
IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

11

Fortification of Transport Layer Security Protocol

Kuljeet Kaur
(Assistant Professor)

School of Computer Applications, Lovely Professional University (Phagwara –[PB]. India)

ABSTRACT
Proving an identity over a public link is complex when there is

communication between Client and Server. Secure Shell

protocol is deployed, to determine a client's identity through

Password-based key exchange schemes, over a public network,

by sharing a (short) password only, with a session key. Most of

the existing schemes are vulnerable to various dictionary

attacks. SSL is the de facto standard today for securing end to

end transport. While the protocol seems rather secure there are

a number of risks which lurk in its use. The focus of the paper

is on the analysis of very efficient schemes on password-based

authenticated key-exchange methods. In this paper analysis of

AuthA key exchange scheme and DH-EKE is done and

complete proof of its security is generated. Evidences are

generated to show that the AuthA and DH_EKE protocol and

its multiple modes of operation are secure under the

computational Diffie-Hellman intractability assumption and

help in fortification of transport layer security protocol.

Keywords: Password Authentication, Diffie-Hellman Key

Exchange, Secured Socket Lock.

1. INTRODUCTION

Currently all standard methods for authentication in

TLS rely on a public-key infrastructure (PKI). it might not suit

environments where the infrastructures is “light-weight”.e.g

times when a system has to be bootstrapped from scratch.

There is a class of authenticated key-exchange protocols based

on human-memorizeable weak passwords which are resistant

to (off-line) dictionary attacks. They do not have to be backed

by any infrastructure such as a PKI.

TLS is composed of two layers: the TLS Record Protocol and

the TLS Handshake Protocol. The Record Protocol

encapsulates higher level protocols (such as HTTP [7]) and

cares about the reliability, confidentiality and compression of

the messages exchanged over the connection. The TLS

Handshake Protocol is responsible for setting up the secure

channel between server and client and provides the keys and

algorithm information to the Record Protocol. In this paper

AuthA and DH-EKE protocols are used to show the

fortification of transport layer security protocol.

In AuthA model(which is Encrypted Key Exchange evolved

into proposal AuthA which is formally modeled by One-

Encryption Key-Exchange) the protocol entities are modeled

through oracles, and the various types of attacks are modeled

by queries to these oracles. This model enables a treatment of

dictionary attacks. The security of AuthA against dictionary

attacks depends on how many interactions are carried out

against the protocol entities rather than on the computational

power [1, 3].Another protocol used is Diffie-Hellman

Encrypted Key Exchange into TLS. The new cipher suite

provides mutual authentication and key establishment with

perfect forward secrecy over an insecure channel and limits the

damage in case an attacker gains access to the server’s

databases. It uses TLS_DHE_DSS_WITH_DES_CBC_SHA.

This means that the session key will be based on a Diffie-

Hellman key exchange [8] using ephemeral parameters, DSA is

the signature algorithm used and the security on the record

layer will be based on DES in CBC mode and SHA-1.

 The structure of the remainder of the paper is as follows. In

Section II explanation of AuthA is given with security proofs.

In Section III details of DH-EKE is given with the assumed

cipher suite using ephemeral parameters to prove security. In

Section IV fortification of Transport Layer Security Protocol is

shown and Section V concludes the paper.

2. AUTHA KEY EXCHANGE

METHOD

In this model adversary's capabilities are modeled through

queries for security against dictionary attacks. The players in

this model do not deviate from the protocol and the adversary

is not a player, but does control all the network

communications. Denotations are server S and a user, or client,

U that can participate in the key exchange protocol P. We

denote client instances and server instances by U i and Sj and I

when we consider any kind of instance. The client and the

server share secret pw drawn from a small dictionary Password

of size N. The protocol AuthA consists of the following

algorithm:

The key exchange algorithm KeyExch(Ui; Sj) is an interactive

protocol between Ui and Sj that provides the instances of U

and S with a session key sk. Various queries are asked by A

adversary to all the participants in the model like Execute(Ui;

Sj), Reveal(I), Send(I;m) Send(Ui; Start). Another goal of A is

to impersonate the client or the server. The probability that A

successfully impersonates a client instance in an execution of

P: this means that a server would accept a key while the latter

is shared with no client. The protocol P is said to be C-Auth-

secure if such a probability is negligible in the security

parameter. AuthA which is formally modeled by One-

Encryption-Key-Exchange which enables us to avoid many

compatability problems when adding password based

capabilities to existing network security protocols. Now OEKE

helps in fortification of TLS with password based key

exchange cipher suites. TLS-OEKE is initiated by the Server.

Server need not to know client name (it is mapped to a

password by the server using local database) to compute and

send the server’s TLS Key-Exchange message.

But name is required to process the incoming client’s TLS

Key-Exchange message. So that is why engineers embodied

client’s name in the client’s TLS Key Exchange message rather

than embodying it in the client’s TLS hello message. As per

Fig 1.1 a fresh password is chosen and shared to capture the

existing shared context. If this password is a long random

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

12

string, it can be used to setup security association, but less user

friendly. Natural language phrases, more user friendly,

however vulnerable to dictionary attacks. Need to derive a

strong session key from a weak shared password.

 Client Server

 pw pw

 accept false accept false

 terminate false terminate false

 accept true ----> Auth?= H1(UkSkXkY kKS)

 if true, accept true skS

 H0(UkSkXkY kKS)

Fig: 1.1 An execution of the protocol OEKE under

computational Diffie-Hellman.

 It is run by the client U and the server S. The session key is sk
= H0(UkSkXkY kY x) = H0(UkSkXkY kXy).

OEKE, is a simplified" variant of a AuthA mode of operation

[2], and prove its security in the random oracle and the ideal-

cipher models. At the core of this variant resides only one flow

of the basic Diffie-Hellman key exchange encrypted under the

password and two protocol entities holding the same password.

It therefore slightly differs from the original EKE [1, 4] in the

sense that only one flow is encrypted using the password;

instead of the two as usually done. But then, it is clear that at

least one authentication flow has to be sent. And it satisfies the

security notions. AuthA protocol and its multiple modes of

operation are secure under the computational Diffie-Hellman

intractability assumption and help in fortification of transport

layer security protocol.

3. DH-EKE

Diffie-Hellmen Encrypted Key Exchange (EKE), this method

provides key exchange with mutual authentication based on

weak secrets (e.g., passwords).

In DH-EKE a weak secret P is used to encrypt the elements of

a Diffie-Hellman key exchange, i.e.,

gx(mod P) and gy(mod P).
Consider the closer data structures, which reveal that the ideal

places to adjust TLS for new cipher suites are the messages of

like ServerKeyExchange for Server and

ClientKeyExchange for Clients. It is quite clear that for

compatibility reasons we should not alter messages which are

sent before an agreement on a cipher suite has been reached.

This means in particular that modifying ClientHello

should be refrained.

The key is cryptographically strong if x and y are

cryptographically strong random numbers, regardless of the

strength of the password. Various ways exist for optimizing the

number of flows as well as the number of encryptions.

Example that we have taken in the Section II of the paper with

AuthA Key Exchange is elaborated here with DH-EKE. The

client’s is encrypted with the password instead of being

accompanied by a signature and the swapping of client’s and

server’s Finished messages while sending is done.
The first difference helps to authenticate each other based on the
common knowledge of the password. The second change is
due to the problems of transferring identity information and the
subtle issues of dictionary attacks. Note that it is of paramount
importance that the client does not use any key derived from the
premaster secret pms before the client has successfully received
and verified the server’s Finished message.

Because there is no PKI in DH-EKE so the server’s Certificate

and Certificate-Request messages and the client’s Certificate

and CertificateVerify messages are omitted.

There are other protocols which are based on DH-EKE like

SPEKE and SRP but are less preferred. First of all about

Simple Password Encrypted Key Exchange (SPEKE) [9], the

protocol is also based on a Diffie-Hellman key exchange but

instead of encrypting the half-keys with the password it uses

the password to derive a generator for a large prime-order

subgroup. Now in Secure Remote Password Protocol (SRP)

[10] , it seems the most efficient system which reduces also the

risk when the server database is stolen it has similar problems

with integration as SPEKE. The protocol cannot be started in

flow 2 which means that the handshake would require an

additional request response pair.

In addition to exponentiations in multiplicative groups we also

need a shared-key encryption function Ep(z) to
transport the client’s Diffie-Hellman half-key. As mentioned in
Fig 2.1 the protocol flow processing in DH-EKE.

 Client Server

Client prepares the Client-Hello

Server Client

Server Completes the serverDHEKEP field in Server Key
Exchange with hx and hx’.Server HelloDone message is sent to
client.

Client Server

Client verifies the parameters of the group.

Server Client

The server extracts the identity of the client from the

ClientKeyExchange message and retrieves the client’s

password context.

Client Server

Servers finished message is verified.

Server Client

The server verifies the client’s Finished message. If the

verification fails, the server aborts, If the verification is OK,

the ’potential online attack’ counter is updated.

Fig: 2.1 Protocol Flow Processing in DH-EKE

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

13

We consider the additional costs of the additional

exponentiations worthwhile but it would be straightforward to

make the use of DH-EKE and allow performance critical

environments to trade the risk of stolen server databases with

improved performance.

Further there are many protocols based on collisionful hash.

However, none of their feature could outweigh the simplicity

of the integration of DH-EKE in TLS.

4. FORTIFICATION OF

TRANSPORT LAYER SECURITY

PROTOCOL

Secure password based authenticated key-exchange protocols

can improve the situation and can be integrated into TLS in an

efficient and non-intrusive manner. In this paper validation of

the approach is done by integrating the cipher suite into a in-

house toolkit providing the complete SSL protocol suite.

There are many password authentication schemes like RSA-

based Password Authentication Schemes, ElGamal based

Password Authentication Schemes and Hash-based Password

Authentication Schemes. And there are many attacks which are

protected by using one of these smart card password

authentication schemes. These password authentication

schemes secure transport layer from Denial of Service Attacks,

Forgery Attacks (Impersonation Attacks), Forward Secrecy,

Mutual Authentication, Parallel Session Attacks, Password

Guessing Attacks, Replay Attacks, Smart Card Loss Attacks

and Stolen-verifier Attacks.

If we are using AuthA Key Exchange Protocol so it is clear

that a simple block-cipher can not be used in place of the ideal-

cipher required by the security result. We indeed need

permutations onto group for all the secret keys, otherwise

partition attacks can be mounted [5].Measurements of the

performance showed that our cipher suite compares well with

other cipher suites.

DH-EKE outperformed comparable cipher suites providing

mutual authentication and perfect forward secrecy by a factor

of up to two (SSL DHE DSS WITH DES CBC SHA) and was

only slightly slower than the commonly used cipher suite SSL

RSA WITH RC4 128 SHA. A promising avenue is to also

instantiate the encryption primitive as the product of a

DiffieHellman value with a hash of the password, as suggested

in AuthA [2].

Investigations have shown that this multiplicative function

leads to a password-based key-exchange scheme secure in the

random-oracle model [6]. Moreover same hash function could

not be used everywhere in AuthA. Better security and

performance is achieved using DH-EKE. So to some extent

security of the transport layer protocol is managed using

AuthA One-Encryption-Key-Exchange and DH-EKE (Diffie-

Hellmen Encryption Key Exchange) which helps in the

fortification of Transport Layer Security Protocol.

AuthA and DH-EKE both use one of the smart card password

authentication scheme and secure TLS and further fortifies the

TLS.

5. CONCLUSION

Explanation of AuthA and DH-EKE Key Exchange protocols

is given which results in the fortification of the Transport

Layer Security Protocol. There are number of risks associated

with these protocols but serves the purpose of security. So in

the paper analysis of two very efficient schemes on password-

based authenticated key-exchange methods is done.

Evidences are generated to show that the AuthA and DH_EKE

protocol and its multiple modes of operation are secure. Few

other protocols which are based on DH-EKE like SPEKE and

SRP are analyzed but these are less preferred because instead

of encrypting the half-keys with the password it uses the

password to derive a generator for a large prime-order

subgroup. Now under the computational Diffie-Hellman

intractability assumption AuthA and DH_EKE protocol are

secure which helps in fortification of transport layer security

protocol.

In general, there are three types of identity authentication tasks

which are identity authentication for something known, such as

a password, identity authentication for something possessed,

such as a smart card and identity authentication for some

personal characteristics, such as fingerprints. AuthA and DH-

EKE are using only first two methods to identify a user.

In the future, fortification of TLS could be done by combining

the three types, through which an ideal password authentication

scheme could be generated. Moreover these work on single-

server environment. However, since the scales of computer

networks are becoming larger and larger, password

authentication schemes which only support single-server

environment will soon fall behind users’ needs.

Therefore, need for multi-server architectures is there, where

users can register at the register center only once and access

resources from different servers efficiently. In the future,

attempts would be made to develop an ideal password

authentication scheme with a multi-server architecture with

other Key Exchange protocols.

This ideal password authentication scheme would meet all the

security requirements and would achieve all the goals. And

further this ideal password authentication scheme in multi

server architecture would help in fortification of Transport

Layer Security Protocol.

6. REFERENCES

[1] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated

Key Exchange Secure Against Dictionary Attacks. In

Eurocrypt '00, LNCS 1807, pages 139{155. Springer-

Verlag, Berlin, 2000.

[2] M. Bellare and P. Rogaway. The AuthA Protocol for

Password-Based Authenticated Key Exchange.

Contributions to IEEE P1363. March 2000. Available

from http://grouper.ieee.org/groups/1363/.

[3] M. Bellare and P. Rogaway. Random Oracles Are Practical:

a Paradigm for Designing E_cient Protocols. In Proc. of

the 1st CCS, pages 62{73. ACM Press, New York, 1993.

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

14

[4] S. M. Bellovin and M. Merritt. Encrypted Key Exchange:

Password-Based Protocols Secure against Dictionary

Attacks. In Proc. of the Symposium on Security and

Privacy, pages 72{84. IEEE, 1992.

[5] C. Boyd, P. Montague, and K. Nguyen. Elliptic Curve

Based Password Authenticated Key Exchange Protocols.

In ACISP '01, LNCS 2119, pages 487{501. Springer-

Verlag, Berlin, 2001.

[6] E. Bresson, O. Chevassut, and D. Pointcheval. Encrypted

Key Exchange using Mask Generation Function. Work in

progress.

[7] T. Berners-Lee, R. T. Fielding, H. F. Nielsen, J. Gettys,and

J. Mogul. Hypertext transfer protocol – HTTP/1.1.Internet

Request for Comment RFC 2068, Jan. 1997.

[8] W. Diffie and M. Hellman. New directions in

cryptography.IEEE Transactions on Information Theory,

IT-22(6):644–654, Nov. 1976.

[9] D. P. Jablon. Strong password-only authenticated

keyexchange. Computer Communication Review, 26(5):5–

26, Sep 1996.

[10] T. Wu. The secure remote password protocol. In

Symposiumon Network and Distributed Systems

Security(NDSS ’98), pages 97–111, San Diego, California,

Mar.1998. Internet Society.

