
IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

1

A High-Throughput ASIC implementation of

Configurable Advanced Encryption Standard (AES)

Processor

P.Saravanan
Member IEEE

Assistant Professor
Department of ECE

PSG CT, Coimbatore, India

N.RenukaDevi, G.Swathi
PG Student

Department of ECE
PSG CT, Coimbatore, India

Dr.P.Kalpana
Professor

Department of ECE
PSG CT, Coimbatore, India

ABSTRACT
This paper proposes the Application Specific Integrated Circuit

(ASIC) implementation of Advanced Encryption Standard

(AES) cryptographic algorithm with reconfigurable 128-bit,

192-bit, 256-bit keys. The proposed implementation has

compact 32-bit I/O for both data and key transfer. By using on

the fly key generation for encryption process along with

efficient implementation of MixColumn and InverseMixColumn

operations using finite field GF(22) for our 32-bit AES crypto

system gives a maximum of 80.1% improvement in operating

frequency when compared to the recent implementations. The

maximum operating frequency of our proposed pipelined

implementation is 333 MHz with high throughput of around

10.656 Gbps in 180 nm standard cell CMOS technology.

Keywords

Keywords - AES, ASIC, Cryptography, Galois Field GF(28), On

the fly key generation, Throughput.

1. INTRODUCTION
Cryptography is the science of using mathematics to encrypt and

decrypt data. Cryptography enables users to store sensitive

information or transmit it across insecure networks (like the

Internet) so that it cannot be read by anyone except the intended

recipient. In order to ensure security in modern wireless

communication systems, many cryptographic algorithms have

been proposed [1]. In 2001, Rijndael algorithm was selected as

the Advanced Encryption Standard (AES) by National Institute

of Standards and Technology (NIST) due to the combination of

security, performance, efficiency, ease of implementation and

flexibility. These features make AES the first choice in many

applications such as Wireless LAN and smart cards [2].

AES can be implemented in both software as well as hardware.

The advantage of a software implementation includes ease of

use, ease of upgrade, portability and flexibility. But the main

drawback of software implementation is the limited physical

security with respect to key storage [3]. Conversely, hardware

implementations are more physically secure, as they cannot be

easily read or modified by an outside attacker. Many hardware

implementations have been proposed for AES in the literature

[4-5]. All these implementations were based on either field

programmable gate arrays (FPGA) or application specific

integrated circuits (ASIC).

In [6], on the fly S-Box values calculation for both encryption

and decryption process has been implemented, which results in

reduced operating frequency due to the increase in critical path

delay. An AES crypto system implementation using high level

code has been discussed in [7]. The maximum throughput

achieved in this design was 2.29 Gbps with 173 K gates in

180nm technology and the maximum operating frequency

obtained was around 154 MHz. A compact 128 MHz AES

implementation has been proposed in [8] which gave a

throughput of around 0.14 Gbps with 5.6 K gates in 180 nm

technology. In [9], two architectures for the AES algorithm have

been proposed through which a maximum throughput of 3.65

Gbps has been achieved. High speed architecture for the

hardware implementation of AES algorithm using combinational

logic S-Box implementation has been presented [10].

In our proposed AES implementation, on the fly key generation

has been used for encryption process. An efficient

implementation has been achieved using finite field GF(22) in

MixColum/InverseMixColumn operations. Shift row and

MixColumn operations are combined together in order to reduce

the number of registers used in both encryption and decryption

process. Pipelining has also been implemented in appropriate

operations to deliver high throughput.

The paper is organized as follows. Section 2 explains the

basic operations in AES algorithm. The complete overview

of the proposed ASIC implementation of AES algorithm is

given in Section 3 followed by the comparison of

experimental results in Section 4. Section 5 concludes the

paper along with noted references.

2. AES ALGORITHM

The AES algorithm is a symmetric block cipher that processes

data blocks of 128 bits using a cipher key of length 128, 192, or

256 bits. Each data block consists of a 4 × 4 array of bytes called

the state, on which the basic operations of the AES algorithm are

performed. The AES encryption and decryption procedures are

shown in Figure 1 and Figure 2. After an initial round key

addition, a round function consisting of four different

transformations SubByte(), ShiftRow(), MixColumn(), and

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

2

AddRoundKey() is applied to the data block (i.e., the state

array). The round function is performed iteratively 10, 12, or 14

times, depending on the key length. Note that in the last round

MixColumn() is not applied.

AddRoundKey()

ByteSubstitution()

ShiftRow()

MixCoulmn()

AddRoundKey()

ByteSubstitution()

ShiftRow()

AddRoundKey()

Plain Text

Cipher Text

Round Key [0]

Round Key [1-9]

Round Key [10]

(N
r-

1)
 R

ou
nd

s
F

in
al

 R
ou

nd
In

iti
al

 R
ou

nd

Fig 1: The Encryption procedure of AES Algorithm

The four transformations are described briefly as follows [1]:

• SubByte(): a nonlinear byte substitution that operates

independently on each byte of the state using a substitution table

(the S-Box).

• ShiftRow(): a circular shifting operation on the rows of the

state with different numbers of bytes (offsets).

• MixColumn(): the operation that mixes the bytes in each

column by the multiplication of the state with a fixed

polynomial modulo x4 + 1.

• AddRoundKey(): an XOR operation that adds a round key to

the state in each iteration, where the round keys are generated

during the key expansion phase.

The decryption procedure of the AES is basically the inverse of

each transformation (InvShiftRow(), InvSub-Byte(),

InvMixColumn(), and AddRoundKey()) in reverse order. The

decryption procedure thus can be rearranged as shown in Figure

2. Such a structural similarity in both the encryption and

decryption procedures makes hardware implementation easier.

3. PROPOSED ASIC IMPLEMENTATION
This section describes the ASIC implementation of AES

algorithm for 128-bit key length. In our area efficient

implementation, pipelining concepts are included to get

maximum throughput along with high speed of operation. Each

round of AES is composed of 16 bytes S-Box and four 32-bit
MixColumn operations, working on independent data.

3.1 MixColumn() Transformation
The MixColumn transformation operates on the state column-

by-column, treating each column as a four-term polynomial [1].

The columns are considered as polynomials over GF(28) and

multiplied modulo x4 + 1 with a fixed polynomial a(x)= {03} x3

+ {01} x2 + {01} x + {02} is given by the following matrix.

 =

The steps to perform the above multiplication are as follows[1]:

S1‟= 02*S1+ 03*S2+01*S3+01*S4

1. Multiplication by 1 in GF(28) : Multiplication by one is the

identity.

2. Multiplication by 2 in GF(28) is performed by :

Multiplying by a value less than 0x80 shift all the bits

left by 1.Multiplying by a value greater than or equal to 0x80

shift left by 1 and XOR with 0x1b.

3. Multiplication by 3 in GF(28) :

a*0x03 = a*(0x02 + 0x01) = (a * 0x02) + (a * 0x01)

AddRoundKey()

InverseShiftRow()

InverseByteSubstitution()

InverseMixCoulmn()

AddRoundKey()

InverseShiftRow()

InverseByteSubstitution()

AddRoundKey()

Cipher Text

Plain Text

Inverse Round Key [0]

Inverse Round Key [1 - 9]

Inverse Round Key [10]

(N
r-

1
)

R
o

u
n

d
s

F
in

a
l
R

o
u

n
d

In
it
ia

l
R

o
u

n
d

Fig 2: The Decryption procedure of AES Algorithm

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

3

3.2 InverseMixColumn () Transformation
Generally affine transformation along with multiplicative

inverse in GF(28) is used for the implementation of

InverseMixColumn operation in decryption process. But the

drawback of this technique is the increased complexity due to

increase in number of complex operations. Hence, in our

proposed implementation, InverseMixColumn operation is

performed using multiplication in GF(28) method. Here

GF(22) has been implemented and the same has been used as

the basic block for deriving GF(28). The matrix

multiplication in GF(28) for InverseMixColumn is given by

the following matrix:

=

where S1‟= 0e*S1+ 0b*S2+0d*S3+09*S4.

Multiplication with 0e is obtained by XORing the results of

multiplication with 08, 04 and 02 in GF(28). The multiplication

with 08 is obtained by multiplying 04 and 02 in GF(28). The

multiplication with 04 is obtained by multiplying 02 and 02 in

GF(28). The multiplication with 09 is obtained by XORing the

results of multiplication with 08 and 01. The multiplication with

0b is obtained by XORing the results of multiplication with 08,

02 and 01. Similarly, the multiplication of 0d is obtained by

XORing the multiplication of 08, 04 and 01. The above

mentioned operation is explained for a single byte in Figure 3.

The same method can be followed for the remaining 3 bytes.

d0[7:0]

in0[1]
sh0[2]

sh0[1]in0[0]

sh0reg[2]

sh0reg[7]

sh0reg[6]

d0reg[2]

d0reg[1]

d0reg[7]

d0reg[6]

d0reg[4]

d0reg[5]

d0reg[0]

d0reg[3

d0[0]

d0[3]

d0[5]

d0[4]

d0[6]

d0[7]

d0[1]

d0[2]

sh0reg[5]

sh0reg[1]

sh0reg[4]

sh0reg[3]

in0[6]

in0[5]

in0[3]

in0[4]

in0[7]

in0[2]

sh0[5]

sh0[6]

sh0[7]

sh0[4]

sh0[3]

clkin
0[

7:
0]

Fig 3: Architecture of single byte multiplication with 02

in GF(28).

3.3 Substitution Box (S-Box) implementation
Two approaches are available in the literature for realizing

the S-Box. One method uses ROM to store S-Box values and

other method calculates the values on the fly. To generate an

S-Box value on the fly, two transformations are needed: a

multiplicative inverse in GF(28) with polynomial, m(x) = x8

+ x4 + x3 + x + 1 and an affine transformation, b(x) = (x7 +

x6 + x2 + x) + a(x) * (x7 + x6 + x5 + x4 + 1) mod (x8 + 1)

where a(x) is the multiplicative inverse in the polynomial

form. This approach increases the critical delay of encryption

[11]. In order to decrease the critical path delay of the

encryption process we used Lookup Table (LUT)

implementation.

3.4 Key Generation
Traditionally, most of the papers referred to implementing

the key generation by pre-computation method. But the

drawback of pre-computation method is the extra memory

required to store keys for all rounds which results in

increased area. To overcome this problem, in our proposed

implementation, on the fly key generation technique has been

adopted with pipelined structure. The internal structure of the

key generator is shown in Figure 4. Due to the absence of

internal storage of keys, the proposed implementation

occupies less area which leads to low power consumption

when compared to pre-computation method. The Gate count

of the design is reduced by 96.2% and power is reduced by

5% with a trade off in latency which increased by 12.6% as

shown in Table 1. Since our proposed implementation

operates in non-feedback cipher mode, pre-computed key

generation technique is used in decryption process.

XORXORXOR

XOR

K13

MEM

K0RCON

K4

K8

K12
K4 K8K4

K'12K'8K'4K'0

XORXORXOR

XOR

K14

MEM

K1

K4

K8

K12
K4 K8K4

K'13K'9K'5K'1

XORXORXOR

XOR

K15

MEM

K2

K4

K8

K12
K4 K8K4

K'14K'10K'6K'2

XORXORXOR

XOR

K12

MEM

K3

K4

K8

K12
K4 K8K4

K'15K'11K'7K'3

Fig 4: Key generation process

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

4

Table 1. Comparison of Key Generation methods in

Encryption

Key

Generation

Method

Area

(mm2)

Latency (Clock

Cycles)

Power

(mW/MHz)

Pre – computed

Key Generation
3.78 71 4.1

On – the fly

Key Generation
3.25 80 3.9

3.5 Shift Row / Inverse Shift Row
Instead of performing the shift row operation separately, we

combined it with the Substitution Byte operation. Because of

this, the internal registers required for shift row operation are

avoided in our proposed implementation which results in

appreciable area reduction.

In our proposed implementation, 45 pins have been used out

of which 32 pins are bidirectional pins (I/O) used for

transferring the data and key into the crypto system and get

the output (cipher text/plain text) from the crypto system as

shown in Figure 5. The data transfer direction in bidirectional

pins can be controlled by the pin „in/out‟. When the „in/out‟

pin is „1‟, then data in the bi-directional pins will be loaded

into the crypto system and when it is „0‟, then data in the bi-

directional pins can be taken out of the crypto system.

Encryption or decryption process can be selected by using the

operating mode pin „func‟, whose value can be either „0‟ or

„1‟ respectively. The „data/key‟ pin is used to differentiate

the data and key inputs given to the crypto system. When the

„data/key‟ pin is „1‟, data will be available in the bi-

directional pins (Data [31:0]) and when it is „0‟, key will be

available in the bi-directional pins (Data [31:0]) of the crypto

system.

The control [3:0] inputs are used to stack the data/key (32-

bits) available in the bi-directional pins and store or retrieve

from the internal registers with 128 bits and 256 bits for data

and key respectively. Load signal is used to make the crypto

system wait until all data/key are loaded into the system

completely. The security [1:0] is used to select the security

level of the Crypto processor. By giving „00‟, „01‟, „10‟ the

processor will select 128-bit, 192-bit, 256-bit key length

respectively.

Precomputed Key

Rounds(10/12/14)

Decryption

D
a

ta
 R

e
g

is
te

r

[1
2

7
:0

]

Control

Unit

load
func

data/key
in/out

control [3:0]

clock

Data [31:0]

reset

On the Fly Key

Generation

Rounds(10/12/14)

Encryption

Crypto System

Mux

K
e

y
 R

e
g

is
te

r

[2
5

5
:0

]

Data[127:0]

Security[1:0]

Ready

Fig 5: Proposed Configurable AES Architecture

Fig. 6: Simulated Waveform for Encryption with 128 bit key

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

5

Fig. 7: Simulated Waveform for Decryption with 128 bit key

Table 2. Comparison of AES Design

Parameters Verbauwhede[7] Mangard[12] Satoh[13] Su[14] Yen[15]
Mao –Yin

Wang[16]
Ours

Configurable No No No No Yes Yes Yes

Technology (nm) 180 600 110 350 180 250 180

Clock Rate (MHz) 125 64 224.22 200 153.84 66 333

Throughput (Gbps)

1.6

1.33

1.14

0.241

2.21

2.381

2.008

1.736

1.7902

0.844

0.704

0.603

10.656

4. SIMULATION RESULTS
The proposed AES architecture is described in Verilog HDL at

the register-transfer level. Synthesizing the RTL into the gate

level was done by design compiler using 180 nm, standard-cell

CMOS technology. Back-end design has been carried out using

SOC-encounter. The simulated waveforms for both encryption

and decryption process with 128-bit key are shown in Figure 6

and Figure 7 respectively. The comparison results of the

proposed implementation with the existing implementations are

presented in Table 2 which shows that our proposed

implementation is better in all cases when compared to the

existing implementations. A maximum operating frequency of

333 MHz and throughput of 10.656 Gbps has been achieved

with our proposed implementation. The final layout of the

proposed configurable AES processor is shown in Figure 8.

5. CONCLUSION
In this paper, a compact and fully pipelined ASIC

implementation of AES cryptography algorithm has been

presented. The proposed implementation is configurable to take

128, 192 and 256-bit keys according to the requirement of the

security level. The proposed architecture is synthesized in 180

nm standard cell CMOS technology and simulated at gate level

to measure the speed of operation. The proposed implementation

with 32-bit I/O gives a maximum of 10.656 Gbps throughput

with the maximum operating frequency of 333 MHz which

outperforms the previously reported schemes.

Fig. 8: Final Layout of proposed Configurable AES

Processor

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

6

6. REFERENCES
[1] William Stallings, Cryptography and Network Security,

Pearson Education, 2009.

[2] National Institute of Standards and Technology (US),

Advanced Encryption Standard,

http://csrc.nist.gov/publication/drafts/dfips-AES.pdf.

[3] B. Schnieir, Applied Cryptography, Wiley, New York,

1996.

[4] P. Chodowiec and K. Gaj, “Very compact FPGA

implementation of the AES algorithm,” Proceedings of

Cryptographic Hardware and Embedded Systems (CHES),

pp. 319-333, 2003.

[5] Gael Rouvroy, Francois-Xavier Standaert and Jean-Jacques

Quisquater, “Compact and efficient encryption / decryption

module for FPGA implementation of the AES Rijndael

very well suited for small embedded applications,”

Proceedings of the International Conference on Information

Technology : Coding and Computing (ITCC'04), 2004.

[6] Chih-Pin Su, Tsung-Fu Lin, Chih-Tsiun Huang and Cheng-

Wen Wu, “A high-throughput low cost aes processor,”

IEEE Communications Magazine, vol. 41, no. 12,

pp. 86-91, 2003.

[7] Ingrid Verbauwhede, Patrick Schaumont, and Henry Kuo,

“Design and performance testing of a 2.29 Gb/s Rijndael

processor,” IEEE Journal of solid-state circuits, vol. 38,

no. 3, 2003.

[8] F. Haghighizadeh, H. Attarzadeh and M. Sharifkhani, “A

Compact 8-bit AES Crypto-Processor,” Second

International Conference on Computer and Network

Technology (ICCNT'10), 2010.

[9] N. Sklavos and O. Koufopavlou, “Architectures and VLSI

implementations of the AES-Proposal Rijndael,” IEEE

Transactions on computers, vol. 51 no. 12, pp. 1454-1459,

2002.

[10] X. Zhang and K. Parhi, “High speed VLSI Architectures for

the AES algorithm,” IEEE transactions on VLSI systems,

vol. 12, no. 9, 2004.

[11] S.M. Yoo, D. Kotturi, D.W. Pan and J. Blizzard, “An AES

crypto chip using a high-speed parallel pipelined

architecture,” Journal of Microprocessors and

Microsystems, pp. 317-326, 2005.

[12] S. Mangard, M. Aigner, and S. Dominikus, “A highly

regular and scal-able AES hardware architecture,” IEEE

Trans. Comput. , vol. 52, no. 4,pp. 483–491, Apr. 2003

[13] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A

compact Rijn-dael hardware architecture with S-box

optimization,” in ASIA CRYPT 2001 .Berlin, Germany:

Springer-Verlag, 2001, vol. 2248, LNCS, pp. 239–254.

[14] C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W. Wu, “A high-

throughput low-cost AES processor,” IEEE Commun. Mag.

,vol. 41, no. 12, pp. 86–91, Dec. 2003.

[15] C.-H. Yen, T.-Y. Pai, and B.-F. Wu, “The implementations

of the re-configurable Rijndael algorithm with throughput

of 4.9 Gbps,” in Proc.16th VLSI Des./CAD Symp. ,

Hualien, Taiwan, Aug. 2005.

[16] Mao –Yin Wang, Chih –Pin Su, Chia- Lung Horng, Cheng

–Wen Wu and Chih- Tsun Huang, “ Single- and Multi-core

Configurable AEs Architectures for Flexible Security,”

IEEE Transactions on Very Large Scale Integration(VLSI)

Systems, Vol. 18,No.4, April 2010.

http://csrc.nist.gov/publication/drafts/dfips-AES.pdf

