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ABSTRACT 
This paper proposes the Application Specific Integrated Circuit 

(ASIC) implementation of Advanced Encryption Standard 

(AES) cryptographic algorithm with reconfigurable 128-bit, 

192-bit, 256-bit keys. The proposed implementation has 

compact 32-bit I/O for both data and key transfer. By using on 

the fly key generation for encryption process along with 

efficient implementation of MixColumn and InverseMixColumn 

operations using finite field GF(22) for our 32-bit AES crypto 

system gives a maximum of 80.1% improvement in operating 

frequency when compared to the recent implementations. The 

maximum operating frequency of our proposed pipelined 

implementation is 333 MHz with high throughput of around 

10.656 Gbps in 180 nm standard cell CMOS technology.  
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1. INTRODUCTION 
Cryptography is the science of using mathematics to encrypt and 

decrypt data. Cryptography enables users to store sensitive 

information or transmit it across insecure networks (like the 

Internet) so that it cannot be read by anyone except the intended 

recipient. In order to ensure security in modern wireless 

communication systems, many cryptographic algorithms have 

been proposed [1]. In 2001, Rijndael algorithm was selected as 

the Advanced Encryption Standard (AES) by National Institute 

of Standards and Technology (NIST) due to the combination of 

security, performance, efficiency, ease of implementation and 

flexibility. These features make AES the first choice in many 

applications such as Wireless LAN and smart cards [2]. 

AES can be implemented in both software as well as hardware. 

The advantage of a software implementation includes ease of 

use, ease of upgrade, portability and flexibility. But the main 

drawback of software implementation is the limited physical 

security with respect to key storage [3]. Conversely, hardware 

implementations are more physically secure, as they cannot be 

easily read or modified by an outside attacker. Many hardware 

implementations have been proposed for AES in the literature 

[4-5]. All these implementations were based on either field 

programmable gate arrays (FPGA) or application specific 

integrated circuits (ASIC).  

 

In [6], on the fly S-Box values calculation for both encryption 

and decryption process has been implemented, which results in 

reduced operating frequency due to the increase in critical path 

delay. An AES crypto system implementation using high level 

code has been discussed in [7]. The maximum throughput 

achieved in this design was 2.29 Gbps with 173 K gates in 

180nm technology and the maximum operating frequency 

obtained was around 154 MHz. A compact 128 MHz AES 

implementation has been proposed in [8] which gave a 

throughput of around 0.14 Gbps with 5.6 K gates in 180 nm 

technology. In [9], two architectures for the AES algorithm have 

been proposed through which a maximum throughput of     3.65 

Gbps has been achieved. High speed architecture for the 

hardware implementation of AES algorithm using combinational 

logic S-Box implementation has been presented [10]. 

In our proposed AES implementation, on the fly key generation 

has been used for encryption process. An efficient 

implementation has been achieved using finite field GF(22) in 

MixColum/InverseMixColumn operations. Shift row and 

MixColumn operations are combined together in order to reduce 

the number of registers used in both encryption and decryption 

process. Pipelining has also been implemented in appropriate 

operations to deliver high throughput.  

The paper is organized as follows. Section 2 explains the 

basic operations in AES algorithm. The complete overview 

of the proposed ASIC implementation of AES algorithm is 

given in Section 3 followed by the comparison of 

experimental results in Section 4. Section 5 concludes the 

paper along with noted references.  

2. AES ALGORITHM 

The AES algorithm is a symmetric block cipher that processes 

data blocks of 128 bits using a cipher key of length 128, 192, or 

256 bits. Each data block consists of a 4 × 4 array of bytes called 

the state, on which the basic operations of the AES algorithm are 

performed. The AES encryption and decryption procedures are 

shown in Figure 1 and Figure 2. After an initial round key 

addition, a round function consisting of four different 

transformations    SubByte(),   ShiftRow(),   MixColumn(),   and 
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AddRoundKey() is applied to the data block (i.e., the state 

array). The round function is performed iteratively 10, 12, or 14 

times, depending on the key length. Note that in the last round 

MixColumn() is not applied. 
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Fig 1: The Encryption procedure of AES Algorithm 

 

The four transformations are described briefly as follows [1]:  

• SubByte(): a nonlinear byte substitution that operates 

independently on each byte of the state using a substitution table 

(the S-Box). 

• ShiftRow(): a circular shifting operation on the rows of the 

state with different numbers of bytes (offsets). 

• MixColumn(): the operation that mixes the bytes in each 

column by the multiplication of the state with a fixed 

polynomial modulo x4 + 1.  

• AddRoundKey(): an XOR operation that adds a round key to 

the state in each iteration, where the round keys are generated 

during the key expansion phase.  

The decryption procedure of the AES is basically the inverse of 

each transformation (InvShiftRow(),     InvSub-Byte(), 

InvMixColumn(), and AddRoundKey()) in reverse order. The 

decryption procedure thus can be rearranged as shown in Figure 

2. Such a structural similarity in both the encryption and 

decryption procedures makes hardware implementation easier. 

3. PROPOSED ASIC IMPLEMENTATION 
This section describes the ASIC implementation of AES 

algorithm for 128-bit key length. In our area efficient 

implementation, pipelining concepts are included to get 

maximum throughput along with high speed of operation. Each 

round of AES is composed of 16 bytes   S-Box and four 32-bit 
MixColumn operations, working on independent data.  

3.1 MixColumn() Transformation  
The MixColumn transformation operates on the state column-

by-column, treating each column as a four-term polynomial [1]. 

The columns are considered as polynomials over GF(28) and 

multiplied modulo x4 + 1 with a fixed polynomial a(x)= {03}  x3 

+ {01}  x2 + {01}  x + {02} is given by the following matrix. 

 

 =    

The steps to perform the above multiplication are as follows[1]:  

S1‟= 02*S1+ 03*S2+01*S3+01*S4 

1. Multiplication by 1 in GF(28) :  Multiplication by one is the 

identity. 

2. Multiplication by 2 in GF(28) is performed by :  

Multiplying by a value less than 0x80  shift all  the bits       

left by 1.Multiplying by a value greater than or equal to 0x80  

shift left by 1 and XOR with 0x1b.                  

3. Multiplication by 3 in GF(28) : 

a*0x03 = a*(0x02 + 0x01) = (a * 0x02) + (a * 0x01) 
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Fig 2: The Decryption procedure of AES Algorithm 

 



IJCA Special Issue on “Network Security and Cryptography”  

NSC, 2011 

3 

3.2  InverseMixColumn () Transformation  
Generally affine transformation along with multiplicative 

inverse   in  GF(28)     is   used   for   the   implementation   of  

InverseMixColumn operation in decryption process. But the 

drawback of this technique is the increased complexity due to 

increase in number of complex operations. Hence, in our 

proposed implementation, InverseMixColumn operation is 

performed using multiplication in GF(28) method. Here 

GF(22) has been implemented and the same has been used as 

the basic block for deriving GF(28). The matrix 

multiplication in GF(28) for InverseMixColumn is given by 

the following matrix: 

 

=  

 

where S1‟= 0e*S1+ 0b*S2+0d*S3+09*S4. 

Multiplication with 0e is obtained by XORing the results of 

multiplication with 08, 04 and 02 in GF(28).  The multiplication 

with 08 is obtained by multiplying 04 and 02 in GF(28). The 

multiplication with 04 is obtained by multiplying 02 and 02 in 

GF(28). The multiplication with 09 is obtained by XORing the 

results of multiplication with 08 and 01. The multiplication with 

0b is obtained by XORing the results of multiplication with 08, 

02 and 01. Similarly, the multiplication of 0d is obtained by 

XORing the multiplication of 08, 04 and 01. The above 

mentioned operation is explained for a single byte in Figure 3. 

The same method can be followed for the remaining 3 bytes. 
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Fig 3: Architecture of single byte multiplication with 02 

in GF(28). 

3.3  Substitution Box (S-Box) implementation  
Two approaches are available in the literature for realizing 

the S-Box. One method uses ROM to store S-Box values and 

other method calculates the values on the fly. To generate an 

S-Box value on the fly, two transformations are needed: a 

multiplicative inverse in GF(28) with polynomial,  m(x) = x8 

+ x4 + x3 + x + 1 and an affine transformation, b(x) = ( x7 + 

x6 + x2 + x) + a(x) * (x7 + x6 + x5 + x4 + 1) mod (x8 + 1) 

where a(x) is the multiplicative inverse in the polynomial 

form. This approach increases the critical delay of encryption 

[11]. In order to decrease the critical path delay of the 

encryption process we used Lookup Table (LUT) 

implementation.  

3.4  Key Generation  
Traditionally, most of the papers referred to implementing 

the key generation by pre-computation method. But the 

drawback of pre-computation method is the extra memory 

required to store keys for all rounds which results in 

increased area. To overcome this problem, in our proposed 

implementation, on the fly key generation technique has been 

adopted with pipelined structure. The internal structure of the 

key generator is shown in Figure 4. Due to the absence of 

internal storage of keys, the proposed implementation 

occupies less area which leads to low power consumption 

when compared to pre-computation method. The Gate count 

of the design is reduced by 96.2% and power is reduced by 

5% with a trade off in latency which increased by 12.6% as 

shown in Table 1. Since our proposed implementation 

operates in non-feedback cipher mode, pre-computed key 

generation technique is used in decryption process.  
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Fig 4: Key generation process 
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Table 1. Comparison of Key Generation methods in 

Encryption 

Key 

Generation 

Method 

Area 

(mm2) 

Latency (Clock 

Cycles) 

Power 

(mW/MHz) 

Pre – computed 

Key Generation 
3.78 71 4.1 

On – the fly 

Key Generation 
3.25 80 3.9 

 

3.5 Shift Row / Inverse Shift Row  
Instead of performing the shift row operation separately, we 

combined it with the Substitution Byte operation. Because of 

this, the internal registers required for shift row operation are 

avoided in our proposed implementation which results in 

appreciable area reduction.  

In our proposed implementation, 45 pins have been used out 

of which 32 pins are bidirectional pins (I/O) used for 

transferring the data and key into the crypto system and get 

the output (cipher text/plain text) from the crypto system as 

shown in Figure 5. The data transfer direction in bidirectional 

pins can be controlled by the pin „in/out‟. When the „in/out‟ 

pin is „1‟, then data in the bi-directional pins will be loaded 

into the crypto system and when it is „0‟, then data in the bi-

directional pins can be taken out of the crypto system. 

Encryption or decryption process can be selected by using the 

operating mode pin „func‟, whose value can be either „0‟ or 

„1‟ respectively. The „data/key‟ pin is used to differentiate 

the data and key inputs given to the crypto system. When the 

„data/key‟ pin is „1‟, data will be available in the bi-

directional pins (Data [31:0]) and when it is „0‟, key will be 

available in the bi-directional pins (Data [31:0]) of the crypto 

system.  

 

The control [3:0] inputs are used to stack the    data/key (32-

bits) available in the bi-directional pins and store or retrieve 

from the internal registers with 128 bits and 256 bits for data 

and key respectively. Load signal is used to make the crypto 

system wait until all data/key are loaded into the system 

completely. The security [1:0] is used to select the security 

level of the Crypto processor.  By giving „00‟, „01‟, „10‟ the 

processor will select 128-bit, 192-bit, 256-bit key length 

respectively. 

 

Precomputed Key 

Rounds(10/12/14)

Decryption

D
a

ta
 R

e
g

is
te

r
 

[1
2

7
:0

]

Control 

Unit

load
func

data/key
in/out

control [3:0]

clock

Data [31:0]

reset

On the Fly Key 

Generation

Rounds(10/12/14)

Encryption

Crypto System

Mux

K
e

y
 R

e
g

is
te

r
 

[2
5

5
:0

]

Data[127:0]

Security[1:0]

Ready

 
 

Fig 5: Proposed Configurable AES Architecture 

 

Fig.  6: Simulated Waveform for Encryption with 128 bit key 
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Fig.  7: Simulated Waveform for Decryption with 128 bit key 

 

Table  2.  Comparison of AES Design 

Parameters Verbauwhede[7] Mangard[12] Satoh[13] Su[14] Yen[15] 
Mao –Yin 

Wang[16] 
Ours 

Configurable No No No No Yes Yes Yes 

Technology (nm) 180 600 110 350 180 250 180 

Clock Rate (MHz) 125 64 224.22 200 153.84 66 333 

Throughput (Gbps) 

1.6 

1.33 

1.14 

0.241 

 

 

2.21 

2.381 

2.008 

1.736 

1.7902 

0.844 

0.704 

0.603 

10.656 

 

4. SIMULATION RESULTS 
The proposed AES architecture is described in Verilog HDL at 

the register-transfer level. Synthesizing the RTL into the gate 

level was done by design compiler using 180 nm, standard-cell 

CMOS technology.   Back-end design has been carried out using   

SOC-encounter. The simulated waveforms for both encryption 

and decryption process with 128-bit key are shown in Figure 6 

and Figure 7 respectively. The comparison results of the 

proposed implementation with the existing implementations are 

presented in Table 2 which shows that our proposed 

implementation is better in all cases when compared to the 

existing implementations. A maximum operating frequency of 

333 MHz and throughput of 10.656 Gbps has been achieved 

with our proposed implementation. The final layout of the 

proposed configurable AES processor is shown in Figure 8. 

5. CONCLUSION 
In this paper, a compact and fully pipelined ASIC 

implementation of AES cryptography algorithm has been 

presented. The proposed implementation is configurable to take 

128, 192 and 256-bit keys according to the requirement of the 

security level. The proposed architecture is synthesized in 180 

nm standard cell CMOS technology and simulated at gate level 

to measure the speed of operation. The proposed implementation 

with 32-bit I/O gives a maximum of 10.656 Gbps throughput 

with the maximum operating frequency of 333 MHz which 

outperforms the previously reported schemes. 

 

 

Fig.  8:  Final Layout of proposed Configurable AES 

Processor 
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