
IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

20

“Yukti”: A Dynamic Agent based IDS with Suspect

Engine to Detect Diverse XSS Attacks

K.Sivakumar
Department of E&CE

IIT, Roorkee
India

Anil.K.Sarje
Department of E&CE

IIT, Roorkee
India

K.Garg
Manipal Inst.of Technology

Manipal
India

ABSTRACT

Injecting malicious script through links, URLs (Unified resource

locator) or as user inputs and getting it executed (when inputs

are not validated) in the client side is called cross site scripting

(XSS) attack. It is called XSS because the script that is executed

here is not originated from the same client or from a trusted

server. Our solution “Yukti” is devised to detect these

application specific XSS attacks at network level by deep packet

inspection in the live environment. Existing solutions do static

security code review or scans the application for known attack

patterns. “Yukti’ is dynamic as the suspect engine in the

solution is unique and has the capability to suspect a new attack

pattern. If the suspect is analyzed to be true, the rule that would

detect the attack is built into rule base dynamically. This paper

discusses the design, components, architecture, dependencies,

techniques, implementation and analysis of results obtained. Our

results show that out of huge test cases (70000- both XSS and

Non XSS) the solution is able to detect 28546 numbers of XSS

attacks initially (before appending new rules in detection

engine). After appending new rules based on recommendations

from suspect engine, it is able to detect 32363 XSS. Yukti

demonstrates considerable improvement in the performance

when analyzed with leading IDS engine SNORT while detecting

XSS attacks

General Terms

Web Security, Vulnerability Assessment & Intrusion Detection.

Keywords

Cross Site Scripting, XSS, Web Application Security,

Application Intrusion Detection, Security Attacks and

Vulnerability Management.

1. INTRODUCTION
Vulnerability is a weakness in software, operating system or

hardware that can be exploited by an attacker. An exploit is a

technique or software code (often in the form of scripts) that

takes advantage of a vulnerability or security weakness in a

piece of target software [12, 13, 14, and 16]. Vulnerabilities are

of significant interest when a program containing the flaw

operates in a networked environment or has access to the

Internet. When vulnerabilities are discovered, disclosed and

exploited, they give rise to individual and large-scale attacks

challenging the security of the Web.

Cross-site scripting attacks occur when dynamically generated

web pages display input that is not properly validated [1, 7, 8,

and 10]. This allows an attacker to embed malicious JavaScript

code into the generated page and execute the script on the

machine of any user who access that site. According to [8, 13,

and 15] there are three fundamental types of XSS: stored,

reflected and DOM (Document object Model) based.

Stored XSS works if a HTML page includes data stored on the

Web server (e.g. from a database) that originally comes from

user input. Some part of a HTTP request (usually a URL

parameter, cookie or the referrer location) is reflected by the

web server into the HTML content that is returned to the

requesting browser in reflected XSS. Reflected means that the

input is written back unaltered. DOM-based XSS is very similar

to the second type. A key difference is that the attack code is not

embedded into the HTML content sent back by the server.

Instead, it is embedded in the URL of the requested page and

executed in the user's browser by faulty script code contained in

the HTML content returned by the server.

Attackers often perform XSS exploitation by crafting malicious

URLs and tricking users to clicking them. These links cause

client side scripting languages (VBScript, JavaScript, etc.) of the

attacker’s choice to execute on the victim’s browser. There are

numerous ways to inject JavaScript (any script) code into URLs

for the purpose of a XSS attack [1, 6, 8, 10, and 11].

In this paper we build our solution named “Yukti” and discuss

about the state of art component Suspect Engine. Yukti provides

the mechanism to dynamically detect XSS attacks at packet

level using centrally grown incremental rule base.

Works related to XSS detection are discussed in section 2. Ours

contribution in building the solution is discussed in section 3. In

section 4, implementation of the solution and theory behind the

state of the art Suspect Engine are discussed. Analyses of the

results are made in section 5. Limitations & Future scope to our

approach is listed in sections 6. Conclusion is drawn in section7.

2. RELATED WORK
Kirda et al [1] identify, that the code in JavaScript is vulnerable

to XSS attacks and a client side solution is necessary to detect

the vulnerabilities. The authors suggest a personal web fire wall

NOXES that acts as a web proxy. It utilizes automatically

generated rules in addition to manual ones for policing. NOXES

provides an additional layer of protection which allows users to

exert control over connections that browsers are making.

According to Vogt [2], dynamic Data tainting is necessary in

JavaScript Engine of Mozilla Fire Fox, such that sensitive

information shall not be transferred by XSS code without the

user’s consent. In [3] the authors recognize that the injected

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

21

malicious JavaScript through the user’s web browsers (Mozilla)

could create enormous damage to the site. They have proposed a

solution by auditing Java Script dynamically during execution,

combined with IDS (Intrusion Detection System) to detect

malicious JavaScript code

In [4] the researchers have exposed the SQL injection and XSS

attacks in the IE Framework. IE (Internet Explorer) is the target

of most of the attacks. The authors propose a complete

crawling of the site and recommend a Black Box testing using

WAVES (Web application Vulnerability and Error Scanner)

after doing a Reverse Engineering of the site.

 In [9] the authors view the client’s information as the main

target for XSS attacks (such as, the cookie and the data in the

hidden field). Such attacks use cookies-based session

management to steal dynamic information without the user’s

knowledge. Client side (rather than Server side) automated IDS

via central repository are the suggested solution. IDS use two

servers, one for detection/collection (Proxy) and the other for

Database.

According to Kruegel et al [10], it is not possible to maintain the

misuse type IDS (IDS are categorized basically into misuse and

anomaly detection) due to large dynamic signatures in an

everyday attack scenario. The authors in [11] have identified the

XSS vulnerabilities in server pages. Two basic techniques to

accomplish XSS attacks in server pages include insertion of

malicious code in the database and executing a link containing

the malicious code itself. The approach used by the authors to

detect and confirm the attack includes static analysis to detect

web application vulnerabilities and dynamic analysis to check

actual vulnerabilities.

After making an in depth survey on the existing solutions [1, 5,

6] we have learned that a portable solution to detect XSS attack

at both server and client end is necessary. Following section

discusses our contribution in building the solution.

3. OUR CONTRIBUTION
We have christened our solution as “Yukti” a Sanskrit word

means trick, tactics, strategy, deduction from circumstances,

combination, union, induction, junction, reasoning, plan and

proof. In adherence to the name, our solution includes all the

said activities. The concept, components, architecture,

implementation and analysis of the solution are discussed in

detail in the following section.

3.1 Solution Concept
We, in our solution, have developed a detection methodology

that is based on dynamic intrusion detection coupled with agent

based sensors that are deployed at both server end and client

end. Yukti provides the mechanism to dynamically detect XSS

using centrally grown incremental rule base.

3.1.1 How Different Is Yukti
 Yukti

Suspect Engine is the unique component in our solution that

suspects an attack and puts it into analysis. Suspect Engine

helps to reduce false positives dynamically.

 Existing Other Solutions

Such feature is not yet found in any of the existing solutions.

False positives are eliminated manually after report

generation only.

 Yukti

Jpcap (external library) is used to capture the packets alone.

We have written our own custom code for interpreting and

extraction. It gives better control over filtering the required

request, response traffic based on different parameters.

 Existing Other Solutions

Much dependent on external libraries in turn lesser control

over traffic.

 Yukti

Detection through deep packet inspection for XSS

 Existing Other Solutions

Detection is through static code review (HP Fortify,

Appscan Source and etc.) or application vulnerability

assessment using security testing (Appscan, HP Webinspect,

Acunetix, Hailstorm and etc.). Some modern threat

management devices do packet inspection with very limited

XSS detection capability (Snort)

 Yukti

Dynamic rules (rule building capability) and specially

crafted regex using phrase structures are used to detect XSS

attacks.

 Existing Other Solutions

Static rule sets and regex are used for XSS vulnerability

detection

 Yukti

Zero day XSS based attacks can be detected with the help of

Suspect Engine and Knowledge aggregator.

 Existing Other Solutions

Zero day XSS attacks are either undetected or detected only

with help of special paid services offered by vendor’s 24X7

research team

 Yukti

Attacker profiler is a value added component in our solution

to keep track of the origin of attack, whereabouts of attacker.

 Existing Other Solutions

Yet to find such a comprehensive component attached to an

existing XSS detection tool.

.

3.2 Solution Components
As given in Fig 1, Yukti Intrusion Detection Server (YIDS) and

Agent (YIDA) are the basic building blocks of our solution.

Many other components were appended to the solution based on

the necessity. Components of Yukti are listed in Fig 2. YIDS is

the core component. It is comprised of YID Manager (YIDM),

Agent Manager, Suspect Manager and Database Manager.

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

22

Fig 1: Building Block of Yukti

3.2.1 YIDM
YIDM includes Packet Capturing Engine (PCE), Intrusion

Detection Engine (IDE), Rule Engine (RUE), Knowledge

Aggregator and Dashboard. Agent Manager includes Agent

Registration, Inactive Agent intimation, Agent Memory

Manager and Log Manager. Suspect Manager includes Suspect

Receiver, Suspect Analyzer, Rule Engine and Graphical

Interface. Database Manager includes Memory Alert, Data

Backup and Database cleanup components.

Fig 2: Components of Yukti

Rule engine is comprised of comprehensive rule database with

more than 132 rules. It is a component developed out of our’s

continual research on XSS exploits. PCE, IDE and RUE are

explained in detail in the implementation section. Knowledge

aggregator is the feature through which YIDM administrator

gets the latest information on recent XSS exploits and attack

signatures. Aggregator is interfaced with different RSS feeders

and security advisories providers. Dashboard is the feature that

displays the attack statistics like the number of packets captured,

categories of packets, number of attacks detected and number of

suspect packets. Graphical representations of the statistics are

also available for easy understanding.

3.2.2 Agent Manager

Agent Manager is a feature, we have included after feeling its

necessity. Registration process is enabled once an agent is

deployed in the host. This helps the YIDS to keep track of the

number of hosts connected to it. Further, agents that do not

communicate for a long period are verified for their active status

at regular intervals. In case any agent does not respond, its

inactive status is intimated to YIDS administrator through the

Agent Manager for further actions.

It is necessary to keep the memory occupied by the agents as

little as possible. Archived suspects, attack profiles increase the

memory usage of agent. Hence the outdated archives are called

back by the agent manager and stored in the server’s database.

Every activity carried out by the agent is recorded in the agent

itself. At regular interval they are pushed back to the agent

manager by the agent’s log pusher. These logs are very useful

for tracing back the attacks and suspects. Log management

features of Agent Manager Handles this activity.

3.2.3 Suspect Manager

Suspect Manager(SM) is the unique component introduced by us

in this solution. When an agent suspects a XSS intrusion, it

sends the suspected information to Suspect Receiver of SM.

Suspect analyzer is a mix of automated and manual analysis

engine. More details of the analyzer are provided in Section 3.4

under suspect mode.

3.2.4 Database Manager

Database Manager of YIDM is used to learn the health of the

database memory. As it is vital for storing archives and current

information, necessary alerts are triggered when memory is

nearing to 90% of the total capacity. Facilities to take regular

backup and clean up are provided by DB manager.

3.2.5 YIDA

YID Agent (YIDA) is comprised of Autonomous agent engine,

Suspect Detector, Ticketer, Rule Buffer, Attack Profiler and Log

Pusher. Ticketer is a ticketing utility embedded within the agent

to have a ticket raised in case of suspect and send it to the YIDS.

More information on components and operations of YIDA are

discussed in section 3.4 and in section 4.2.

3.3 Solution Architecture
YIDS is the central storage, command and control station as

show in Fig 3. YIDS have an in built YIDA to protect itself

from XSS attacks. For a simple version we have MySql database

in the same system itself. In large environments database can be

YID Server

1. YID Manager

2. Agent Manager

3. Suspect Manager

4. Database Manager

YID Agent

 Autonomous Agent Engine

 Suspect Detector

 Ticketer

 Rule Buffer

 Attacker Profiler

 Log Pusher

 1. YID Manager
 Packet Capturing Engine

 Intrusion Detection Engine

 Rule Engine

 Knowledge Aggregator

 Dash Board

2.Agent Manager

 Agent Registration

 Inactive Agents

 Memory Mgmt

 Log Management

3. Suspect Manager

 Suspect Receiver

 Suspect Analyzer

 Rule Engine

 Graphical Interface

4.DatabaseManager

 Memory Alert

 Data Backup

 Database Cleanup

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

23

resident on a separate server. YIDAs are the autonomous

software agents that are deployed into the nodes to be protected.

Fig 3: Architecture of YUKTI

We recommend deploying YIDA in the Business Server or

Application server to detect any persistent and reflected XSS

attack at first instant. Placing the YIDA at client node would

detect DOM based XSS attacks and non-persistent attacks.

3.4 YIDA – YIDM Transaction Sequence
YIDA works in two modes, viz.,

1. Detect Mode

2. Suspect Mode

The YIDA registers itself to the YIDM. Upon registration

YIDM pushes the updated rule sets to the YIDA. The IDE in

autonomous agent engine of YIDA sniffs the packet passing

through (both inward and outward), i.e. both request and

response to and fro from the host device. The advantage here is

YIDA does not need to hold a database for storing rule sets.

These rule sets are made available as a flat file to YIDA.

Whenever detection engine is able to detect the attack, they are

highlighted in the interface menu. User can know more

information about the attack, rule applied by clicking the packet

highlighted in red in the interface menu. In addition to the

detection, the details of attacker’s IP, whereabouts, whois

information are collected by submitting the IP to an external

whois server [19]. This information is stored by pushing into

attacker’s profile database in YIDS for future reference.

As given in the Fig 4 , in the suspect mode, when YIDA is

unable to confirm that (packet decode) as an attack, a ticket is

created. Ticket includes the copy of the packet trace and is sent

to the YIDM’s suspect manager. The YIDM administrator gets

the alert for the ticket. The ticket is analyzed for any new type of

XSS attack signature. With the help of Knowledge Aggregator

and his personal experience, administrator (or an authorized

user) categorizes it as an attack or not. If it is an attack signature,

it is appended to the YIDM’s rule data base. An updated rule set

is pushed to all the YIDAs. With these current rule sets any new

or variants of XSS attacks could be detected by any participant

agent. In addition to knowing the concepts and components it is

interesting to know about the implementation. Following section

discusses the key entities related to implementation of the

solution.

YIDM Agent Mgr YIDADB MgrSuspect Mgr Victim Node

Push Rules

Sniff Packets

Detect Attacks

Push the ticket to Suspect Manager

Suspicious Attack

Suspect verified

On Confirmation Update Rule Base

Push Updated Rule Base

Fig 4: Sequence diagram for YIDA-YIDM in suspect mode

4. SOLUTION IMPLEMENTATION
Given below are the requirements for our development

environment: The entire solution is built using Java. The

portability, network adaptability, interoperability and platform

independence features of Java has enabled us to develop this

solution.

 Jdk 1.6 and above

 Jpcap

 Winpcap

 Mysql 5.0 and above

 Mysql Connecter - java 5.1.10 bin

 Apache Tomcat v6

4.1 Packet Inspection Flow Diagram
The flow chart given in Fig. 5 explains the packet inspection

activity which is the core one in this implementation. The

process is initiated as a thread (initCapturePacket). Packets are

captured using the jpcap external library[20] that is called in by

our application. IDSengine receives the packets and are

extracted for protocol filtration by the PacketExtractor. Copies

of the packets are stored in packet database. Packet contents are

factored to detect whether they have any XSS signatures. This is

done by comparing every rule in rule base with the decoded

contents of the packet. An alert is rendered by XSSFinder if an

exact match is found.

Based on the source and destination IP address of the packet,

they are categorized as request or response. After classification

they are stored in request and response table respectively. These

packets are numbered and displayed in the table format (header

and rows) in the display menu. The packets that carry the

signature (those are parsed true while comparing) are

highlighted in red color. By clicking the highlighted row the

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

24

administrator or user can view the decoded contents of the

packet header and messages. The signature part was also

highlighted for better viewing. Different decoding and encoding

methods are applied depending upon the location (user input or

URL) the XSS signature exists.

When XSSFinder cannot find an exact match, but detects some

traces of the XSS signature, then it goes into the suspect mode

and suspect engine is called. With the help of personal

intelligence and knowledge obtained from the knowledge

aggregator the administrator or user decides whether the suspect

is a true XSS attack signature or not. If it is decided true a new

regex will be created for the attack and sent to the rule base for

updating and distribution to all agents (not shown in the figure).

Fig 5: Packet Inspection Activity Diagram

By applying the updated rule set XSSfinder detects any such

attacks if it is repeated in future. We have used rule base, rule

set interchangeably in many places because we mean rule base

when the rules are in database. When these rules are transferred

to a flat file and used by the agent, we call it as a rule set.

Important dependencies are discussed in this implementation

section. The following section discusses the state of the art

suspect engine of our solution.

4.2 State of the Art –Suspect Engine

The unique suspect engine in our detection system uses the

following state of the art phrase-structure. It helps to achieve

greater accuracy in categorizing the arriving packets into

suspects or not. Table 3 lists some of the regex that are used to

identify suspects. We have taken the suspect rule

“SCRIPT_ALERT“ to explain the grammar and its production.

The regex

[<](s).?(c).?(r).?(i).?(p).?(t)[>](.*\\s)*?(alert)[(]['\"`]?.*?['\"`]?[)]

[;]?

is broken into smaller groups as given in the Table 1

Table 1 Breaking the regex into smaller groups

SCRIPT_ALERT

GROUP NO REGEX RULE DATA

GRP-01 [<](s)

GRP-02 .?(c)

GRP-03 .?(r)

GRP-04 .?(i)

GRP-05 .?(p)

GRP-06 .?(t)[>]

GRP-07 (.*\\s)*?

GRP-08 (alert)

GRP-09 [(]['\"`]?

GRP-10 .*?

GRP-11 ['\"`]?

GRP-12 [)][;]?

The operations between each group are as given below. This is

derived from our continual research.

(GRP-01 ˅ GRP-02 ˅ GRP-03 ˅ GRP-04 ˅ GRP-05) ˄ (GRP-

06 ˅ GRP-07) ˄ (GRP-08) ˄ (GRP-09 ˅ GRP-10 ˅ GRP-11 ˅

GRP-12)

The grammar G for the for the expression is defined as

G={VN ,VT , S, P} , Where

VN = {A1, A2, A3,… A12} is a finite set of non-terminal symbols

of a vocabulary V, which can be replaced by other symbols..

VT = {a1, a2, a3,… a12} is a finite set of terminal symbols of V,

which cannot be replaced by other symbols

 S is a start symbol

P is the set of productions (grammatical rules) each of the form

w1 w2, where w1 is a single non-terminal symbol and w2 is a

single terminal or a terminal followed by a non-terminal.

P = {S a1A1│a2A2│ a3A3│ a4A4│ a5A5 │ a6A6│ a7A7,

A1 a2A2│ a3A3│ a4A4│ a5A5 │ a6A6│ a7A7,

A2 a1A1│ a3A3│ a4A4│ a5A5 │ a6A6│ a7A7,

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

25

A3 a1A1│ a2A2│ a4A4│ a5A5 │ a6A6│ a7A7,

 A4 a1A1│ a2A2│ a4A4│ a5A5 │ a6A6│ a7A7,

A5 a1A1│ a2A2│ a3A3│ a4A4 │ a6A6│ a7A7,

A6 a7A7│ a8A8,

A7 a6A6│ a8A8,

 A8 a9A9│ a10A10│ a11A11│ a12A12│ a9│ a10│ a11│ a12,

A9 a10A10│ a11A11│ a12A12│ a10│ a11│ a12,

A10 a9A9│ a11A11│ a12A12│ a9│ a11│ a12,

A11 a9A9│ a10A10│ a12A12│ a9│ a10│ a12,

A12 a9A9│ a10A10│ a11A11│ a9│ a10│ a11 }

Here in this example {A1… A12 } are our {GRP-01 … GRP-12},

{a1,… a12 } are {<,s,c,r…..),;} and S <. A high level

explanation is provided above, where as each groups follow

their regex syntax to parse further at next level.

5. RESULT ANALYSIS
We have taken a large set of test cases (attack scripts) to conduct

an extensive analysis of our solution. Well known XSS exploits

from different sources [8, 12, 16, 17 and 18] and huge collection

of cases derived from the archives of xssed.com

(http://www.xssed.com/archive) were used for analysis. A web

application was created to access all these test cases. Test cases

were hosted in web environment. They were accessed as Form

inputs, email links and etc. The process of passing these test

cases as an input to the web application has been automated.

Results are tabulated in Table 2. First column “TestCases” gives

the number of test cases that are given as input. B–means the

rule set before applying any new rules. A-means the rule set

after applying new rules. “NOD B” represents the number of

attacks detected using rule set B.

“RULES B” gives the number of rules that exactly matched with

the XSS signature in the input. “SUSP B” gives the number of

signatures that are suspected as attack while using rule base B.

“NOUD B” represents the number of undetected cases. “NOD

A” represents the number of attacks detected using rule set A.

“RULES A” gives the number of rules that exactly matched with

the XSS signature in the input. “SUSP A” gives the number of

signatures that are suspected as attack while using rule base A.

“NOUD A” represents the number of undetected cases.

There are 70101 test cases (appx. 15% are invalid cases) used

and 28546 were detected using 132 rules in rule set B. 2525

cases were suspected. One important point to be noticed here is

that it is not that every time a new rule is used for matching

purpose. Same rule can be used for detecting several cases.

Accordingly there are only 132 rules available in the rule base

B. Rule 1 is used for detecting 1 case, rule 2 is used to detect

346 cases, rule 3 is used to detect 23680 cases.

The summary of the analysis is, around 28546 attacks were

detected before applying any new rules whereas 32363 detection

were made after updating the rule base with new rules. Similarly

numbers of suspects were increased from 2525 to 6251 after

applying new rules. This is due to the fact that new rules would

help in creating new regular expressions that are helpful to

suspect additionally. Here also it is not that 2525 suspect rules

are used to detect. One suspect rule (regex) can be used to

suspect several cases. Accordingly it was observed that there are

only 5 suspect rules . Rule 2 is used to detect 14 cases before

applying any new rule. Rule 4 and 5 were used to suspect 1306

and 1205 cases respectively. It could also be observed that

slighter modification or appending new suspect rule has helped

in suspecting more cases. Samples of suspect rules are given in

Table 3. It has three columns. First column lists suspect rule

number, second column lists the the suspect rule name and the

third one gives the exact syntax that comprised of regular

expressions. Initially there were only 2 suspect rules, but it is

appended with more suspect rules to help detection

Table 2 Suspected and Detected XSS Attacks

Snort IDS [21] has more than twenty thousand signatures to

detect all types of attack including network and other application

layer attacks. In contrast it has lesser number of rules (< 100 non

repetitive) to detect XSS attacks. When the interpreted Snort

rules for XSS were used to detect the test cases explained above,

we found considerable numbers of false positives and false

negatives. The ever changing camouflages of XSS attacks are

reason for increased true negatives. Generalized content

matching for the text like “script” is causing more false

positives. Snort is again categorizing some of them as “cross site

attempt”. Commercial version of snort that provides subscribed

rule sets could include these new updated signatures, thus

creating the dependency in pushing the new rules from external

source. Yukti’s capability to suspect XSS attack using complex

regex (unlike simple pattern matching in Snort for XSS) makes

it unique in building the dynamic rule set and suspect rules

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

26

instantaneously within the system itself. It is evident from the

results displayed in the table that our solution is able detect XSS

attacks effectively and can improve its performance dynamically

on its own. Samples of XSS attack signatures are given in the

Table 4. It has four columns. First gives the rule number,

second rule name, third column gives the rule pattern for the

XSS attack when it is given as the user input. Fourth column

gives the rule pattern to detect the XSS attack when it is

exploited via URI. Fig. 6 shows the packet 24 that is suspected

for XSS attack.

Table 3. Suspect Rules

SUSP NO. SUSPECT RULE NAME SUSPECT RULE (Regex)

1 EVENT_VB_MSGBOX (on.*?)[=](vbscript)[:](msgbox)[(]['\"`]?.*?['\"`]?[)]

2 EXP_EVAL_ALERT (expression)[(](eval)?[(]?['\"`]?(alert)[(]['\"`]?.*?['\"`]?[)]['\"`]?[)]?[)]

3 ALERT_STR_CHARCODE (alert)[(]['\"`]?(string)[.](fromcharcode)[(][0-9]{1,2}[,][0-9]{1,2}[,][0-9]{1,2}[)]['\"`]?[)]

4 SRC_JS
(src)[=]['\"`]?((https?|ftp|gopher|telnet|file|notes|ms-
help):((//)|(\\\\))+[\\w\\d:#@%/;$()~_?\\+-=\\\\.&]*)[.](j)[^pg][s]?['\"`]?

5 JAVASCRIPT_EVAL_ALERT
(data)?(on.*?)?(background)?(src)?(href)?[=](3d)?['\"`]?.?(j)?.?(a)?.?(v)?.?(a)?.?(script)?[:#]?(
eval)?[(]?['\"`]?(alert)[(]['\"`]?.*?['\"`]?[)]['\"`]?[)]?[;]?['\"`]?

12 JAVASCRIPT_ALERT
(data)?(on.*?)?(background)?(src)?(href)?[=](3d)?['\"`]?\\s.\\s.?(j)?.?(a)?.?(v)?.?(ascript)?[:#]
?(alert)[(]['\"`]?.*?['\"`]?[)]

13 SCRIPT_ALERT [<](s).?(c).?(r).?(i).?(p).?(t)[>](.*\\s)*?(alert)[(]['\"`]?.*?['\"`]?[)][;]?

Table 4. Samples of XSS Attack Signatures

RULE
NO. RULE NAME INPUT RULE PATTERN URL RULE PATTERN

2 SCRIPT src attack <SCRIPT SRC=http:::.js> %3CSCRIPT%20SRC%3Dhttp:::.js%3E

3 SCRIPT alert attack 1 <SCRIPT>alert(:::)</SCRIPT> %3CSCRIPT%3Ealert(:::)%3C/SCRIPT%3E

4 SCRIPT alert attack 2 %3Cscript%3Ealert(:::)%3C%2Fscript%3E %3Cscript%3Ealert%28:::%29%3C%2Fscript%3E

7 XSS Attack 3
%3CSCRIPT%3Ealert%28%2F:::%2F.source%29%3C%
2FSCRIPT%3E <SCRIPT>alert(/:::/.source)</SCRIPT>

8 XSS Attack 4 string%20fromcharcode%2888%2C83%2C83 string%20fromcharcode(88,83,83

11
IMG XSS using
JavaScript 3

%3CIMG+SRC%3D%22jav%09ascript%3Aalert%28:::
%29%3B%22%3E

40 BODY XSS Attack 1
%3CBODY+BACKGROUND%3D%22javascript%3Aale
rt%28:::%29%22%3E

<BODY
BACKGROUND=\"javascript:alert(:::)\">

Fig 6: Packet 24 - Identified as Suspicious

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

27

6. LIMITATATIONS & FUTURE SCOPE
As much as possible we have populated our rule base with all

updated rules to detect latest variants of XSS attack. Still we

find attackers are trying with new circumvents. Our solution is

able to capture them as suspects but not as an attack at first

instant. But by analyzing the suspect and updating the rule base

such attack can be detected from next attempt. Reasonable

attempt was made to detect the attack even when attackers try to

do application evasion techniques. But our solution has

limitation in detecting network evade (if exists) XSS attacks.

Though the detection is done only to XSS based attacks, our

model is portable and compatible to accommodate any other

network protocol and payload based attacks. In future much

scope is there to extend the solution to include all such attack

detection. Further “Yukti” is currently limited to XSS detection

in this phase I, whereas in phase II, preventing XSS attacks

using proxy based agents is included in the scope.

7. CONCLUSION
Day by day more and more websites are identified for XSS

exploitation. It is a challenge for enterprises and individuals to

keep them safe from new circumvents of XSS attacks. The

damage could range from stealing confidential information of

client and to the extent of penetrating into the corporate

network. A scalable solution that is independent of type of

browser, platform and architecture is need of the time. “Yukti”

is designed to be portable and scalable. The architecture,

component requirement, dependencies and implementation that

are discussed in this paper will enable to build any new attack

detection solution for any variants of network and scripting

based attacks.

8. REFERENCES
[1] E.Kirda, C.Kruegel, G.Vigna, and N.Jovanovic,”Noxes: A

Client-Side Solution for Mitigating Cross-Site Scripting

Attacks”SAC’06 April 23-27,2006, Dijon, France.

[2] P.Vogt, “Cross Site Scripting (XSS) attack prevention with

dynamic data tainting”, 2006

[3] O. Hallaraker and G.Vigna,” Detecting Malicious

JavaScript Code in Mozilla “, Proceedings of the 10th IEEE

International Conference on Engineering of Complex

Computer Systems (ICECCS’05)

[4] Y.Huang, C.Tsai, T.Lin, S. Huang, D.T. Kuo’, “A testing

framework for Web application, security assessment“,

Computer Networks 48 (2005) 739–761, ELSEVIER

[5] M.Egele, M.Szydlowski, E. Kirda, and C. Kruegel,”Using

Static Program Analysis to Aid Intrusion Detection”,

Austrian Science Foundation (FWF) under grant P18368-

N04

[6] N.Jovanovic, C. Kruegel and E.Kirda,” Pixy: A Static

Analysis Tool for Detecting Web Application

Vulnerabilities”, Proceedings of the 2006 IEEE

Symposium on Security and Privacy (S&P’06)

[7] F.Valeur, G.Vigna, C.Kruegel, E.Kirda, ”An Anomaly

driven Reverse Proxy for Web Applications", SAC’06

April 2327,2006, Dijon, France, ACM 1595931082/

06/0004

[8] K. Sivakumar & K. Garg “Constructing a “Common Cross

Site Scripting Vulnerabilities Enumeration (CXE)” Using

CWE and CVE”, Lecture Notes in Computer Science,

Springer Berlin / Heidelberg, Volume 4812/2007, 277-291

[9] O.Ismaill, M.E.Youki, K.adobayashi, S. Yamaguch, “A

Proposal and Implementation of Automatic

Detection/Collection System for Cross-Site Scripting

Vulnerability” Proceedings of the 18th International

Conference on Advanced Information Networking and

Application (AINA’04)

[10] Christopher Kruegel, G. Vigna, William Robertson, “A

multi-model approach to the detection of web-based

attacks”, Computer Networks 48 (2005) 717–738-

ELSEVIER.

[11] G.A.Lucca, A.R.Fasolino et all, “Identifying Cross Site

Scripting Vulnerabilities in Web Applications”,

Proceedings of the Sixth IEEE International Workshop on

Web Site Evolution (WSE’04)

[12] “The Common Vulnerabilities and Exposures Initiative,”

http://cve.mitre.org/cve/

[13] “OWASP top ten Security vulnerabilities”,

https://www.owasp.org/index.php/Category:OWASP_Top_

Ten_Project

[14] Department of Homeland Security National Cyber Security

Division’s “Build Security In” (BSI) web site,

http://buildsecurityin.us-cert.gov

[15] National Vulnerability database http://nvd.nist.gov/

[16] Real World XSS, http://sandsprite.com/Sleuth/papers/

RealWorld_XSS_1.html

[17] XSS cheat sheet, http:// ha.ckers.org/xss.html

file:///C:\ksiva-current-research\15-papers\multimodel-attack%20-10.pdf
file:///C:\ksiva-current-research\15-papers\multimodel-attack%20-10.pdf
file:///C:\ksiva-current-research\15-papers\multimodel-attack%20-10.pdf
file:///C:\ksiva-current-research\15-papers\multimodel-attack%20-10.pdf

