „freezing‟ a product (creating a snapshot and

subsequently denying the product the ability to receive updates)

and then testing detection over attacks which appeared after the

freeze point. In this scenario the frozen product will only face

unknown threats and therefore all the reactive capabilities will

be excluded from the test.

3. DEFENCES
As documented by SANS, "Vulnerabilities are the gateways by

which threats are manifested" .In other words, a system

compromise can occur through a weakness found in a system. A

Vulnerability assessment is a search for these

weaknesses/exposures in order to apply a patch or fix to prevent

a compromise. There are two points to consider:

Many systems are shipped with: known and unknown security

holes and bugs, and insecure default settings (passwords, etc.).

Much vulnerability occurs as a result of misconfigurations by

system administrators.

Ways to counteract these conditions include:

1) Creating and surviving by baseline security standards,

2) Installing vendor patches (when appropriate),

3) Vulnerability scanning,

4) Subscribing to and abiding by security advisories,

5) Implementing perimeter defenses, such as firewalls and router

ACLs,

6) Implementing intrusion detection systems and virus scanning

software.

There are several methods that are used to find new security

vulnerabilities:

• Source code analysis

• Binary file analysis

o Static analysis

o Dynamic (runtime) analysis

• Runtime analysis of API functions

• Fuzzing methods (fault injection) and

• Hybrid methods (various combinations of above methods).

3.1 Intrusion Detection System
Intrusion detection is a set of techniques and methods that are

used to detect suspicious activity both at the network and host

level. Intrusion Detection System or IDS is software, hardware

or combination of both used to detect intruder activity. Snort is

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

32

an open source IDS available to the general public. Intrusion

detection systems fall into two basic categories:

 Signature-based intrusion detection systems

 Anomaly detection systems.

Signature-Based intrusion Detection System:

Intruders have signatures, like computer viruses, that can be

detected using software. You try to find data packets that

contain any known intrusion-related signatures or anomalies

related to Internet protocols. Based upon a set of signatures

and rules, the detection system is able to find and log suspicious

activity and generate alerts.

Anomaly Detection System:

Anomaly-based intrusion detection usually depends on packet

anomalies present in protocol header parts. In some cases these

methods produce better results compared to signature-based

IDS.

Signature:

Signature is the pattern that you look for inside a data packet. A

signature is used to detect one or multiple types of attacks. For

example, the presence of “scripts/iisadmin” in a packet going to

your web server may indicate an intruder activity. Signatures

may be present in different parts of a data packet depending

upon the nature of the attack. For example, you can find

signatures in the IP header, transport layer header (TCP or UDP

header) and/or application layer header or payload.

Usually IDS depends upon signatures to find out about intruder

activity. Some vendor-specific IDS need updates from the

vendor to add new signatures when a new type of attack is

discovered.

Terminology

 Alert/Alarm: A signal suggesting that a system has been or

is being attacked.

 True Positive: A legitimate attack which triggers an IDS to

produce an alarm.

 False Positive: An event signaling an IDS to produce an

alarm when no attack has taken place.

 False Negative: A failure of an IDS to detect an actual

attack.

 True Negative: When no attack has taken place and no alarm

is raised.

 Noise: Data or interference that can trigger a false positive.

 Site policy: Guidelines within an organization that control

the rules and configurations of an IDS.

 Site policy awareness: An IDS's ability to dynamically

change its rules and configurations in response to changing

environmental activity.

 Confidence value: A value an organization places on an IDS

based on past performance and analysis to help determine its

ability to effectively identify an attack.

 Alarm filtering: The process of categorizing attack alerts

produced from an IDS in order to distinguish false positives

from actual attacks.

 Attacker or Intruder: An entity who tries to find a way to

gain unauthorized access to information, inflict harm or

engage in other malicious activities.

 Masquerader: A user who does not have the authority to a

system, but tries to access the information as an authorized

user. They are generally outside users.

 Misfeasor: They are commonly internal users and can be of

two types:

o An authorized user with limited permissions.

o A user with full permissions and who

misuses their powers.

 Clandestine user: A user who acts as a supervisor and tries

to use his privileges so as to avoid being captured.

3.2 Honeypot
Honey pots are systems used to lure hackers by exposing known

vulnerabilities deliberately. Once a hacker finds a honey pot, it

is more likely that the hacker will stick around for some time.

During this time one can log hacker activities to find out his/her

actions and techniques. This information can be used later on to

harden security on actual servers.
High-interaction honeypots consist of a real OS and applications

running on hardware or under a VM whereas low-interaction

honeypots expose virtual OS and services to attackers. Multiple

hosts can be simulated by a single low-interaction honeypot

using forged network stacks to simulate different OS, and scripts

that perform simple protocol handling for simulated services.

Honeypots are deployed to handle all or part of the unused IP

address space in the network.

The common services running on Honeypot are, like Telnet

server (port 23), Hyper Text Transfer Protocol (HTTP) server

(port 80), and File Transfer Protocol (FTP) server (port 21) and

so on. The honey pot is placed close to production server to lure

the attacker so that the attackers can assume it as for a real

server. Firewall and/or router is configured to redirect traffic on

ports to a honey pot where the intruder assumes connecting to a

real server. The alert mechanism is created so that when

honeypot is compromised, the alarm is triggered. The log files is

kept on other machine so that when the honey pot is

compromised, the hacker does not have the ability to delete

these files.

Virtual Honeypot

A virtual honeypot is simulated by another machine. Virtual

honeypots are more flexible and scalable, since only a single

machine can simulate many virtual honeypots that host different

operating systems and services.

Honeyd

Honeyd is a framework for virtual honeypots that simulates

computer systems at the network level. Honeyd supports the IP

protocol suites and responds to network requests for its virtual

honeypots according to the services that are configured for each

virtual honeypot. To simulate real networks, Honeyd creates

virtual networks that consist of arbitrary routing topologies with

configurable link characteristics such as latency and packet loss.

Subsystem Virtualization

Honeyd supports service virtualization by executing UNIX

applications as subsystems running in the virtual IP address

space of a configured honeypot. This allows any network

application to dynamically bind ports, create TCP and UDP

connections using a virtual IP address. Subsystems are

virtualized by intercepting their network requests and redirecting

them to Honeyd. Every configuration template may contain

subsystems that are started as separated processes when the

template is bound to a virtual IP address. An additional benefit

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

33

of this approach is the ability of honeypots to create periodic

background traffic like requesting web pages and reading email,

etc.

There are certain disadvantages of honeypots: all network traffic

received by a honeypot is considered by definition to be

suspicious, as the system has an idle role and its existence is not

advertised. Unfortunately, even idle connected systems receive

plenty of noise traffic, which makes it harder for administrators

to identify malicious from innocuous traffic. To overcome this

issue, dynamic analysis systems have been brought into play to

host high-interaction honeypots.

Another weakness of honeypots is that by design they support

attacks that perform target discovery through network scans. As

technologies like IPv6 and network address translation (NAT)

become more popular, scanning has become less efficient, and

attackers have turned to other means to discover targets. As a

response, we have witnessed the development of client-side

honeypots, which by continuously connecting to remote servers

(mostly web servers admittedly) attempt to discover malicious

ones.

Table 1. Top 10 Detections for February 2011 as reported by

GFI Software.

Detection Type Percent

Trojan.Win32.Generic!BT Trojan 22.97%

Trojan-Spy.Win32.Zbot.gen Trojan 3.46%

Trojan.Win32.Generic.pak!cobra Trojan 2.89%

Zugo LTD (v) Adware 2.52%

Fraudtool.Win32.Securityshield.ek!

c (v)
Trojan 2.00%

Trojan.Win32.Generic!SB.0 Trojan 1.72%

INF.Autorun (v) Trojan 1.66%

Worm.Win32.Downad.Gen (v) Worm 1.48%

Pinball Corporation (v) Adware 1.19%

Exploit.PDF-JS.Gen (v)
PDF

exploit
0.83%

3.3 Honeycomb
Honeycomb is realized as a Honeyd extension. It is based on the

idea that any traffic directed to the honeypot can be considered

an attack. Figure 1 shows the high-level overview of

honeycomb‟s signature creation algorithm. Honeycomb

automatically generates Snort and Bro signatures for all

incoming traffic. New signatures are created if a similar pattern

does not yet exist. Existing signatures are updated whenever

similar traffic has been detected, so the quality of the signatures

is increased with each similar attack session. Signatures can be

updated to match mutations of existing attacks. For each

mutation a more generic description for the signature is

generated, so that the original attack and the mutation are both

matched. This way the signature base is kept small. The

mechanism creates signatures for all traffic directed to the

honeypot. Unfortunately the attacks are not verified to be

successful in any way. Therefore, it suffers of false positives if

any non-attack traffic is directed to the honeypot like e.g. the

IPX protocol. A computer connected to the Internet especially

on a dial-up connection is addressed even by non attack traffic.

Whenever a search engine tries to mirror the host or a peer to

peer program tries to connect, a signature is generated.

Signatures must be checked manually afterwards whether they

were created for an attack or for something else. An approach to

verify the attack patterns is desirable. The signature generation

mechanism could be used to create IDS signatures if appropriate

attack traffic is identified and directed to the system.

Pattern Detection in flow content:

Honeycomb applies LCS algorithm to binary strings built

out of exchanged messages using the following two methods:

Horizontal detection:

Assume that the number of messages in the current

connection after the connection state update is n.

Honeycomb then attempts pattern detection on the nth

messages of all currently stored connections with the same

destination port at the honeypot by applying the LCS algorithm

to the payload strings directly.

Vertical Detection:

Honeycomb also concatenates incoming messages of an

individual connection up to a configurable maximum number of

bytes and feeds the concatenated messages of two different

connections to the LCS algorithm. Vertical detection also

masks TCP dynamics: the concatenation suppresses the effects

of slicing the communication flow into individual messages,

which proved to be valuable.

4. ALGORITHMS

4.1 Dynamic Taint Analysis
Dynamic taint analysis (DTA) is a mechanism to tracks

incoming data from the network throughout the process. The un-

trusted data are marked as „tainted‟ originating from the

network. When operations on this data are performed, taint tags

are propagated to the result of such operations. An alert is raised

and relevant action is performed when data from a tainted piece

of memory is used in an important operation, for example as

target address in a jump.

Tainting data

Tainting of data can be done by adding an integrity bit to every

32-bit word of memory. It then can use Biba's low-watermark

integrity policy with values \high" and \low" to describe the

level of threat the data poses.

Taint propagation

Taint propagation occurs when arithmetic is performed with

tainted values, like for example a value xt is increased with the

tainted variable n; the resulting yt is also tainted.

xt + n = yt

The register is also marked tainted containing tainted memory.

Logging of the „tainted‟ marks is generally done by adding some

memory structures containing the tags for its memory section.

Paging techniques can be used for optimization to lower the

overhead.

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

34

4.2 LCS algorithm
Longest Common Substring is a popular and fast algorithm for

detecting patterns between multiple strings used by automatic

signature generation projects. The algorithm finds the longest

substring that is common to memory and traffic trace. The

longer common substring is computed between two packets, for

the suspected anomalous similar incoming/outgoing packets.

The main disadvantage is the computation overhead. LCS can be

implemented in linear time and avoids the fragmentation

problem and other small payload manipulations.

Fig 1: High level overview of Honeycomb’s Signature Creation Algorithm

5. CONCLUSION
In this paper we have seen how the problem of worm

propagation arises into computer network, which is

basically due to software errors that incurred into software

binaries during development phase. The self propagating

malware do not need any human intervention to propagate

into the network. Also, we have discovered how the

unknown worm signatures are considered as Zero-Day

worm signatures. We have shown the possible defenses

such as Intrusion detection system and Honeypots. Honey

pots are systems used to attract and fool the hackers by

exposing known vulnerabilities by virtualzing the well-

known services. The two algorithms, Dynamic Taint

Analysis and LCS algorithm are capable to detect the

signature of known attacks. Honeycomb automatically

generates Snort and Bro signatures for all incoming traffic

and new signatures are created if a similar pattern does not

yet exist using LCS algorithm. Finally, Honeycomb which

is basically Honeyd extension can be effectively used to

detect the unknown worm-”Zero-Day” signatures in the

virtualized network.

6. ACKNOWLEDGMENTS
I would like to thank Chirag S. Thaker to provide incessant

guidance to my work and giving his valuable suggestions

regarding the research work methodology. I also like to

thank Hemant Patel to guide me about software required

for the given project.

7. REFERENCES
[1] C. Xenakis a, C. Panos b, I. Stavrakakis b: A

comparative evaluation of intrusion detection

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2011

35

architectures for mobile ad hoc networks, elsevier ,

computers & security 30 (2011) 63 -80

[2] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J.

Levine, and H. Owen. HoneyStat: Local Worm

Detection Using Honeypots. In Proceedings of the 7th

International Symposium on Recent Advances in

Intrusion Detection (RAID), pages 39-58, October

2004.

[3] Dr I. Muttik , McAfee Labs, UK: ZERO-DAY

MALWARE ,Virus bulletin conference September

2010.

[4] G. Portokalidis ,A. Slowinska, H. Bos: Argos: an

Emulator for Fingerprinting Zero-Day Attacks for

advertised honeypots with automatic signature

generation, EUROSYS 2006

[5] Honeynet Project. Know Your Enemy: Statistics.

http://project.honeynet.org/papers/stats/, July 2001.

[6] Honeynet Project. Know Your Enemy: Worms at War.

http://project.honeynet.org/papers/worm/, November

2000.

[7] http://www.computerweekly.com/blogs/read-all-

about-it/2011/08/none-of-10-top-malware-

vulnera.html.

[8] I. Kim, D. Kim, B. Kim, Y. Choi, S.Yoon, J. Oh and J.

Jang:An Architecture of Unknown Attack Detection

System against Zero-dayWorm, Proceedings of the 8th

WSEAS International Conference on APPLIED

COMPUTER SCIENCE (ACS'08)

[9] J.Newsome and D.Dong. Dynamic Taint Analysis for

Automatic Detection Analysis, and Signature

Generation of Exploits on Commodity software. In

Proceedings of the 12th ISOC Symposium on Network

and Distributed System Security(SNDSS), pages 221-

237, February 2005.

[10] Kreibich, C., Crowcroft,J.: Honeycomb-Creating

Intrusion Detection Signatures Using Honeypots.

ACM SIGCOMM Computer Communication Review

34(2004).

[11] N. Provos. A virtual honeypot framework. In Proc. of

the 13th USENIX Security Symposium, 2004.

[12] P. Laskov, M. Kloft: A Framework for Quantitative

Security Analysis of Machine Learning, AISec‟09,

November 9, 2009, Chicago, Illinois, USA.

[13] S. Pastrana, A.Orfila, A.Ribagorda: A Functional

Framework to Evade Network IDS , Proceedings of

the 44th Hawaii International Conference on System

Sciences - 2011.

[14] S. Singh, C. Estan, G. Varghese and S. Savage.

Automated Worm Fingerprinting, Sixth Symposium

on Operating Systems Design and Implementation

(OSDI), 2004.

