Sensor based Technologies for Visually Impaired: A Comparative Study

Anuradha Sharma

Research Scholar Department of Technology I.T.S, Ghaziabad

ABSTRACT

Of the 37 million visually impaired people across the globe, over 15 million are from India. [1]. The world today demands people to be independent, irrespective of their challenges, mentally or physically [2]. Despite an increased amount of technologies and systems designed to address the navigational requirements of the visually impaired community, current research has failed to sufficiently address the human issues associated to their design and use [3]. Sensors hold a wide scope of development, implementation and improvement in this area. Several technologies have been developed, based on sensors to meet the day to day needs of this community. But they have not proved to be very helpful due to various reasons like cost, portability etc. Therefore, before we proceed to the further developments in this area, we must closely study the Human Computer Interaction that too from the viewpoint of the visually challenged. It has been proved that visually impaired vary individually and collectively in their use of environmental context during micro- and/or macro-based navigation [15]. In this paper, we will take a look at some technologies developed so far, their advantages and drawbacks, and thus conclude the various aspects to be focused on to give way to better technology that will help the visually impaired community. We'll also see how sensors and their technological improvement can prove to be helpful.

Keywords

Visually Impaired, Technology, obstacle, descriptive, information.

1. INTRODUCTION

Sensors have proved to be a boon giving intelligent technology a boost. Motion sensing technologies, obstacle avoidance systems, robots, weapon detectors etc. are only a few examples of application of sensors. They have in fact given way to the development of technologies for disabled people, so as to help them assist themselves without dependency on other people. A boom in assistive technologies has been encountered. Related work is in progress for technologies related with virtually disabled concepts to develop a user-friendly piece of self-help. White canes being the most popular in this context, but helpful for known destinations along familiar routes. For new or unknown destinations along unfamiliar routes (that may change dynamically) the limitations of these aids become apparent [4, 5, 6] (e.g. white canes are ineffective for detecting obstacles beyond 3-6 feet). Further, Petrie [7] describes how these mobility aids are only useful for assisting visually impaired people through the immediate environment (termed as micronavigation), but do not facilitate the traveler in more distant environments (termed as macronavigation). With the proliferation of context-aware research and development,

Nancy Sharma Asstt Professor Department of Technology I.T.S, Ghaziabad

Electronic Travel Aids (ETAs) such as obstacle avoidance systems (e.g. Laser Cane and ultrasonic obstacle avoiders [8]) have been developed to assist visually impaired travelers for micro-navigation. Whereas, Global Positioning Systems (GPS) and Geographical Information Systems (GIS) have been/are being developed for macro navigation (e.g. MOBIC Travel Aid [6], Arkenstone system [9] & Personal Guidance System [10]).

2. NAVIGATIONAL TECHNOLOGIES FOR VISUALLY IMPAIRED:

2.1 E-Drive: This is 'a mechanism of fuzzy logic which reduces the accidents and also help the physically/visually challenged persons. The proposed system will reduce the accidents by neighboring vehicle detection, obstacle detection, controlling the vehicle speed, traffic light detection and sign board detections. All these above mentioned facilities are automated (i.e.) without any human intervention.' This system works on a set of input combinations and their consecutive outputs based on fuzzy if-then conditions. It is implemented using an ultrasonic sensor system, with a sender, a receiver, a counter with display, time reference section, electronic components and motors. The sensitivity of receiver is a function of time.[2]

Advantages	Drawbacks
No remodeling of existing	The proposed
vehicle is needed.	system may create
Physically/visually	problems in rural areas.
challenged persons can ride	The speed of the
the vehicle without others'	vehicles is
help.	comparatively less.
The system reduces the	
number of accidents to great	
extent	

Table.1

2.2 Smart Cane for Visually Impaired:

White cane can only be used to detect obstacles up to kneelevel within a range of only 2-3 feet. Further, the visually challenged are unable to access the bus transport system without sighted assistance as they cannot read the route number and are unsure about the physical location of the bus and its entry/exit door. This project is aimed at developing two systems to address these problems:

- (i) Cane mounted knee-above obstacle detection and warning system using ultrasound beam to enhance the horizontal and vertical detection range, and
- (ii) User-triggered bus identification and homing system by using radio-frequency (RF) communication.

08th National Conference on Next generation Computing Technologies & Applications (NGCTA - 2013)

i. Cane Mounted Knee-Above Obstacle Detection and Warning System

The cane consists of detachable unit comprising of an ultrasonic ranger, vibrator and a microcontroller which offers a range of 3m and can detect obstacles above knee level. There are two modes of operation:

- (i) *Less than Im range*: useful while navigating within a room; and
- (ii) *Greater than 1m range*: used while navigating outdoors.

ii. User-Triggered Bus Identification and Homing System

This device consists of two modules:

- (i) *User Module*, carried by the user,
- (ii) Bus Module, placed at the entry of each bus.

Once the user hears a bus approaching the bus stop, he presses the Query Button on the User Module which transmits an RF signal to all the buses in the vicinity. Each bus module responds by transmitting its route number. All numbers received are sequentially spoken out by the user module. The user selects the bus number of interest by pressing the Select Button after that number is read out. This triggers voice output of the bus number from the entry of the selected bus that acts as an auditory cue and assists the person in moving towards the gate of the bus.[11]

Advantages	Drawbacks
 For both the systems, the projected cost of user modules is reasonable each making them suitable for developing country needs. The cost would decline substantially once these devices are mass produced. In a practical setting, white canes can only be used to detect obstacles up to knee-level. Hence, potentially hazardous obstacles like protruding window panes, raised platforms and horizontal bars go undetected. 'Smart Cane' overcome this shortcoming. Since people have different skin sensitivities there is a knob to adjust the intensity of vibrations. The detection range of the white cane is restricted to 1-2 feet from the user. Certain obstacles (e.g. a moving vehicle) cannot be detected till they are dangerously close to the person. The range of 'Smart Cane' in the maximum set of the where set of the set of the where set of the where set of the set of the	 Additional charger lead for charging this device would be required. The system needs implementation of module in transport system too which may prove to be a tedious task.
4. A fully charged battery lasts about 10 hours of	

Fig1. [12] User queries all buses for route number. Numbers received are spoken out to the user. Once the user selects a particular bus, a small bulb would start flickering in the driver's control panel (like a car indicator). This gives an indication to the driver that a person with special needs is interested in boarding the bus.

2.3 Wearable Obstacle Detection System for visually impaired People:

By this obstacle detection system for visually impaired people, User can be alerted of closed obstacles in range while traveling in their environment. The system detects the nearest obstacle via a stereoscopic sonar system and sends back vibro-tactile feedback to inform the user about its localization. The idea is to extend the senses of the user through a cyborgian interface. The components integrated are: Two sonar sensors, a microcontroller, and two vibrators.

First, the direction of the obstacle is determined by appropriate combination of vibrators on the left and right side (sensors and vibrators on either shoulder of wearable jacket). Vibration on either side means the obstacle is on that side, vibration on both sides' means the obstacle is in front. Second, the height of the obstacle is determined by the user keeping in mind that the sensor are located on his shoulder at 60° of field of view. If the object is at shoulder height then the vibration is increasing constantly while the user is moving toward it. If the obstacle is located on the floor at sufficient distance the user will feel a vibration corresponding to the obstacle. When he'll move towards it the vibration will stop according to the fact that the obstacle will pass below the field of view of the sensors.[12]

Advantages	Drawbacks
1. Vibrators are used from	1. The user approximates the
mobile phone technology.	distance to the obstacle and
Those devices are small and	not localizes it precisely.
light enough to be fixed on	2. The blind angles limit the
cloth without any	field of action of such
obstruction. The electrical	system.
consumption was also a	3. Another disadvantage is
major factor in this choice.	the occlusion of the sensor
With an electrical power	by the user's hands.
consumption of 0.2W at	4. One main limitation of
3.5V, they can run for hours	such sonar system is in
using energy from standard	measuring the distance to

08th National Conference on Next generation Computing Technologies & Applications (NGCTA - 2013)

battery. They are also	the "closest" obstacle in	3. LIMITATIONS &
produced in huge amounts	iange, which could be an	FOR TECHNOLOGIES I
so their price is really low.	inconvenience when we	The technologies are a great help h
	are trying to map the	are vet to be considered before the
2. With maximum power	environment.	with few modifications
consumption below the 5	. The problem is obvious	with lew mounications.
Watt, our system can run	when the system is used to	Tashaalasa Ohasaat
	sense the entrance to a	Technology Observat
3. For hours out of a single	room. We still have	1.Smart Cane The syste
battery supply.	obstacle from both the left	technolog
5 11 5	and the right and it can be	are requir
4 By its stereoscopic	interpreted as a continuous	user's ha
architecture it allows	wall	assist. A
positioning by telling the 6	The system still be	system in
user from which side an	hardwired from the sensor	world is
abstaala is aspring	to the estuators via the	may fac
obstacle is coming.	to the actuators via the	foreign
	microcontroller. Each part	direction
5. Each part is small enough	of the system is also	structural
to be fixed on the cloth	mounted on hard circuit	2 E Drive This tech
which ensures the whole	board. It will be interesting	
system is wearable.	to weave directly the wires	visually
	inside the textile fiber and	is still u
6. It also let the user hands	to use semi rigid support	would be
free for other purposes.	for the mounting of the	destinatio
· ·	electronic components.	mentione
	1	to the

Table.3

IMPROVEMENTS SUGGESTED:

A main improvement that can be done to the current system will be to incorporate a set of sensors with a narrow "field of view". Coupled with a set of vibrators all around the user body, we will be able to make him sense more precisely the topology of the environment.

Another solution to improve the wearable aspect could be to design the system as a set of independent modules that can be fixed on the cloth and communicating via wireless connection. In order to accomplish a perfectly wearable system the miniaturization should be improved on the sensors and actuators.

Those could never be, in a close future, perfectly wearable but could approximate the size of a standard button or clipper present on the most common vest.[12]

2.4 A handheld computer based Tour Guide to guide visually impaired through the exhibition

The objects used were a handheld device and a smart RFID sensor to guide the people along the EuroFlora2006 exhibition. The guide is based on PocketPC handheld devices and Radio-Frequency (RF) localization. RF sensors (IP65 compliant) were placed all over the exhibition. The guide consisted of 2 parts, one that provides general information of the exhibition and the guide; and the other that contains information of area of interest selected. When the handheld device recognizes the RF tag of interest area, the software asks the user whether to launch the description or not.[13]

Feedback received by the users-

- Some users found the long silence between two presentation activation irritating. This was managed by a message informing that user is not in his point of interest.
- Some people asked for more descriptions. Thus individual needs were not fulfilled. In short this technology is not customizable.

SUGGESTIONS DISCUSSED

out few key requirements eir implementation along

Technology	Observation
1.Smart Cane	The system proves to be a great
	technology, but few improvements
	are required like a tech to keep the
	user's hand free would be a better
	assist. Also the presence of the
	system in all bus systems of the
	world is needed; otherwise user
	may face great difficulty in
	foreign land. The system is a
	directional assistance, but gives no
	structural of descriptive info.
2.E-Drive	This tech is helpful in assisting the
	visually impaired in driving, but it
	is still unclear whether the user
	destinction No such system is
	mentioned so as to track the way
	to the final destination In
	addition a tech to define multiple
	routes will be helpful in case one
	track is not functioning. Also, it
	gives no descriptive information
	and is directional. Therefore, it is
	more oriented for people without
	this disability as it will definitely
	decrease the count of accidents.
3.Wearable Obstacle	A Great assistance indeed. The
Detection System	testing of this system is done by
	blindfolding people, this hampers
	the knowledge of orientation of
	the visually challenged. Therefore,
	testing should be done again and
	feedback reconsidered. Again, it is
	a non-descriptive tech. More
	frequent vibration may be
	irritating and narmful too, and it
	would be better to have guiding-
1 A handheld computer	This technology is a great
hased Tour Guide	descriptive assistance to guide the
Subou Tour Ourue	neonle through a limited area
	though Customizable tech would
	be even better. Also this tech has
	limited area implementation.
	Inspired by this tech
	Implementation of Sensor
	Networks may be help in guiding
	the visually impaired. Though
	integrated with other techs to
	avoid shortcomings.

Along with these technologies the integration of Assistive Technologies are needed for meeting the day-to-day requirements.

Human Computer Interaction:

Current research appears very technology focused, which has led to an insufficient appreciation of Human Computer Interaction, in particular task/requirements analysis and notions of contextual interactions. In a study, Visually impaired participants on average used over 3 times more directional information, over 7 times more structural & environmental information, 6 times more numerical information (with additional types, such as using degrees for heading direction), almost 9 times more descriptive information and over 2 times more temporal/distance based information than sighted participants. Visually impaired participants mentioned words/phrases within a greater number of contextual categories on average (9.75) than sighted participants (6.33). Sensory information is paramount for navigation for visually impaired, though audio cues (sound of hospital machinery, squeaking of door opening, sound of escalators and ATMs, and sound of wind exiting a tunnel.); olfactory cues(smell of bakeries, pet shops, chemists, newsagents, chip shops, etc.) ; and sense of touch(the difference in ground textures) are important for orientation/ navigation too. A visually impaired vary individually and collectively in their use of environmental context during micro- and/or macro-based navigation. The study proved the hypothesis that each participant's contextual descriptions were unique, which indicates the need(of user) to customize information for his/her own needs. Also, differing types of visual impairments and length of impairment, may be the factors resulting in unique orientation of individuals. For instance, someone blind since birth may rely more on olfaction and hearing environmental information than someone who has restricted peripheral vision as a result of glaucoma. Considering these point, it is observed that further investigation relating to those HCI/usability issues is required. [14]

4. CONCLUSION

Current navigation systems, which are designed for sighted users, are based heavily around giving directional, numerical and textual information and give very little (if any) structural or descriptive information. HCI methods/models/frameworks need to be utilized to identify which contextual interactions are relevant and how temporal changes can influence usability. Further work in the field of HCI/usability issues is required [15]. Also, advancement in sensor technology with regard to their miniaturization, increase in field view and decrease in cost would be helpful in creating a hand free, user friendly technology. Integration of sensor technology with other technologies (like GPS and GIS) is also a integral part of navigation systems. Also keen work should be done to make the whole system cost friendly as to make it available for middle-class and poor users. Research in the field of sensor networks would help to guide the users through especial environments like exhibitions etc. and therefore this field of study holds a scope of development and improvement too.

4. REFERENCES

- [1]. Kounteya Sinha, TNN Oct 11, 2007, 02.32am IST (The Times Of India)
- [2]. "Automated Vehicles For Physically And Visually Challenged"- L.Shrinivasavaradhan And G. Chandramouli (Shri Sai Ram Engineering. College, West Tambaram, Chennai India).
- [3]. "A Pathway To INDEPENDENCE: WAYFINDING SYSTEMS WHICH ADAPT TO A VISUALLY IMPAIRED PERSON'S CONTEXT" -Nicholas A. Bradley; Mark D. Dunlop University Of Strathclyde, UK

- [4]. Dodson, A.H.; Moore, T. & Moon, G.V. (1999). "A Navigation System For The Blind Pedestrian", Proceedings Of GNSS 99, 3rd European Symposium On Global Navigation Satellite Systems, P 513-518, Genoa, Italy, October 1999.
- [5]. Shoval, S.; Ulrich, I. & Borenstein, J. (2000). "Computerized Obstacle Avoidance Systems For The Blind And Visually Impaired". Invited Chapter In "Intelligent Systems And Technologies In Rehabilitation Engineering." Editors: Teodprescu, H.N.L. & Jain, L.C.,
- CRC Press, ISBN/ISSN: 0849301408, P. 414-448.
- [6]. Strothotte, T.; Fritz, S.; Michel, R.; Raab, A.; Petrie, H.; Johnson, V.; Reichert, L. & Schalt, A. (1996).
 "Development Of Dialogue Systems For The Mobility Aid For Blind People: Initial Design And Usability Testing", Proceedings Of ASSETS '96, Vancouver, British Columbia, Canada, P. 139-144.
- [7]. Petrie, H. (1995). "User Requirements For A GPS-Based Travel Aid For Blind People. In J.M.Gill And H. Petrie (Eds.)", Proceedings Of The Conference On Orientation And Navigation Systems For Blind Persons, Hatfield, UK. 1-2 February. London: Royal National Institute For The Blind.
- [8]. Bradyn, J.A. (1985). "A Review Of Mobility Aids And Means Of Assessment", In D.H. Warren & E.R. Strelow (Eds.), Electronic Spatial Sensing For The Blind. Boston: Martinus Nijhoff. P.13-27.
- [9]. Fruchterman, J. (1995). "Archenstone's Orientation Tools: Atlas Speaks And Strider", In J.M. Gill And H. Petrie (Eds.), Proceedings Of The Conference On Orientation And Navigation Systems For Blind Persons, Hatfield, UK. 1-2 February. London: Royal National Institute For The Blind.
- [10]. Golledge, R.G.; Klatzky, R.L.; Loomis, J.M.;Speigle, J. & Tietz, J. (1998). A Geographical Information System For A GPS Based Personal Guidance System. International Journal Of Geographical Information Science, Vol. 12, No. 7, 727-749.
- [11]. "Smart' Cane For The Visually Impaired: Technological Solutions For Detecting Knee-Above Obstacles And Accessing Public Buses"-Paul Rohan, Garg Ankush, Singh Vaibhav, Mehra Dheeraj, Balakrishnan M., Paul Kolin, Manocha Dipendra (Department Of Computer Science And Engineering ,Indian Institute Of Technology, Delhi)
- [12]. "Wearable Obstacle Detection System For Visually Impaired People"-Sylvain Cardin, Daniel Thalmann And Frederic Vexo Virtual Reality Laboratory (Vrlab) Ecole Polytechnique Fédérale De Lausanne (EPFL); CH-1015 Lausanne, Switzerland
- [13]. "Guiding Visually Impaired People In An Exhibition"-Francesco Belloti, Riccardo Berta, Alessandro De Gloria, Massimiliano Margarone (Dept. Of Biophysical And Electronic Engineering, University Of Genoa, 16145 Italy).
- [14]. "Investigating Context-Aware Clues To Assist Navigation For Visually Impaired People"-Nicholas A. Bradley, Mark D. Dunlop; Department Of Computer And Information Sciences; University Of Strathclyde, Glasgow, Scotland