
IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

45

Huffman Compression Technique in the Context of
ECC for Enhancing the Security and Effective

Utilization of Channel Bandwidth for Large Text

O.Srinivasa Rao
Dept. of CSE,

JNTUK University College of Engineering,
Vizianagaram, A.P.

India-535 003

Prof. S. Pallam Setty
CS & SE Dept.,

Andhra University College of Engineering,
Visakapatnam, A.P,

India-530 003

ABSTRACT
In this paper, we proposed a model for text encryption

using elliptic curve cryptography (ECC) for secure

transmission of large text and by incorporating the

Huffman data compression technique for effective

utilization of channel bandwidth and enhancing the

security.

In this model, every character of text message is

transformed into the elliptic curve points (Xm, Ym), these

elliptic curve points are converted into cipher text .The

resulting size of cipher text becomes four times of the

original text. For minimizing the channel bandwidth

requirements, the encrypted text is compressed using the

Huffman compression technique in two ways i)x-y co-

ordinates of encrypted text and ii) x-co-ordinates of the

encrypted text. The resulting system saves the overall

bandwidth and further enhances the security.

Keywords:

Elliptic Curve Cryptography (ECC), text encryption,

Huffman compression.

1. INTRODUCTION

Over last three decades, the traditional cryptosystem like

DES, DLP, AES, DSA and RSA etc. are used for privacy

and security. But these conventional methods are not able

to support the new generation of digital communication and

information access devices, these devices required a crypto-

security technology. A method called Elliptic Curve

Cryptography is becoming the choice for mobile

communication. Elliptic curve cipher use very small key

size and computationally is very efficient. N. Koblitz[1]

and Victor Miller[2], independently proposed the elliptic

curve cryptosystem.

One can use an elliptic curve group that is smaller in

size while maintaining the same level of security. The

result is smaller key sizes, bandwidth savings, and faster

implementations—features that are especially attractive for

security applications where computational power and

integrated circuit space is limited, such as smart cards,

personal digital assistants, and wireless devices. Elliptic

curve cryptographic protocols for digital signatures, public-

key encryption, and key establishment have been

standardized by numerous standards organizations

including:

 American National Standards Institute (ANSI

X9.62 [3], ANSI X9.63 [4])

 Institute of Electrical and Electronics Engineers

(IEEE 1363-2000 [5])

 International Standards Organization (ISO/IEC

15946-3 [6])

 U.S. government’s National Institute for

Standards and Technology (FIPS 186-2 [7])

 Internet Engineering Task Force (IETF PKIX [7],

IETF OAKLEY [8])

 Standards for Efficient Cryptography Group

(SECG [9])

The vast majority of the products and standards that

use public-key cryptography for encryption and digital

signatures use RSA [10]. As we have seen, the bit length

for secure RSA use has increased over recent years, and

this has put a heavier processing load on applications using

RSA. This burden has ramifications, especially for

electronic commerce sites that conduct large numbers of

secure transactions. Recently, a competing system that has

emerged is elliptic curve cryptosystem (ECC)[4,11].

1.1 Elliptic Curve Cryptography:

Elliptic curve cryptography makes use of elliptic curves in

which the variables and coefficients are all restricted to

elements of a finite field. Two families of elliptic curves

are used in cryptographic applications: Prime curves

defined over Zp and binary curves constructed over GF

(2m). Fernandez[12] points out that prime curves are best

suited for software applications, as the extended bit –

fiddling operations needed by binary curves are not

required; ,and that binary curves are best for hardware

applications, where it takes remarkably few logic gates to

create a powerful and fast cryptosystem. In this paper we

used prime curves defined over Zp for analysis purpose.

1.2 Mathematical review:

We consider an elliptic curve over prime fields which are

of the form:

E: y2 = x3 + ax + b mod p where a, b ∈ Fp and 4a3 + 27b2

≠ 0 mod p

The addition of two points P(x1, y1) and Q(x2, y2) is

calculated by:

 R(x3, y3) = P + Q where:

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

46

 x3 = λ2 – x1 – x2,

 y3 = λ(x1 – x3) – y1,

 λ = (y2 – y1)/(x2 – x1) if P ≠ Q

 λ = (3x1
2 + a)/2y1 if P = Q

2. DATA COMPRESSION

TECHNIQUES

Compression is a technology for reducing the quantity of

data used to represent any content without excessively

reducing the quality of the picture. It also reduces the

number of bits required to store and/or transmit digital

media. Compression is a technique that makes storing

easier for large amount of data. The performance of data

compression algorithms is measured in terms of

compression ratio which is defined as

Compression ratio =Size of the output stream/size of the

input stream.

We analyzed the adoptability of Huffman data

compression techniques for encrypted data/message in the

context of ECC for effective utilization of channel

bandwidth .

2.1 Huffman Compression Technique

In 1952, Huffman [13] proposed an elegant sequential

algorithm which generates optimal prefix codes in O

(nlogn) time. The algorithm actually needs only linear time

provided that the frequencies of appearances are sorted in

advance [14, 15]. Since then there have been extensive

researches on analysis, implementation issues and

improvements of the Huffman coding theory in a variety of

applications [16, 17, 18, 19, 20, 21and 22].

Huffman coding, is a particular method of

compressing data through the use of a code table with

encodings of variable lengths. A Huffman code is an

optimum, or minimum-redundancy, code, which means that

messages which occur with greater probability have shorter

encodings; in addition, it is prefix free, meaning that no

code in the table may be the beginning part of any other

code. Huffman describes an algorithm which can be used to

generate a binary Huffman code from a collection of

messages, or strings, ordered by probability. To generate a

code, one starts with a collection of all messages in order of

probability. The two least probable messages are removed

from the collection and combined into a ―composite

message,‖ with probability equal to the sum of the

messages comprising it. This process is repeated until there

is only a single composite message left in the collection,

with a probability of 1; that composite message represents

the entire Huffman code. This is easily converted to a tree-

based approach, in which the initial messages are

represented as leaf nodes, each edge represents a digit 0 or

1 in the encoding, and ―composite messages‖ are sub trees

created by assigning a common parent to the merged

messages.

3. PROPOSED MODEL FOR TEXT

ENCRYPTION AND DECRYPTION

WITH HUFFMAN

The proposed model at sender and receiver side for large

text in the context of ECC for enhancing the security and

effective utilization of the channel bandwidth is shown in

Figure1.The following two sections describes the proposed

model at sender side and at receiver side of text encryption

and compression technique for secure transmission of the

large text by aiming the effective utilization of channel

bandwidth.

3.1 Encryption and Compression

procedure (at sender side)

1. Take plain text X,

2. Each character of X, i.e. assigned as message Pm,

can be converted into the point coordinate

(Xm, Ym) on EC.

3. Encryption/decryption system require a point on

G and an elliptic group Ep(a, b). User A select a

private key nA and generate a public key PA = nA

x G. To encrypt and send pixel Pm, to B, A

choose a random positive integer k and produce

the cipher text Cm consisting of the pair of points

Cm = {kG, Pm + kPB}, where PB is the public key

of user B.

4. The x-coordinates/(x,y) coordinates of encrypted

cipher text values are compressed by using the

Huffman data compression which is then

transmitted through in secured channel to the

destination.

3.2 Decompression and Decryption (at

the receiver side)

1. Received raw data, i.e. compressed x-

coordinates/ (x, y) coordinates of the encrypted

text is decompressed using the Huffman

decompression technique

2. To retrieve the cipher text values (if the raw data

contains only x coordinates), one need to

compute y-coordinates also. These values are

generated by substituting the x co-ordinate values

into the chosen elliptic curve

3. To decrypt the cipher Text, B multiplies the first

point in the pair by B’s secret key and subtracts

the result from the second point:

 Pm + kPB – nB(kG) = Pm + k(nBG) – nB(kG) = Pm

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

47

Figure 1 Proposed model at sender side and receiver side for Text in the context of ECC

For practical purpose, We have taken an elliptic curve

E571(1,1) in the prime field and the alpha numerical

characters are mapped [23,24] to the points of the EC. The

mapped points are encrypted [25, 26] and computed

compression ratio [27] for encrypted points using Huffman,

from which we found the overall percentage of the

bandwidth required and saved.

The following rules are implemented for reducing the

bandwidth:

1. The size of encrypted data size is n*[KG, Pm +

KPB] for the n bytes of the message. If, we send

all encrypted data as it is to the destination, then

the bandwidth required is 4 *n bytes for n byte

data message/image, i.e., Four times of the

bandwidth required.

2. Instead of sending every point Cm we send only

once KG and rest of the [Pm + KPB] for n times,

i.e., for 4n bytes of encrypted data we send only

KG+n*[Pm + KPB] bytes to the destination,

which is enough to recover the original Message.

The amount of bandwidth saved at this stage is:

b) Proposed Decompression &
Decryption Procedure

(At receiver side)

(a) Proposed Encryption &

Compression Procedure

(At sender side)

Large Plain Text

Encrypted by ECC

Coordi

nate

Type

Huffman Compression

Compressed Data of

Encrypted Plain Text

in Raw bits

 (
X

,Y
)

C
o
o
rd

in
a
te

s

X
 C

o
o
rd

in
a
te

s

Compressed Data of

Encrypted Plain Text

in Raw bits

Huffman Decompression

Coordi

nate

Type

Generate Y-

coordinates for the

X-coordinates using

y2=x3+ax+b mod p

ECC Decryption

Large Plain Text

F
o
r

(X
,Y

)C
o
o
rd

in
a
te

s

F
o
r X

c
o
o
rd

in
a
te

s

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

48

If the n value is very large, then, KG+n(Pm +

KPB)≈ n(Pm + KPB), hence the percentage of

reduced bandwidth is give by,
𝑛[𝑃𝑚 + 𝐾𝑃𝑩]

𝑛 𝐾𝐺, 𝑃𝑚 + 𝐾𝑃𝐵
=

𝑃𝑚 + 𝐾𝑃𝐵

 𝐾𝐺, 𝑃𝑚 + 𝐾𝑃𝐵

As we know KG and Pm + KPB are 1 byte each,

so that bandwidth saved to ½ of the originally

required, i.e., 50% can be saved at this point.

3. As n is very large the encrypted data of [KG, n

*(Pm + KPB)] will become ≈ n(Pm + KPB), Cm is

compressed using Huffman Compression by

considering the following two cases

(i) Both (x, y) co-ordinates of the

encrypted data of [KG + n*(Pm + KPB)]

is compressed using Arithmetic/

Huffman compression and the results

are shown in the corresponding tables

and graphs [Table 1 to Table 4 and

Figures 2 to Figures 3]. In this case, the

amount of bandwidth saved is 50% of

original encrypted data + reduced size

of the compressed data. Hence,

𝑂𝐵𝑊𝑆% =
0.5 ∗ 𝑆𝑖𝑧𝑒 𝑜𝑓 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑇𝑒𝑥𝑡 + 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐵𝑖𝑡𝑠 𝑖𝑛 (𝑥, 𝑦)

𝑆𝑖𝑧𝑒 𝑜𝑓 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑇𝑒𝑥𝑡
∗ 100

The percentage of the overall bandwidth required

(OBWR) can be calculated by the equation

OBWR%=100-OBWS%

(ii) In this case, only x coordinates of

encrypted data of [KG + n*(Pm + KPB)]

is taken for compression, as we know

the x-co-ordinate of the ECC, we can

get the corresponding y co-ordinate by

using the following cubic equation,

y2≡x3+ax+b mod p

If we take only x co-ordinate of the original

encrypted data, then the amount of bandwidth saved is 75%

of original encrypted data + reduced size of the compressed

data. Hence, The percentage of the bandwidth saving

(OBWS) can be calculated by the equation

𝑂𝐵𝑊𝑆% =
0.75 ∗ 𝑆𝑖𝑧𝑒 𝑜𝑓 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑇𝑒𝑥𝑡 + 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐵𝑖𝑡𝑠 𝑖𝑛 (𝑥, 𝑦)

𝑆𝑖𝑧𝑒 𝑜𝑓 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑇𝑒𝑥𝑡
∗ 100

 The percentage of the bandwidth required

(OBWR) can be calculated by the equation

OBWR%=100-OBWS%

For this data, we computed the bandwidth

required and saved by applying Arithmetic and Huffman

compression. The results are shown in tables and graphs.

At the destination the data is uncompressed and original

text is recovered by using the equation (4.2).

4. DATA COMPRESSION

TECHNIQUES FOR LARGE TEXT

MESSAGE IN THE CONTEXT OF ECC

Arithmetic compression is limited to only small text

messages so that for large text messages we analyzed the

bandwidth requirements and saved in terms of Huffman

Compression techniques only. The following experimental

results show the Compression ratio, compression bits,

percentage Bandwidth requirements and savings.

Table 1: Compressed Data and Compression Ratio in

(x, y) Co-ordinates

Sl.

No.

Input Text Files
OEDS EDS(x, y) C CR

Size

(kB)

Size

(bits)

1 1 8192 32768 16400 11233 0.6849390

2 2 16384 65536 32784 21940 0.6692288

3 3 24576 98304 49168 33659 0.6845712

4 4 32768 131072 65552 48573 0.7409842

5 5 40960 163840 81936 55645 0.6791276

6 6 49152 196608 98320 71225 0.724420

7 7 57344 229376 114704 85318 0.7438101

8 8 65536 262144 131088 93339 0.7120331

9 9 73728 294912 147472 95892 0.6502386

10 10 81920 327680 163856 120850 0.7375378

*OEDS Original Encrypted Data Size in bits

* C compression in bits

*CR Compression Ratio

EDS(x, y) Encrypted Data Size by considering both (x, y)

co-ordinates

Figure 2: Text File Vs Compression bits in (x, y) co-

ordinates of encrypted

Data

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

49

Figure 3: Text File Vs Compression Ratio in (x, y) co-

ordinates of encrypted data

From the above Table 1, Figure 2 and Figure 3

one can observe that, the compressed bits vary from 11233

to 95892 where as compression ratio varies from 0.65 to

0.74

Table 2: O BWR % & OBWS % for (x, y)-Coordinates

according to TBS

Sl.

No.

Text Files

TBS OBWR % OBWS %
Size

(kB)

Size

(bits)

1 1 8192 21535 34.28039551 65.71960449

2 2 16384 43596 33.4777832 66.5222168

3 3 24576 64645 34.2397054 65.7602946

4 4 32768 82499 37.05825806 62.94174194

5 5 40960 108195 33.9630127 66.0369873

6 6 49152 125383 36.22690837 63.77309163

7 7 57344 144058 37.19569615 62.80430385

8 8 65536 168805 35.60600281 64.39399719

9 9 73728 199020 32.51546224 67.48453776

10 10 81920 206830 36.88049316 63.11950684

*TBS Total Bits Saved=OEDS-C

Figure 4: Text File Vs OBWR % and OBWS % in (x, y)

co-ordinates of encrypted data

From the above Table 2 and Figure 5 one can

observe that, the variation range in the overall percentage

of bandwidth requirement and saving as follows:

S. No.
(x, y)

OBWR% Range OBWS% Range

1 32.51- 37.19 62.8 – 67.48

Table 3: Compressed Data and Compression Ratio in

(x)-Co-ordinates

Sl.

No.

Text Files

OEDS EDS(x) C CR
Size

(kB)

Size

(bits)

1 1 8192 32768 8200 4736 0.577560976

2 2 16384 65536 16392 9752 0.594924353

3 3 24576 98304 24584 14340 0.583306215

4 4 32768 131072 32776 19111 0.583079082

5 5 40960 163840 40968 20651 0.504076352

6 6 49152 196608 49160 29218 0.594344996

7 7 57344 229376 57352 34097 0.594521551

8 8 65536 262144 65544 35811 0.5463658

9 9 73728 294912 73736 39150 0.530948248

10 10 81920 327680 81928 44983 0.549055268

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

50

*EDS(x) Encrypted Data by considering x co-ordinates

Figure 5: Text File Vs Compression bits in (x) co-

ordinates of encrypted data

Figure 6: Text File Vs Compression Ratio for (x,y) co-

ordinates of encrypted data

From the above Table 3, Figure 6 and Figure 7,

one can observe that, the compressed bits varies from 4736

to 44983 where as compression ratio varies from 0.504 to

0.5949

Table 4: Overall BWR % & BWS % for (x)-

Coordinates according to Total Bits Saved

Sl.

No.

Text Files

TBS OBWR % OBWS %
Size

(kB)

Size

(bits)

1 1 8192 28032 14.453125 85.546875

2 2 16384 55784 14.88037109 85.11962891

3 3 24576 83964 14.58740234 85.41259766

4 4 32768 111961 14.58053589 85.41946411

5 5 40960 143189 12.60437012 87.39562988

6 6 49152 167390 14.86104329 85.13895671

7 7 57344 195279 14.8651123 85.1348877

8 8 65536 226333 13.66081238 86.33918762

9 9 73728 255762 13.27514648 86.72485352

10 10 81920 282697 13.72772217 86.27227783

Figure 7: Text File Vs OBWR % and OBWS % in (x, y)

co-ordinates of encrypted data

From the above Table 4 and Figure 8 one can

observe that, the variation range in the overall percentage

of bandwidth requirement and saving as follows:

S.No.
(x) co-ordinate

OBWR% Range OBWS% Range

1 12.6- 14.88 85.11 – 87.39

Table:5: Comparison of OBWR% and OBWS% in (x,

y)Vs x co-ordinates:

Sl.

No.

Text Files OBWR % OBWS%

Size

(kB)

Size

(bits)
(x, y) (x) (x, y) (x)

1 1 8192 34.280395 14.4531 65.719604 85.5468

2 2 16384 33.47778 14.880371 66.52221 85.119628

3 3 24576 34.23970 14.587402 65.76029 85.412597

4 4 32768 37.058258 14.580535 62.941741 85.419464

5 5 40960 33.96301 12.604370 66.03698 87.395629

6 6 49152 36.226908 14.861043 63.773091 85.138956

7 7 57344 37.195696 14.86511 62.804303 85.13488

8 8 65536 35.606002 13.660812 64.393997 86.339187

9 9 73728 32.515462 13.275146 67.484537 86.724853

10 10 81920 36.880493 13.727722 63.119506 86.272277

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

51

Figure 8: comparison of OBWR % and OBWS % in (x,

y) and x co-ordinates of encrypted data for given text

files

From the above Table 5 and Figure 9 one can

observe that, the variation range in the overall percentage

of bandwidth requirement and saving in (x,y) and x co-

ordinates as follows.

Sl.

No.

OBWR% Range OBWS% Range

(x,y) (x) (x,y) (x)

1 32.51- 37.19 12.6- 14.88 62.8 – 67.48 85.11 – 87.39

5. THE COMPRESSION RATIO, THE

OBWR% and OBWS% ARE

COMPUTED FOR TEXT SIZES OF 10

KB 100 KB IN STEPS OF 10KB

Table 6: Compressed Data and Compression Ratio for

(x, y)-Coordinates

Sl.

No.

Text Files

OEDS EDS(x, y) C CR Size

(kB)

Size

(bits)

1 10 81920 327680 163856 120850 0.7375378

2 20 163840 655360 327696 219944 0.6711830

3 30 245760 983040 491536 350005 0.7120638

4 40 327680 1310720 655376 470652 0.7181404

5 50 409600 1638400 819216 544181 0.6642704

6 60 491520 1966080 983056 635361 0.6463121

7 70 573440 2293760 1146896 791565 0.6901802

8 80 655360 2621440 1310736 911439 0.6953642

9 90 737280 2949120 1474576 945410 0.6411402

10 100 819200 3276800 1638416 1058175 0.6458524

Figure 9: Text File Vs Compression bits for (x, y) co-

ordinates of encrypted data

Figure 10: Text File Vs Compression Ratio for (x, y) co-

ordinates of encrypted data

From the above Table 6, Figure 10 and Figure 11,

one can observe that, the compressed bits varies from

120850 to 1058175 where as compression ratio varies from

0.64 to 0.7375

Table 7: O BWR % & OBWS % in (x, y) Co-ordinates

according to TBS

Sl.

No.

Text Files

TBS OBWR % OBWS %
Size

(kB)

Size

(bits)

1 10 81920 206830 36.88049316 63.11950684

2 20 163840 435416 33.56079102 66.43920898

3 30 245760 633035 35.60434977 64.39565023

4 40 327680 840068 35.90789795 64.09210205

5 50 409600 1094219 33.21417236 66.78582764

6 60 491520 1330719 32.31613159 67.68386841

7 70 573440 1502195 34.50949533 65.49050467

8 80 655360 1710001 34.76863861 65.23136139

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

52

9 90 737280 2003710 32.05735948 67.94264052

10 100 819200 2218625 32.29293823 67.70706177

Figure 11: Comparison of OBWR % and OBWS % in

(x, y) co-ordinates of encrypted data for the given text

From the above Table 7 and Figure 12 one can

observe that, the variation range in the overall percentage

of bandwidth requirement and saving in (x,y) co-ordinates

as follows.

S.No.
(x,y) co-ordinates

OBWR% Range OBWS% Range

1 32.05- 36.88 63.11- 67.94

Table 8: Compressed Data and Compression Ratio for

(X)-Coordinates

Sl.

No.

Text Files

OEDS EDS(x) C CR
Size

(kB)

Size

(bits)

1 10 81920 327680 81928 44983 0.5490552

2 20 163840 655360 163848 95308 0.5816854

3 30 245760 983040 245768 138196 0.5623026

4 40 327680 1310720 327688 183207 0.5590897

5 50 409600 1638400 409608 228929 0.5588977

6 60 491520 1966080 491528 265448 0.5400465

7 70 573440 2293760 573448 321611 0.5608372

8 80 655360 2621440 655368 363576 0.5547661

9 90 737280 2949120 737288 399123 0.5413393

10 100 819200 3276800 819208 459921 0.5614215

Figure 12: Text File Vs Compression bits for (x) co-

ordinates of encrypted data

Figure 13: Text File Vs Compression Ratio for (x, y) co-

ordinates of encrypted data

From the above Table 8, Figure 13 and Figure 14,

one can observe that, the compressed bits vary from 44983

to 459921 where as compression ratio varies from 0.54 to

0.58

Table 9: OBWR % & OBWS % in (x) Co-ordinates

according to TBS

Sl.

No.

Text Files

TBS OBWR % OBWS %
Size

(kB)

Size

(bits)

1 10 81920 282697 13.72772217 86.27227783

2 20 163840 560052 14.54284668 85.45715332

3 30 245760 844844 14.05802409 85.94197591

4 40 327680 1127513 13.97758484 86.02241516

5 50 409600 1409471 13.97271729 86.02728271

6 60 491520 1700632 13.50138346 86.49861654

7 70 573440 1972149 14.02112688 85.97887312

8 80 655360 2257864 13.86932373 86.13067627

9 90 737280 2549997 13.53363037 86.46636963

10 100 819200 2816879 14.03567505 85.96432495

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

53

Figure 14: Comparision of OBWR % andOBWS % in

(x,y) co-ordinates of encrypted data for given text files

From the above Table 9 and Figure 15 one can

observe that, the variation range in the overall percentage

of bandwidth requirement and saving in x co-ordinates as

follows.

S.No.
(x) co-ordinates

OBWR% Range OBWS% Range

1 13.5- 14.54 85.45- 86.49

Table 10: Comparison of OBWR% and OBWS % in

(x,y) Vs (x) co-ordinates:

Sl.

No.

Text Files OBWR % OBWS%

Size

(kB)

Size

(bits)
(x, y) (x) (x, y) (x)

1 10 81920 36.880493 13.727722 65.719604 86.272277

2 20 163840 33.560791 14.542846 66.52221 85.457153

3 30 245760 35.604349 14.058024 65.76029 85.941975

4 40 327680 35.907897 13.977584 62.941741 86.022415

5 50 409600 33.214172 13.972717 66.03698 86.027282

6 60 491520 32.316131 13.501383 63.773091 86.498616

7 70 573440 34.509495 14.021126 62.804303 85.978873

8 80 655360 34.768638 13.869323 64.393997 86.130676

9 90 737280 32.057359 13.533630 67.484537 86.466369

10 100 819200 32.292938 14.035675 63.119506 85.964324

Figure 15: comparison of OBWR % and OBWS % in

(x, y) and x-co-ordinates of encrypted data for the given

text files

From the above Table 10 and Figure 16 one can

observe that, the variation range in the overall percentage

of bandwidth requirement and saving in (x, y) and x co-

ordinates as follows.

S.No.
OBWR% Range OBWS% Range

(x, y) (x) (x, y) (x)

1 32.05- 36.88 13.5- 14.54 63.11- 67.94 85.45- 86.49

6. CONCLUSION

The experiments are conducted for the following cases, by

considering only x co-ordinate and both (x, y) co-ordinates

of the different encrypted text for transmission in Huffman

compression.

For large text, the experiments are conducted for

the following cases, by considering only x co-ordinate and

both (x, y) co-ordinates of the encrypted large text of the

size varying from 1 kB to 10 kB in steps of 1kB and from

10 kB to 100 kB in steps of 10 kB for transmission in

Huffman compression:

Irrespective of the case, when both (x,y)

coordinates, are considered for transmission, the overall

percentage of bandwidth requirement (OBWR %)varies

from 32.05% to 37.19% and the percentage of Bandwidth

Saving (OBWS %) varies from 62.8% to 67.94%.

When only x co-ordinate for transmission is

considered, the overall percentage of bandwidth

requirement (OBWR %) varies from 12.6% to 14.88% and

the percentage of Bandwidth Saving (OBWS %) varies

from 85.11% to 87.39%.Hence it is concluded that by

incorporating the Huffman compression to ECC not only

enhances the security but also enhances the utilization of

the channel bandwidth also.

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

54

7. REFERENCES

[1] Neal Koblitz, ‖Elliptic Curve Cryptosystem, Journal of

mathematics computation Vol.48, No.177pp.203-

209,Jan-1987.

 [2] V. Miller, ―Uses of elliptic curves in cryptography‖,

Advances in Cryptology–Crypto ’85,Lecture Notes in

Computer Science, 218

[3] Certicom Corp., ―An Introduction to Information

Security‖, Number 1, March 1997.

[4] ANSI X9.63, Public Key Cryptography for the

Financial Services Industry: Elliptic CurveKey

Agreement and Key Transport Protocols, ballot

version, May 2001.

[5] Internet Engineering Task Force, The OAKLEY Key

Determination Protocol, IETF RFC 2412, November

1998.

[6] ISO/IEC 15946-3, Information Technology–Security

Techniques–Cryptographic Techniques Based on

Elliptic Curves, Part 3, Final Draft International

Standard (FDIS), February 2001

[7] National Institute of Standards and Technology, Digital

Signature Standard, FIPS Publication186-2, 2000.

 [8] M. Jacobson, N. Koblitz, J. Silverman, A. Stein and E.

Teske, ―Analysis of the xedni calculus attack‖,

Designs, Codes and Cryptography, 20 (2000), 41-64.

(1986), Springer-Verlag, 417-426.

[9] Standards for Efficient Cryptography Group, SEC 1:

Elliptic Curve Cryptography, version1.0, 2000.

Available at http://www.secg.org

[10] R.L. Rivest, A. Shamir, and L.M. Adleman, Method

for Obtaining Digital Signatures and Public-key

Cryptosystems ―, Communications of the

ACM,Volume 21, pages 120-126, February 1978.

[11] S. Arita, ―Weil descent of elliptic curves over finite

fields of characteristic three‖, Advances in

Cryptology–Asiacrypt 2000, LectureNotes in

Computer Science, 1976 (2000),Springer-Verlag, 248-

259

[12] Fernandes, A. ―Elliptic Curve Cryptography‖,

Dr.Dobb’s journal, December 1999

 [13] D. A. Huffman, "A method for the construction of

minimum redundancy codes", Proc. IRE, Vol. 40, No.

9, pp. 1098-1101, September 1952.

[14] A.Moffat and J.Katajainen, "In-place calculation of

minimum-redundancy codes", 4th Intl. Workshop on

Algorithms and Data Structures, Vol. 955, pp. 393-

402, August 1995.

[15] J.Van Leeuwen, "On the construction of Huffman

trees", 3rd International Colloquium on Automata,

Languages and Programming, pp. 382-410, July 1976.

[16] M. Buro, "On the maximum length of Huffman

codes", Information Processing Letters, Vol. 45, No.5,

pp. 219-223, April 1993.

[17] H. C. Chen, Y. L. Wang and Y. F. Lan, "A memory

efficient and fast Huffman decoding algorithm",

Information Processing Letters, Vol. 69, No. 3, pp.

119- 122, February 1999.

 [18] R. Hashemian, "Direct Huffman coding and decoding

using the table of code-lengths", Proc. International

Conf. on Inform. Technology: Computers and

Communications (ITCC '03), pp. 237-241, April 2003.

[19] S. Ho and P. Law, "Efficient hardware decoding

method for modified Huffman code", Electronics

Letters, Vol. 27, No. 10, pp. 855-856, May 1991.

[20] S. T. Klein, "Skeleton trees for the efficient decoding

of Huffman encoded texts", Kluwer Journal of Inform.

Retrieval, Vol. 3, No. 1, pp. 7-23, July 2000.

 [21] L. L. Larmore and D. S. Hirschberg, "A fast algorithm

for optimal length-limited Huffman codes", Journal of

ACM, Vol. 37, No. 3, pp. 464-473, July 1999.

[22] A. Moffat and A. Turpin, "On the implementation of

minimum-redundancy prefix codes", IEEE Trans.

Commun., Vol. 45, No. 10, pp. 1200-1207, October

1997.

[23] O.Srinivasa Rao, S.Pallam Setty, ―Efficient mapping

methods of Elliptic Curve Crypto Systems‖

International Journal of Engineering Science and

Technology, Vol. 2(8), 2010, pp. 3651-3656

[24] Vigila, S.; Muneeswaran, K.; ―Implementation of

text based cryptosystem using Elliptic Curve

Cryptography‖, Advanced Computing, 2009. ICAC

2009. First International Conference on 13-15 Dec.

2009, on page(s): 82-85.

[25] Gupta, K.; Silakari, S.; Gupta, R.; Khan, S.A.; ―

An Ethical Way of Image Encryption Using ECC‖

Computational Intelligence, Communication Systems

and Networks, 2009. CICSYN '09. First International

Conference on 23-25 July 2009,Onpage(s):342-345.

[26] R. Rajaram Ramasamy, M. Amutha Prabakar, M.

Indra Devi, and M. Suguna, ―Knapsack Based ECC

Encryption and Decryption‖ International Journal of

Network Security, Vol.9, No.3, PP.218–226, Nov.

2009

[27] O.Srinivasa Rao, S.Pallam Setty, ―Comparative Study

of Arithmetic and Huffman Data Compression

Techniques for Koblitz Curve Cryptography‖

International Journal of Computer Applications (0975

– 8887), Volume 14– No.5, January 2011

http://www.secg.org/

