
IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

55

Simulation of Self-Organized Public-Key

Management for Ad Hoc Networks

ABSTRACT

In this paper we addressed the difficult problem of key

management in mobile Ad Hoc networks. A self-organized

public-key management scheme is proposed that does not

rely on any trusted third party, not even in the network

initialization phase. To distribute keys to the neighboring

nodes we have taken help of inherent properties of DSDV

routing algorithm. To exchange the keys of each node with

other node in network, by checking the chain appended with

entry & based on trust relationship. We also implemented

fault handling strategy. New DSDV results are shown with

help of X-graph, NS-2.

General Terms: Ad-hoc Network Security, Public

Management system for Ad Hoc network

Key-Words: Ad-hoc Network, DSDV, key-

management, simulation Ns-2, self-organized.

1. INTRODUCTION

Wireless networking is an emerging technology that allows

users to access information and services electronically,

regardless of their geographic position.

Wireless networks can be classified in two types: -

1.1 Infrastructure networks

Infrastructure network consists of a network with fixed and

wired gateways. A mobile host communicates with a bridge

in the network (called base station) within its

communication radius. The mobile unit can move

geographically while it is communicating. When it goes out

of range of one base station, it connects with new base

station and starts communicating through it. This is called

handoff. In this approach the base stations are fixed.

1.2 Infrastructureless (Adhoc) networks

In ad hoc networks all nodes are mobile and can be

connected dynamically in an arbitrary manner. All nodes of

these networks behave as routers and take part in discovery

and maintenance of routes to other nodes in the network. Ad

hoc networks are very useful in emergency search-and-

rescue operations, meetings or conventions in which persons

wish to quickly share information, and data acquisition

operations in inhospitable terrain.

2. DSDV (DESTINATION SEQUENCE

DISTANCE VECTOR)

The Destination-Sequenced Distance-Vector (DSDV)

Routing Algorithm is based on the idea of the classical

Bellman-Ford Routing Algorithm with certain

improvements.

DSDV routing is an enhancement to distance vector routing

for ad-hoc networks. DSDV is a table-driven algorithm. The

improvements made include freedom from loops in routing

tables. Every mobile node in the network maintains a

routing table for all possible destinations within the network

and the number of hops to each destination. Each entry is

marked with a sequence number assigned by the destination

node. The sequence numbers enable the mobile nodes to

distinguish stale routes from new ones, thereby avoiding the

formation of routing loops. Routing table updates are

periodically transmitted throughout the network in order to

maintain table consistency.

To help alleviate potentially large amount of network traffic

that such updates can generate, route updates can employ

two possible types of packets. The first is known as a full

dump. This type of packet carries all available routing

information and can require multiple network protocol data

units (NPDUs). During period of occasional movement,

these packets are transmitted infrequently. Smaller

incremental packets are used to relay only the information

that has changed since the last dump. Each of these

broadcasts should fit into a standard-size NPDU, thereby

decreasing the amount of traffic generated. The mobile

nodes maintain an additional table, where they store the data

sent in the incremental routing information packets. The

new route broadcast contains the address of the destination,

the number of hops to reach the destination, the sequence

number of the information received regarding the

destination, as well as a new sequence number unique to the

broadcast. The route labeled with the most recent sequence

number is always used. In the event that two updates have

the same sequence number, the route with small metric is

used in order to optimize (shorten) the path. Mobile nodes

also keep track of the settling time of the routes, or the

weighted average time that routes to a destination will

fluctuate before the route with the best metric is received.

By delaying the broadcast of a routing update by the length

of the settling time, mobiles can reduce network traffic and

optimize routes by eliminating those broadcasts that would

occur if a better route could be discovered in the very near

future.

Arifa S Tamboli, Sunita S. Shinde and Shabanam S.Tamboli

Annasaheb Dange College of Engineering & Technology,

Ashta, MS (India)

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

56

The routing table updates can be sent in two ways: - a "full

dump" or an incremental update. A full dump sends the full

routing table to the neighbors and could span many packets

whereas in an incremental update only those entries from the

routing table are sent that has a metric change since the last

update and it must fit in a packet. If there is space in the

incremental update packet then those entries may be

included whose sequence number has changed. When the

network is relatively stable, incremental updates are sent to

avoid extra traffic and full dump are relatively infrequent. In

a fast-changing network, incremental packets can grow big

so full dumps will be more frequent.

2.1 Different Security mechanism in

Adhoc network:

-common server

-threshold cryptography

-hash keying

-self organized

2.2 Self-organizing public-key

management system

Self-organizing public-key management system that allows

users to create, store, distribute, and revoke their public keys

without the help of any trusted authority or fixed server.

Moreover, in our solution, we do not assign specific

missions to a subset of nodes (i.e., all the nodes have the

same role).

Our main motivation for taking this approach comes from

the self-organized nature of mobile ad hoc networks, and

from the need to allow users to fully control the security

settings of the system. As such, our approach is developed

mainly for “open” networks, in which users can join and

leave the network without any centralized control.

The main problem of any public-key based security system

is to make each user’s public key available to others in such

a way that its authenticity is verifiable.

In mobile ad hoc networks, this problem becomes even

more difficult to solve because of the absence of centralized

services and possible network partitions.

More precisely, two users willing to authenticate each other

are likely to have access only to a subset of nodes of the

network (possibly those in their geographic neighborhood).

The best known approach to the public-key management

problem is based on public-key certificates. A public-key

certificate is a data structure in which a public key is bound

to an identity (and possibly to some other attributes) by the

digital signature of the issuer of the certificate. In our

system, like in PGP, users’ public and private keys are

created by the users themselves.

For simplicity, we assume that each honest user owns a

single mobile node. Hence, we will use the same identifier

for the user and her node (i.e., both user u and her node will

be denoted by u). Unlike in PGP, where certificates are

mainly stored in centralized certificate repositories,

certificates in our system are stored and distributed by the

nodes in a fully self-organized manner.

Each certificate is issued with a limited validity period and

therefore contains its issuing and expiration times. Before a

certificate expires, its issuer issues an updated version of the

same certificate, which contains an extended expiration

time. We call this updated version the certificate update.

Each node periodically issues certificate updates, as long as

its owner considers that the user-key bindings contained in

these certificates are correct.

3. PROPOSED SYSTEM

In our system, key authentication is performed via chains of

public-key certificates in the following way. When a user u

wants to obtain the public key of another user v, she

acquires a chain of valid public-key certificates such that:

The first certificate of the chain can be directly verified by

u, by using a public key that u holds and trusts (e.g., her own

public key).The last certificate contains the public key of the

target user v.

To correctly perform authentication via a certificate chain, a

node needs to check that: all the certificates on the chain are

valid (i.e., have not been revoked), and All the certificates

on the chain are correct (i.e., not false; the certificates

contain correct user-key bindings).

To find appropriate certificate chains to other users, each

node maintains two local certificate repositories: the non-

updated certificate repository and the updated certificate

repository. The non-updated certificate repository of a node

contains expired certificates that the node does not keep

updated. The reason for collecting and not updating expired

certificates is that most of the certificates will permanently

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

57

be renewed by their issuers, and only a few will be revoked.

Therefore, the non-updated repositories provide the nodes

with a very good estimate of the certificate graph.

 The updated certificate repository of a node contains a

subset of certificates that the node keeps updated. This

means that the node requests the updates for the certificates

contained in its updated repository from their issuers, when

or before they expire. The selection of certificates into the

node’s updated repository is performed according to an

appropriate algorithm. When a user u wants to authenticate a

public key Kv of another user v, both nodes merge their

updated certificate repositories and u tries to find a

certificate chain to v in the merged repository. If found, this

chain contains only updated certificates because it is

constructed in the updated repositories. To authenticate Kv,

u then further checks whether the certificates on the chain

have been revoked (since the last update) and the user-key

bindings in the certificates are correct .u performs both

validity and correctness checks locally. We use an algorithm

for the construction of users’ updated repositories that we

call Maximum Degree. *Through simulations, with this

algorithm, there is a high probability of finding certificate

chains between the users in their merged updated

repositories even if the size of the users’ updated

repositories is small.

If the authentication of Kv through the updated certificate

repositories fails, node u tries to find certificate chains to v

in its (u’s) joint updated and non-updated repositories. If u

finds a chain to v, this chain will likely contain some

expired certificates, because it is constructed in the updated

and non-updated repositories. To complete the

authentication, u requests, from their issuers, the updates of

the expired certificates that lay on the chain and checks their

correctness. If the certificates are both valid and correct, u

authenticates Kv. Here again, u performs the certificate

correctness check locally. If node u cannot find any

certificate chain to Kv, it aborts the authentication.

In our system, certificate revocation is an important

mechanism. We enable two types of certificate revocation:

explicit and implicit. The issuer explicitly revokes a

certificate by issuing a revocation statement and by sending

it to the nodes who stored the certificate in question. The

implicit revocation relies on the expiration time contained in

the certificates. Every certificate whose expiration time

passes is implicitly revoked; this second mechanism is

straightforward, but requires some loose time

synchronization of the nodes.

3.1 Coping with misbehaving users

A dishonest user may try to trick other users into believing

in a false user-key binding by issuing false certificates. She

may issue several types of false certificates. First, she may

issue a certificate that binds a key Kv to a user f instead of

to user v. In this way, a dishonest user may trick other users

to believe that Kv is the public key of user f, when it is

really the public key of user v.

Second, she may issue a certificate that binds user v to a

false key K_v, which may then cause other users to believe

that K_v is indeed the key of user v.

Third, a malicious user can invent a number of user names

and public keys and bind them by appropriate certificates.

The malicious user can then use these public keys to issue

false certificates and try to convince a given user that the

certificates are correct, as they were signed by many other

users. we will prevents these attacks by allowing nodes to

detect inconsistent certificates and to determine which user-

key bindings are correct. The certificate exchange

mechanism allows nodes to gather virtually all certificates

from G. This enables nodes to cross-check user-key

bindings in certificates that they hold and to detect any

inconsistencies (i.e. conflicting certificates).Two certificates

are considered to be conflicting if they contain inconsistent

user-key bindings (i.e. if both certificates contain the same

username but different public-keys, or if they contain the

same public-key, but are bound to different usernames).If a

certificate received by a node u contains a user-key binding

(v,Kv) not contained in any certificate in the updated and

non-updated certificate repositories of u, then (v,Kv) and the

certificates that certify it are labeled by u as un-specified. A

certificate labelled un-specified means that the node does

not have enough information to assess whether the user-key

binding in the certificate is correct. From the moment that

(v,Kv) is received, u waits for a predefined period TP . If

within this period u does not receive any conflicting

certificates regarding (v,Kv), the status, of this binding and

of the certificate that certifies it, changes to non-conflicting.

Here, we note that TP needs to be longer than the expected

certificate exchange convergence time TCE. If indeed TP >

TCE, nodes will detect inconsistent certificates for all users

that exist in the network.

For this, each node initially issues a self-signed certificate

and exchanges it with other nodes by the certificate

exchange mechanism. Thus, the waiting period TP is

actually the expected time for any self-signed certificate to

reach all the nodes in the network.

To resolve the conflict, u tries to find chains of non-

conflicting and valid certificates to public-keys Kv and K_v.

Based on the characteristics of the certificate paths (i.e.,

their number and length), two confidence values that show

the user’s confidence in the correctness of the two bindings

are computed. The two values are then compared and one

user-key binding is labelled non-conflicting and the other is

labelled false.

3.2 Topology and platform chosen:
Hardware:- p4 512mb ram

Software :- redhat linux ws3 (2.4 kernel with gcc --)

Ns -2.28 network simulator

Topology :-plane size 700x700m

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

58

a) 50 nodes, stationary for 500 seconds

 b) 50 nodes, 7 moving for 500 seconds

 c) 50 nodes, 14 moving for 500 seconds

for the comparison between older and newer dsdv and to

track the effect of motion on repository building.

4. THE NAM INTERFACE

5. RESULT

 i) For new Dsdv with 7 nodes in motion

ii) Results for new Dsdv with 14 nodes in motion

iii) Results For new Dsdv without motion

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

59

 iv) Comparison of all graphs of new Dsdv with motion

Table 1: comparison of Old Dsdv and new Dsdv with

various parameters

Repository build up time

Plane size

700*700

Old

DSDV

New

DSDV

Stationary 96 240

7 Nodes moving 84 182

14 Nodes moving 81 132

21 Nodes moving 86 106

28 Nodes moving 83 102

35 Nodes moving 88 118

Nodes Starts moving from 360

seconds

Plane Size

700*1500

Old

DSDV

New

DSDV

Effect 370 400

Repository

builds up

481 513

Faulty node

Faulty Node

Fault

Free

Faulty

240 140

6. CONCLUSION

In this way we implemented self-organized key management

in mobile ad-hoc networks. Key exchange done by checking

the chain appended with entry and based on trust

relationship. The DSDV protocol do not purges any record,

it becomes critical to create updated and non-updated

repository. There is no way to get the path to particular node

until we have entry associated with that destination. When

the entry is available we also have key associated with it.

So we don’t find need to use load balancing. We have

implemented fault handling strategy. Whenever fault is

found we get correct data from previously known fault free

node. This mechanism some time leads to triggered update

which cause the generation of quickly but increases the

router data traffic. As shown in results we have taken

observations for various network parameters. We found that

time required to reach key to other node, in a 50 node

network, varies between 250 to 5000 seconds. So while

distributing the new keys care should be taken that the key is

distributed at least 5000 seconds before it is used for some

security operations.

7. REFERENCES

[1] Self-organized public-key management Adhoc

networks by Srdjan Capkun, student member, IEEE,

levente Buttya’ n, student member, IEEE, and Jean-

Pierre Hubaux, Senior Member IEEE

[2] Key management in Ad Hoc networks by Klas Fokine

2002-09-11

[3] The ns manual (formerly ns Nots and Documentation)

The VINT project A collaboration between

researchrsbat US Berkeley , LBL, USC/ISI, and Xerox

PARC. Kevin Fall hkfall@ee.lbl.govi

[4] Implementing a New Manet Unicast Routing Protocol

in NS2, Francisco J. Ros Pedro M. Ruiz, Dept. of

Information and Communications Engineering

university of Murica

[5] Locality Driven Key management Architecture for

Mobile Ad-hoc Networks. Gang xu and Liviu Iftode

Department of Computer Science, Rutgers University.

[6] Distributed Symmetric key Management for Mobile Ad

hoc Networks. Aldar C-F. Chan Edwards S. Rogers

Sr. Department of Electrical and Computer

Engineering University of Toronto.

[7] Shared RSA Key Generation In A Mobile Ad hoc

Network*. B.Lehane and L.Doyle, D.O’ Mahony,

Trinity College Dublin, Ireland

